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KSB stability is automatic in codimension ≥ 3

JánosKollár and Sándor J.Kovács

Abstract

KSB stability holds at codimension 1 points trivially, and it is quite well understood
at codimension 2 points because we have a complete classification of 2-dimensional slc
singularities. We show that it is automatic in codimension 3.
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1. Introduction

The right framework for a moduli theory of canonical models of varieties of general type was
established in [KSB88], at least in characteristic 0 and over Noetherian bases, both of which
we assume from now on. The resulting notion, now called KSB stability , works with finitely
presented, flat morphisms g :X→B that satisfy three requirements.

• (Global condition) ωX/B is relatively ample, and g is projective,

• (Fiberwise condition) the fibers Xb are semi-log-canonical, and

• (Local stability condition) ω
[m]
X/B is flat over B and commutes with base changes B′ →B for

every m∈Z.
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If g satisfies the last two, then it is called locally KSB stable. See [Kol23] for a detailed
discussion of the resulting moduli theory, especially [Kol23, Sec. 6.2].

Note that the local stability condition is automatic at codimension 1 point and is quite well
understood at codimension 2 points because we have a complete classification of 2-dimensional
slc singularities; see [KSB88] and [Kol23, Sec. 2.2]. Our aim is to show that local stability is
automatic in codimension ≥ 3. The simplest version is the following.

Theorem 1.1. Let g :X→B be a flat morphism of finite type over a field of characteristic 0.
Let Z ⊂X be a closed subset such that codim(Zb ⊂Xb)≥ 3 for every b∈B, and set U :=X \Z.

Assume that the fibers Xb are semi-log-canonical and that g|U :U →B is locally KSB stable.
Then g :X→B is locally KSB stable.

If the fibers Xb are CM, the claim follows from [Kol23, 10.73]. Being CM is a deformation
invariant property for projective, locally stable families by [KK10]; see also [Kol23, 2.67]. In
particular, the theorem was known to hold for varieties in those connected components of the
KSB moduli space that contain a canonical model of a smooth variety.

If B is reduced, the theorem is proved in [Kol13a]; see also [Kol23, 5.6]. Thus it remains
to deal with the case when B =SpecA for an Artinian ring A, which implies the theorem for
any B.

For applications, and even for the proof of Theorem 1.1, we need a form that strengthens it
in two significant ways. First, we deal with pairs (X,Δ=

∑
aiDi), where ai ∈

{
1
2 ,

2
3 ,

3
4 , . . . , 1

}
for every i; these are frequently called standard coefficients. Second, and this is more important,
we assume g to be flat only in codimension ≤ 2.

Theorem 1.2. Let g :X→B be a morphism of finite type and of pure relative dimension over
a field of characteristic 0, and let Δ=

∑
aiDi, where the Di are relative Mumford Z-divisors.

Let Z ⊂X be a closed subset and set U :=X \Z. Assume that

(1.2.1) ai ∈
{
1
2 ,

2
3 ,

3
4 , . . . , 1

}
for every i,

(1.2.2) codim(Zb ⊂Xb)≥ 3 for every b∈B,

(1.2.3) g|U :U →B is flat and the fibers (Ub,Δ|Ub
) are semi-log-canonical,

(1.2.4) ω
[m]
U/B(

∑
i�mai�Di|U ) is flat over B and commutes with base changes for every m∈Z,

(1.2.5) depthZX ≥ 2 and

(1.2.6) the normalization (Xb, Cb +Δb)→Xb is log canonical for every b∈B, where Cb denotes
the conductor of the normalization Xb →Xb; see [Kol13b, 5.2].

Then

(1.2.7) g :X→B is flat,

(1.2.8) the fibers (Xb,Δb) are semi-log-canonical and

(1.2.9) ω
[m]
X/B(

∑
i�mai�Di) is flat over B and commutes with base changes for every m∈Z.

Remark 1.3.

(1.3.1) As in [Kol23, 4.68], D is a relative Mumford divisor if at every generic point of Xb ∩D,
the fiber Xb is smooth and D is Cartier.
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KSB stability in codimension ≥ 3

(1.3.2) The notation depthZX stands for depthZ OX := inf{depthzOX | z ∈Z}. This terminology
is used, for instance, in [EGA-IV/2, (5.10.1)] and [Kol23, 10.3].

