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MINIMAL 4-MANIFOLDS FOR GROUPS OF
COHOMOLOGICAL DIMENSION 2

by JONATHAN A. HILLMAN

(Received 22nd October 1992)

We show that if n is a group with a finite 2-dimensional Eilenberg-Mac Lane complex then the minimum of
the Euler characteristics of closed 4-manifolds with fundamental group n is 2x(K(n, 1)). If moreover M is such
a manifold realizing this minimum then n2(M) = ExtzW(Z, Z(V]). Similarly, if n is a PD3-group and w,(M) is
the canonical orientation character of n then x (M)^ l and n2(M) is stably isomorphic to the augmentation
ideal of Z\K]-
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It is well known that every finitely presentable group is the fundamental group of
some closed orientable 4-manifold. Such manifolds are far from unique, for the Euler
characteristic may be made arbitrarily large by taking connected sums with simply
connected manifolds. Following Hausmann and Weinberger we may define an invariant
q{n) for any finitely presentable group n by q(n) = min{x(M)\ M is a PD^-complex with
7c,(M)S7t}. We may also define related invariants qx where the minimum is taken over
the class of P£>4-complexes whose normal fibration has an Z-reduction. An elementary
argument shows that qSG(n)^.2 — 2pi(n) + p2(n), where SG is the class of orientable
PD4-complexes. (See Theorem 1 of [4]).

In this note we shall show that if n has a finite 2-dimensional Eilenberg-MacLane
complex than q{n) = 2X(K(K, 1)). The class of such groups includes all surface groups and
classical link groups, and the groups of many other (bounded) 3-manifolds. The minima
are in fact realized by s-parallelizable PL (smooth) 4-manifolds. A related argument
shows that if n is a PD3-group and wt(M) agrees with the canonical orientation
character of n then /(M)>0 and n2(M) is stably isomorphic to the augmentation ideal
of Z[;r]. We conclude with some observations on the problem of the uniqueness up to
homotopy type or up to homeomorphism of minimal manifolds for groups of
cohomological dimension 2. In particular, the algebraic 2-type of a minimal manifold for
such a group is determined by the group and the orientation character alone; for surface
groups the second Stiefel-Whitney class is the only other invariant needed to determine
the full homotopy type of a minimal manifold.

If R is either Z or Q and H is a left /?[7t]-module H shall denote the conjugate right
R[n~\-module with the same underlying abelian group and R[7t]-action given by
hg = w(g)g~l h, for all heH and gen, where w = w1(M), considered as a homomor-
phism from n to {+1}. (We shall also use the overbar to denote the conjugate of a right
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K[7t]-module). The conjugate of a free left (right) module is a free right (left) module of
the same rank. Two K[>]-modules H and H' are stably isomorphic if H © K|>]f ls// ' ©
R[nT for some a,b^O.

If the augmentation Q[V]-module has a finite resolution P^, where Pi=Q[nY\ for all
j^O then the alternating sum z(7I) = S 'go(~ O'P; IS independent of the resolution. If
K(n, 1) is homotopy equivalent to a finite complex then x{JJl) = Y*iio(~l)'Pi(niQ)==

For ease of reading we shall write e\H) for ExtQM(H,Q[n~\) or Ext'ZM{H,Z[n\), in
Theorems 1 and 2 respectively.

Theorem 1. Let M be a finite PD^-complex with fundamental group n, and suppose
that c.d.Qn^2 and that the augmentation Q[ii]-module has a finite resolution by finitely
generated free modules. Then x(M)~^.2x(n) = 2{\—fii{n;Q) + fl2(n;Q)). If moreover #(M) =
2X(TI) then n2(M)^Ext2

zw(Z,Z[_n-]).