(1.3.3) The condition (1.2.5) is easy to ensure by replacing OX with the push-forward of OU if
necessary. If B is S2 then (1.2.5) holds iff X is S2.

(1.3.4) Assumption (1.2.6) is a weakening of the fiberwise condition; the two are equivalent iff
Xb is S2. In many applications, including the proof of Theorem 1.2, at the beginning we
know only (1.2.6), but we eventually conclude that (Xb,Δb) is slc.

(1.3.5) The following may be a better way of formulating (1.2.6). Let j :U ↪→X be the natural
embedding, and set X̃b := SpecXb

j∗OUb
, which is the demi-normalization and also the

S2-hull of the fiber Xb; see [Kol13b, Sec. 5.1] and [Kol23, Sec. 9.1]. Then X̃b →Xb is
a universal homeomorphism that is an isomorphism over Ub. Now (1.2.6) holds iff the
induced pair (X̃b, Δ̃b) is slc.

(1.3.6) If ai ∈
{
2
3 ,

3
4 , . . .

}
, then (1.2.4) is the same as the main assumption of KSB stabilty, with

standard coefficients as defined in [Kol23, 6.21.3].
If we allow ai =

1
2 , then the above definition treats the pairs (X,D), (X, 12D+ 1

2D)
and (X, 12(2D)) as different objects. Note that ωX(

∑�ai�Di) is ωX(D) in the first case
but is ωX in the other two cases. Thus, replacing 1 ·Di with

1
2Di +

1
2Di ensures the extra

condition on the {Di : ai = 1} in [Kol23, 6.22.3].
This way of handling the coefficient 1

2 case may not be natural from the point of view
of moduli, but it seems necessary; see [Kol23, Secs. 8.1–2] for a discussion of the general
notion of such marked pairs.

(1.3.7) The definition of KSB stabilty with standard coefficients also requires the Di to be flat
by [Kol23, 6.21.1]. We do not know whether this is automatic in codimensions ≥ 3; see
Corollary 4.3 for a special case.

(1.3.8) We comment on other versions of stability in Section 5.

§1.4 Sketch of an approach to Theorem 1.2. Assume for simplicity that we are over C, B =
SpecA for an Artinian ring A and that the closed fiber Xk is projective. As in [KK10], the
proof relies on the Du Bois property (see Remark 1.9) of slc varieties, which implies that the
natural maps

H i(Xan
k ,C)�H i(Xan

k ,OXan
k
) are surjective. (1.4.1)

If g is also flat, these imply that the Rig∗OX are (locally) free by [DJ74]. Using this for various
cyclic covers, [Kol23, 2.68] shows that ωX/B is flat over B and commutes with base changes
B′ →B.

An inspection of these proofs shows that, in order to get the flatness of ωX/B, we need (1.4.1)
only for i= n, n−1, where n := dimXk. This is where the codimension 3 condition enters first.
As we noted in (1.3.5), the demi-normalization X̃k of Xk is slc, and X̃k →Xk is a universal
homeomorphism that is an isomorphism over Uk. Thus

H i(Xan
k ,C)
H i(X̃an

k ,C) for every i, and

H i(Xan
k ,OXan

k
)
H i(X̃an

k ,O
˜Xan
k
) for i= n, n−1.
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It follows that (1.4.1) holds for i= n, n−1, although Xk is not (yet known to be) Du Bois; see
also Theorem 4.2. One also sees that it is enough if g is flat at points of dimension ≥ n− 2.
Therefore we get that ωX/B is flat over B.

Interestingly, this approach does not seem to imply that X is flat over B, much less the full
Theorem 1.2. A possible explanation is that ωX is insensitive to codimension 2:

Lemma 1.5. Let π : Y →X be a quasi-finite morphism that is an isomorphism at points of
codimension ≤ 1. Then π∗ωY 
 ωX .

Proof. Let ı :U ↪→X be the largest open subset such that π′ := π|π−1U is an isomorphism between
π−1U and U . Let j : π−1U ↪→ Y denote the embedding. By assumption codim(Y \ π−1U, Y )≥ 2
and codim(X \U,X)≥ 2. Therefore, because ωX and ωY are S2-sheaves (cf. [KM98, 5.69]), it
follows that

π∗ωY 
 π∗j∗ωπ−1U 
 ı∗π′∗ωπ−1U 
 ı∗ωU 
 ωX . �

In order to prove Theorem 1.2, we use the techniques of [KK20], and establish the following
local, Du Bois version (see Remark 1.9).

Theorem 1.6. Let B be a local scheme over a field of characteristic 0, and let f : (X, x)→B
be a local morphism that is essentially of finite type. Let Xk be the fiber of f over the closed
point of B, let Z ⊆Xk be a closed subset of codimension ≥ 3, and set j :Uk :=Xk \Z ↪→Xk.
Assume that

(1.6.1) f is flat along Uk, and

(1.6.2) Specj∗OUk
is Du Bois.

Then ωX/B is flat over B and commutes with arbitrary base change.

Theorem 1.6 will be proved as a combination of Theorem 3.16 and Theorem 4.2.
As before, the method does not seem to imply that X is flat over Spec S, not even if we

assume that depthZX ≥ 2, as in (1.2.5). However, we do not have a counterexample.
Note that, without the Du Bois assumption, such examples are easy to get:

Example 1.7. Let {Ci : i∈ I} be a finite set of smooth, projective curves. Fix di > 0 such that
di ≤ deg ωCi

for some i∈ I and that dj > deg ωCj
for some j ∈ I. Set Y :=×iCi and consider a

line bundle L=�iLi on Y , where deg Li = di.
The affine cone over Y with conormal bundle L (cf. [Kol13b, 3.8]) is

Ca(Y, L) := Speck ⊕m∈ZH0(Y, Lm).

By the i= 0 case of [Kol13b, 3.13.2], its dualizing sheaf is the sheafification of the module

⊕m∈ZH0(Y, ωY ⊗Lm).

The mth graded pieces are

⊗i∈IH0(Ci, L
m
i ) and ⊗i∈I H0(Ci, ωCi

⊗Lm
i ).

Note that if di ≤ deg ωCi
then h0(Ci, Li) depends on the choice of Li, not only on deg Li.

By contrast, we claim that h0(Y, ωY ⊗Lm) depends only on the degrees of the Li and the
m. Indeed, if m≤−1 then ωCj

⊗Lm
j has negative degree, so H0(Y, ωY ⊗Lm) = 0. If m= 0 then
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there is no dependence on the Li, and for m≥ 1

h0(Ci, ωCi
⊗Lm

i ) =m deg Li + g(Ci)− 1.

Now set B :=×iPic
di(Ci), and note that Y ×B 
×i

(
Ci ×Picdi(Ci)

)
. Let Pi denote the

universal degree di line bundle on Ci ×Picdi(Ci), and let P =�Pi on Y ×B. Further, let π :
Y ×B→B be the projection, and consider the universal cone

XB :=Ca(Y ×B, P ) := SpecB ⊕m≥0 π∗Pm

over B. As we noted, the h0(Y, ωY ⊗ Pm
b ) are independent of b∈B, so the dualizing sheaf of

XB is flat over B. However, h0(Y, Pb) does depend on b∈B; thus the structure sheaf is not flat
over B. Note that h1(Y, Pb) also depends on b∈B, and when h1(Y, Pb) �= 0, then Ca(Y, Pb), the
normalization of the fiber of XB over b, is not Du Bois by [GK14, 2.5].

We also prove that KSB stability is automatic in codimension 3 in a different manner, namely,
that it is enough to check it on general hyperplane sections.

Corollary 1.8. Let g :X→B be a quasi-projective morphism of pure relative dimension n≥ 3
over a field of characteristic 0, and Δ=

∑
aiDi, where the Di are relative Mumford Z-divisors.

Assume that

(1.8.1) ai ∈
{
1
2 ,

2
3 ,

3
4 , . . . , 1

}
for every i,

(1.8.2) depthx X ≥min{2, codim(x, g−1(g(x))} for every x∈X,

(1.8.3) the normalization (Xb, Cb +Δb)→Xb is log canonical for every b∈B and

(1.8.4) general relative surface sections of (X,Δ)→B are locally KSB stable.