Proof. Since Q\n] has global dimension 2, we may assume without loss of generality
that there is an exact sequence

We may also assume that M is a finite 4-dimensional cell complex. Let C^ be the
cellular chain complex of the universal covering space M, with coefficients Q. Then C^ is
a complex of finitely generated free left Q[7r]-modules, whose homology is
Hik = H;t{M;Q). Let H' = H'(HomQ[n](Citt,Q^Ti])) be the equivariant cohomology modules.
Since M is simply connected and n is infinite, HosQ and Hl=H4 = 0. The chain
complex Cm breaks up into exact sequences:

0->C4->Z3-»//3->0, (2)

0-*Z3->-C3->Z2->tf2-»0, (3)

0^Z2^C2^Cl-^Co^Q^0. (4)

The Universal Coefficient spectral sequence (which has Ep
2

q term Extq
QM{Hp,Q[n]) and

which converges to Hp+q) gives another exact sequence:

0-e2<2->H2->e°//2->0 (5)

and isomorphisms H1^e1Q and elH2 = e2H3=0. Poincare duality gives further isomor-
phisms Hl s f i 3 , H2^H2, H3 = 0 and H*^Q.

Applying Schanuel's Lemma to the sequences (1) and (4) we obtain Z2@Ci®
G W @Q.[n]r = C2 © C o © Q.[nY, so Z2 is a finitely generated stably free module.
Similarly, Z3 is projective, since p.d.H2^2=gl.dim.Q\n]. Since n is finitely presentable it
is accessible, and hence elQ is finitely generated as a Q[ji]-module, by Theorems IV.7.5
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and VI.6.3 of [1]. Therefore Z3 is also finitely generated, since it is an extension of
H3^elQ by CA. Dualizing the sequence (3) and using the fact that eiH2 = 0 we obtain
an exact sequence of right modules

0 -> e°H2 -> e°Z2 -> e°C3 -> e°Z3 -> e2H2 -»0. (6)

Since duals of finitely generated projective modules are projective, it follows that e°H2 is
projective. Hence the sequence (5) gives H2 = e°H2 © e2Q.

Let / be the augmentation ideal of Q[JI]. Then there are exact sequences

Dualizing, we obtain exact sequences of right modules

0->e°/->Q|>]9-+e[V]r->e2e-»0and (9)

0-»ei>]-K?o/->e1Q-»0. (10)

Applying Schanuel's Lemma twice more, to the pairs of sequences (2) and the conjugate
of (10) (using H^l^Q) and to (3) and the conjugate of (9) (using H2^e°H2®~e2Q) and
putting all together, we obtain an isomorphism Z3 ©(Q|>]29© Co © C2 © C J s Z 3 ©
(GIXI2 + 2 r© Ci © C3 © e°H2). Since all the summands are finitely generated projective
modules, it follows that e°H2 is stably free. By a theorem of Kaplansky it has a well
defined, nonnegative rank (see page 122 of [9]). On adding a projective complement for
Z3 to each side of this equation and comparing ranks we find that e°H2 has rank
X(M)-2(l-g + r). Thus Z(M)£2Z(«).

If x(M) = 2x(n) then e°H2 = 0 and so //omZ{n](//2(M;Z),ZO]) = 0. As TI2(M)S
H2(M;Z) the final assertion now follows from the integral analogue of sequence (5). •

This theorem extends Theorem .VII.4 of [5], which assumes also that n has one end
and a finite 2-dimensional Eilenberg-MacLane space, and that x(rc) = 0.

Corollary 1. If H2(n;Q)^0 the Hurewicz homomorphism from n2(M) to H2{M;Q) is
nonzero.

Proof. By the theorem, H2(M; Q) has dimension at least 2p2(n; Q) and so cannot be
isomorphic to H2(n; Q) unless both are 0. •

If H2(n,Q)^0 the theorem gives a better estimate for q(n) than the general estimate
mentioned above.

Corollary 2. //7r = 7i1(P) where P is an aspherical finite 2-complex then q(n) = 2x(P),
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and the minimum is realized by an s-parallelizable PL 4-manifold. If moreover n has one
end and M is any closed 4-manifold with K1(M)^K then n2(M) is stably isomorphic to
ExtzM(Z,Z\_nJj. Hence the first k-invariant of M is 0.

Proof. If we choose a PL embedding j:P->R5, the boundary of a regular
neighbourhood N of j(P) is an s-parallelizable PL 4-manifold with fundamental group n
and with Euler characteristic 2%(P). By the theorem, this is best possible.

The second assertion follows on reworking the argument of the theorem with Z\ji\
coefficients. As c.d.n-^2 we have H3(n;n2(M))=0 and so the first fc-invariant is 0. •

Note that the conjugation of the module structure involves the orientation character
of M. Is the assumption that n has one end needed for the second assertion? By
Theorem II.2 of [5] a finitely presentable group is the fundamental group of an
aspherical finite 2-complex if and only if it has cohomological dimension ^ 2 and is
efficient, i.e. has a presentation of deficiency Pi(n;Q} — P2(n;Q). It is n o t known whether
every finitely presentable group of cohomological dimension 2 is efficient.