Then (1.2.7)–(1.2.9) hold.

Proof. By [Kol23, 9.17] we may assume that B is Artinian. Then the relative pluricanonical

sheaves ω
[m]
X/B(

∑
i�mai�Di) are S2. This continues to hold after first tensoring with line bundles

and then restricting to general surface sections Y :=H1 ∩ · · ·Hn−2 ⊂X; for the latter, see [Kol23,
10.18]. Thus

ω
[m]
Y/B(

∑
i�mai�Di|Y )
 ω

[m]
X/B(

∑
jHj +

∑
i�mai�Di)|Y .

Now by [Mat89, p.177] or [Kol23, 10.56], the ω
[m]
X/B(

∑
i�mai�Di) are flat over B outside a sub-

set of codimesion ≥ 3. Thus they are flat everywhere by Theorem 1.2. Over Artin rings, flat
modules are free [StacksProject, Tag 051G], so commuting with base change holds; see also
[Kol23, 9.17]. �

Remark 1.9. The precise definition of Du Bois singularities, introduced by Steenbrink [Ste83],
is quite involved. It starts with the construction of the Du Bois complex; see [DB81, GNPP88],
which has a natural filtration and agrees with the usual de Rham complex if X is nonsingular.
For our purposes the important part is the 0th associated graded Du Bois complex of X, which
is denoted by Ω0

X . This comes with the natural morphism OX →Ω0
X , and a separated scheme

of finite type over C is said to have Du Bois singularities if this natural morphism is a quasi-
isomorphism. For more details on the definition of Du Bois singularities and their relevance to
higher dimensional geometry, see [Kol13b, Chap.6].

As we already mentioned in (1.4.1), for a proper complex varietyX with Du Bois singularities,
the natural morphism
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H i(Xan,C)�H i(Xan,OXan) (1.9.1)

is surjective. (At least heuristically, one may think of Du Bois singularities as the largest class
for which this holds, cf. [Kov12].)

The surjectivity in (1.9.1) enables one to use topological arguments to control the sheaf
cohomology groups H i(X,OX). It is a key element of Kodaira-type vanishing theorems [Kol87,
Kol95, Sec. 12, Kov00, KSS10] and leads to various results on deformations of Du Bois schemes
[DJ74, KK10, KS16b].

The obvious candidate for a local analog of (1.4.1) is the map on local cohomologies

H i
x(X

an,C)→H i
x(X

an,OXan). (1.9.2)

However, this map is never surjective for i=dimX. In fact, if X is smooth of dimension n≥ 2,
then Hn

x (X
an,C) is trivial, but Hn

x (X
an,OXan) is infinite dimensional.

To get the right notion, one should look at the natural morphisms

CXan
σ−→OXan

�−→Ω0
Xan (1.9.3)

The general theory implies that the composition �◦σ induces surjectivity on (hyper)cohomology
for any proper X. If X has Du Bois singularities, then � is a quasi-isomorphism, and the
surjectivity in (1.9.1) follows.

Note that � may be represented by a map between coherent sheaves; thus it is possible to
work with � entirely algebraically. Eventually, this suggests that the correct local replacement
of (1.4.1) is the (a priori stronger) quasi-isomorphism of �; see also [Kov99, Lemma 2.2]. This
turns out to be equivalent to the local Du Bois isomorphisms

H i
x(X,OX)
Hi

x(X,Ω
0
X) for i∈N and x∈X. (1.9.4)

At the end this leads to the local cohomology lifting property, the key technical ingredient in
[KK20]; see Definition 3.2.

Notation 1.10. Hi stands for R iΓ, the ith derived functor of Γ, the functor of sections; and Hi
x

stands for R iΓx, the i
th derived functor Γx, the functor of sections with support at x, i.e., the ith

local cohomology functor with support at x on the derived category of quasi-coherent sheaves
on X.

2. Filtrations on modules over Artinian local rings

We recall the following notation from [KK20].

2.1 Maximal filtrations

Let (S,m, k) be an Artinian local ring and let N be a finite S-module with a filtration

N =N0 �N1 � · · ·�Nq �Nq+1 = 0 such that Nj

/
Nj+1 
 k as S-modules for each j = 0, . . . , q.

Further, let f : (X, x)→ (Spec S,m) be a local morphism, and denote the fiber of f over m by
Xk. It then follows that for each j = 0, . . . , q,

f∗
(
Nj

/
Nj+1

)

OXk

. (2.1.1)

6
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2.2 Filtering S

In particular, considering S as a module over itself, we choose a filtration of S by ideals

S = I0 � I1 � · · ·� Iq � Iq+1 = 0 such that Ij

/
Ij+1 
 k as S-modules for all 0≤ j ≤ q. Observe

that in this case, I1 =m and for every j there exists a tj ∈ Ij such that the composition

S
tj ·−→ Ij −→ Ij

/
Ij+1 induces an isomorphism S

/
m
 Ij

/
Ij+1. In particular, ann

(
Ij

/
Ij+1

)
=m.

Finally, let Sj := S
/
Ij . Note that S1 = S

/
m and Sq+1 = S.

2.3 Filtering ωS

Applying Grothendieck duality to the closed embedding given by the surjection S� Sj implies
that ωSj


HomS(Sj , ωS), and we obtain injective S-module homomorphisms ςj : ωSj
↪→ ωSj+1

induced by the natural surjection Sj+1 � Sj . Using the fact that the canonical module of an
Arinian local ring, in particular ωS , is an injective module and applying the functor HomS( , ωS)
to the short exact sequence of S-modules

0−→ Ij

/
Ij+1 −→ Sj+1 −→ Sj −→ 0,

we obtain another short exact sequence of S-modules:

0−→ ωSj

ςj−→ ωSj+1
−→HomS (k, ωS)
 k−→ 0. (2.3.1)

Therefore, we obtain a filtration of N = ωS by the submodules Nj := ωSq+1−j
as in (2.1), where

q+ 1= lengthS(S) = lengthS(ωS). The composition of the embeddings in (2.3.1) will be denoted
by ς := ςq ◦ · · · ◦ ς1 : ωS1

↪→ ωSq+1
= ωS .

Recall that the socle of a module M over a local ring (S,m, k) is

Soc M := (0 :m)M = {x∈M |m · x= 0} 
HomS(k,M). (2.3.2)

Soc M is naturally a k-vector space and dimk Soc ωS = 1 by the definition of the canonical
module. In particular, Soc ωS 
 k, which is the only S-submodule of ωS isomorphic to k.

Let us recall [KK20, Lemma 3.4], which will be important later:

Lemma 2.4. Using the notation from (2.2) and (2.3), we have that

im ς =Soc ωS = IqωS . (2.4.1)

Remark 2.4.2. Note that this is not simply stating that the modules in (2.4.1) are isomorphic
but that they are equal as submodules of ωS .

3. Families over Artinian local rings

We will frequently use the following notation.

Notation 3.1. Let A be a noetherian ring, (R,m) a noetherian local A-algebra, I ⊂R a nilpotent
ideal and (T, n) := (R/I,m/I), with natural morphism α :R� T .

Definition 3.2. Let A be a noetherian ring, and let (T, n) be a noetherian local A-algebra,
with i∈N fixed. We say that T has liftable ith local cohomology over A if for any noetherian
local A-algebra (R,m) and nilpotent ideal I ⊂R such that R/I 
 T , the natural morphism on
local cohomology

7
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H i
m(R)�H i

n(T )

is surjective. Finally, if T has liftable ith local cohomology over A for every i∈N, then we say
that T has liftable local cohomology over A [KK20].

We say that T has liftable ith local cohomology, resp. liftable local cohomology, if it has the
relevant property over Z.

Remark 3.3. Notice that using the above notation, if φ :A′ →A is a ring homomorphism from
another noetherian ring A′, then if T has liftable ith local cohomology over A′, then it also has
liftable ith local cohomology over A. In particular, if T has liftable ith local cohomology over
Z, then it has liftable ith local cohomology over any noetherian ring A justifying the above
terminology.

Furthermore, if A= k is a field of characteristic 0, then the notions of having liftable ith local
cohomology over k and over Z are equivalent. This follows in one direction by the above and in
the other direction by the Cohen structure theorem [StacksProject, Tag 032A].