Corollary 3. If n is the group of an unsplittable fi-component l-link then q(n)=0. •

For such link groups the general estimate gives only qSG(n)^. 1 —/i. If n is the group of
a ^-component n-link with n ^ 2 then H2(n;Q) = 0 and so q(n)^2( 1 — //), with equality if
and only if n is the group of a 2-link. (See Theorem II.5 of [5]).

Corollary 4. / / n is an extension of Z by a finitely generated free normal subgroup
then q(n) = 0. If M is a closed 4-manifold with nl(M)^n then x(M) = q(n) if and only if M
is homotopy equivalent to a manifold which fibres over S1 with fibre a closed 3-manifold
with free fundamental group.

Proof. Since n is the fundamental group of the mapping torus of a self homotopy
equivalence of a finite graph, the first assertion follows from Corollary 2, while the
second assertion is Theorem 1 of [6]. •

The homotopy type of such a manifold M is determined by n and w^M). Finitely
presentable extensions of Z by free groups of infinite rank can have nonzero Euler
characteristic.

Corollary 5. If n is the group of a closed aspherical surface F then q(n) = 2x(F). If M
is a closed 4-manifold with n1(M)^K then x(M) = q(n) if and only if M is homotopy
equivalent to the total space of an S2-bundle over F.

Proof. The final assertion is Theorem 3 of [7]. •

The homotopy types of such minimal 4-manifolds for each surface group may be
distinguished by their Stiefel-Whitney classes [11]. Note that if F is orientable then
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S2 x F is a minimal 4-manifold for n which is both s-parallelizable and also a projective
algebraic complex surface.

Similar arguments give the following theorem.

Theorem 2. Let M be a finite PD^-complex whose fundamental group n is a
PD3-group such that wl(n) = w1(M). Then x(M)>0 and n2(M) is stably isomorphic to the
augmentation ideal I of Z[n~\.

Proof. The cellular chain complex for the universal covering space M gives exact
sequences

0 - > C 4 - C 3 - > Z 2 - / / 2 - » 0 a n d (1)

O-Zz-Cj-Q-Co-Z-O. (2)

Since n is a PD3-group the augmentation module Z has a finite projective resolution of
length 3. On comparing sequence (2) with such a resolution and applying Schanuel's
lemma we find that Z2 is a finitely generated projective Z[7t]-module. Since n has one
end, the Universal Coefficient spectral sequence reduces to an exact sequence

0->H2^e°H2->e3Z^H3^elH2^>0 (3)

and isomorphisms H*^e2H2 and e3//2 = e4//2 = 0. Poincare duality implies that H3 = 0
and H 4 sZ . Hence (3) reduces to

0->tf2->e°//2-K?3Z->0 (4)

and e' / /2 = 0. Hence on dualizing the sequence (1) we get an exact sequence of right
modules

0 -> e°H2 -»e°Z2 -* e°C3 ->e°CA-> e2H2 - 0. (5)

Schanuel's lemma again implies that e°H2 is a finitely generated projective module. By
Poincare duality we may splice together (1) and the conjugate of (4) to get

O^Q^Cj-^Z^e^-Z-O. (6)

(Note that we have used the hypothesis on w,(Af) here). Applying Schanuel's lemma
once more to the pair of sequences (2) and (6) we obtain C0@C2®C^@ Z2^e°H2@
Ci © C3 © Z2. Hence e°H2 is stably free, of rank x(M). Since e°H2 maps onto Z, by
(6), x(M)>0. Since n is a PD3-group, e3Z^Z and so the final assertion follows from (4).

•
Corollary 1. q{n) ^ 2 .
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Proof. If M is a finite PD4-complex with nx(M)^n then the covering space
associated with the kernel of wl(M) — wl(n) satisfies the condition on wl. Since the
condition #(M)>0 is invariant under passage to finite covers, q(n)^. 1.

Let N be a PD3-complex with fundamental group n. We may suppose that
N = NovD3, where AfonD3 = S2. Let M=Af o xS 'uS 2 xD 2 . Then M is a finite
PD4-complex, %(M) = 2 and 7t,(M)S7i. Hence q(n)^2. •

If N is an aspherical, closed orientable 3-manifold the manifold M constructed in this
corollary is the result of surgery on a loop in N x S1 and is a SP/AT4-manifold. Since a
SP/yV4-manifold must have even Euler characteristic we see that qSFIN{n) = 2.

Can Theorem 2 be extended to all torsion free 3-manifold groups, or more generally
to all free products of PD3-groups?

The above results suggest that the algebraic 2-type of a closed 4-manifold whose
fundamental group n has cohomological dimension 2 and one end may be determined
by n, wx(M) and #(M) alone, for these invariants determine n2{M) stably and the
fe-invariant must be 0 in all such cases. For surface groups w>2(M) is the only other
invariant needed to determine the full homotopy type of a manifold with group n and
X(M) = q(n) = 2%(n) [7]. In general we may expect to need stronger information on how
the top cell is attached. The signature and the equivariant intersection pairing on K2{M)
are the obvious candidates.

If we bypass this question and consider classification up to homeomorphism instead
we face the problem that the disk embedding theorem is at present only known over
elementary amenable groups [2]. If n is elementary amenable and c.d.Qn^2 then it is
locally-finite by solvable, of Hirsch length at most 2, by Lemma 2 and Theorem 2 of
[8]. If moreover n is torsion free then it is an HNN extension Z*m with a presentation
of the form <x,y \yxy'l=xm}, for some integer m/0 , or is Z, by the Corollary to
Theorem 6 of [8]. It can be shown that (if m is even) any homotopy equivalence
between two minimal orientable 4-manifolds with such groups is homotopic to a
homeomorphism. (Compare Theorem VIII.6 of [5]).

For other fundamental groups we may seek a classification up to s-cobordism or
stable homeomorphism. Minimal manifolds for surface groups are determined up to s-
cobordism by their homotopy type. A similar result should hold also when n is the
group of a finite graph of groups, all of whose vertex groups are infinite cyclic.
(Compare the last section of [7]). This class of groups includes free groups, surface
groups, the groups Z*m and extensions of Z by finitely generated free normal subgroups.

Two closed 4-manifolds M and M' are said to be stably homeomorphic if they
become homeomorphic after taking connected sums with copies of S2 x S2. The stable
homeomorphism classification for orientable 4-manifolds with a given "normal 1-type" t,
may be identified with the quotient fi4(£)/Aur(<!;) [10]. (See [3] for a brief outline).

Theorem 3. If c.d. n = 2 and H2(n;Z/2Z)=0 then the stable homeomorphism class of a
SPIN ^-manifold with fundamental group n is determined by its signature.

Proof. The stable homeomorphism classes of SP/Af4-manifolds with group n cor-
respond to the elements of Q^"IN(K(n, 1)) [10]. The hypotheses on n imply that the
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projection onto OfIN is an isomorphism. The theorem follows, as the signature gives an
isomorphism from this group to Z. •

Corollary. Any two minimal orientable 4-manifolds with fundamental group n are
stably homeomorphic.

Proof. If M is a closed orientable 4-manifold with 7r1(M)^7i and x(M) = ̂ x(7t) t n e n

H2(M; Z/2Z)=0 and so M is a SP/N4-manifold with signature 0. •
What other invariants are needed if Q.lP'N(K{n, l)) = H2(n;Z/2Z)^01 Is every

SP/N4-manifold with signature 0 and with such a fundamental group the stabilization
of a minimal manifold? After stabilizing we may assume that e°H2 is a free direct
summand of n2(M). Can we represent a half basis by disjointly embedded spheres?

Added in proof. Let n be the fundamental group of a closed orientable 3-manifold, and
suppose that n^F* G where F is free of rank r and G has no infinite cyclic free factors.
If M is an orientable PD4-complex with 71! (M)^n then the image of H\n;Q) =
H2(G;Q) in H2(M;Q) is self-annihilating under cup-product, since c.d.QnSL3. Hence
P2(M)^2dimQH2(G;Q) = 2(p1(M)-r). It follows easily that qSG(n) = 2( 1 - r ) , and the
minimum is realized by a smooth s-parallelizable 4-manifold.
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