Definition 3.4. We extend this definition to schemes: Let (X, x) be a local scheme over a
noetherian ring A. Then we say that (X, x) has liftable ith local cohomology over A if OX,x has
liftable ith local cohomology over A. If f :X→Z is a morphism of schemes, then we say that
X has liftable ith local cohomology over Z if (X, x) has liftable ith local cohomology over A for
each x∈X and for each SpecA⊆Z open affine neighbourhood of f(x)∈Z. This also extends
the notion of liftable local cohomology in the obvious way.

Lemma 3.5. Let X→ Y →Z be morphisms schemes. If X has liftable ith local cohomology over
Z, then X has liftable ith local cohomology over Y as well.

In particular, if X has liftable ith local cohomology over a field k, then it has liftable ith local
cohomology over any other k-scheme to which it admits a morphism. In addition if char k= 0,
then X has liftable ith local cohomology.

Proof. This follows from the definitions and Remark 3.3. �

Let us recall the following simple lemma from [KK20, Lemma 4.4]:

Lemma 3.6. Using Notation 3.1, let M be an R-module such that there exists a surjective
R-module homomorphism φ :M � T . Assume that the induced natural homomorphism
H i

m(R)�H i
n(T ) is surjective for some i∈N. Then the induced homomorphism on local

cohomology

H i
m(M)�H i

m(T )
H i
n(T ) (3.6.1)

is surjective for the same i. In particular, if (T, n) has liftable local cohomology over A, then
the homomorphism in (3.1) is surjective for every i∈N.

We will also need the following.

Lemma 3.7. Let Di be the derived category of an abelian category Ai for i= 1, 2 and Φ : D1 → D2

a triangulated functor, and define Φi := hi ◦Φ : D1 → A2. Let A∈Ob D1 such that hj(A) = 0 for
j > d for some d∈Z, and assume that there exists an m∈N such that Φi(hj(A)) = 0 for i >m
and for each j ∈Z. Then Φi(A) = 0 for i >m+ d.

Proof. Consider the conjugate spectral sequence associated to A and Φ:

Ep,q
2 =Φp(hq(A))⇒Φp+q(A).

8
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By the assumptions, Ep,q
2 = 0 if either p >m or q > d, which implies that Ep,q

2 = 0 for p+ q >
m+ d. This implies the desired statement. �

Definition 3.8. Let f :X→ Y be a morphism. Then f is said to be flat in codimension t if
there exists a closed subset Z ⊆X such that codim(Z ∩Xy, Xy)≥ t+ 1 for every y ∈ Y and
f |X\Z is flat.

In the proof of the next statement, we will use the canonical truncation of cochain complexes
of objects of an abelian category, which has the property that its cohomology objects are the same
as the original complex up to or above the given index. We follow the notation and terminology
of [StacksProject, Tag 0118]. In particular, for any complex C• and any r ∈Z, we have the
following distinguished triangle of complexes,

τ≤r(C
•)−→C• −→ τ≥r+1(C

•) +1−→ (3.8.1)

Corollary 3.9. Let (S,m, k) be an Artinian local ring, N a finite S-module, (X, x) a local
scheme of dimension n and f : (X, x)→ (Spec S,m) a local morphism. Assume that f is flat in
codimension t− 1. Then the natural morphism

RiΓx(Lf∗N)
�−→H i

x(f
∗N)

is an isomorphism for i≥ n− t.

Proof. As f is flat in codimension t− 1, it follows that dim supp Ljf∗N ≤ n− t for each
j < 0. This implies that H i

x(L
jf∗N) = 0 for i > n− t and j < 0. Let A := τ≤−1(Lf∗N) and

B := τ≥0(Lf∗N). Then (3.8.1) gives a distinguished triangle of complexes of OX -modules,

A−→ Lf∗N −→B
+1−→ .

Furthermore, hj(A) = Ljf∗N for j < 0 and hj(A) = 0 for j ≥ 0; hence Lemma 3.7 (for A, Φ = RΓx,
m= n− t and d=−1) implies that R iΓx(A) = 0 for i > n− t− 1. Finally, B
qis f

∗N , so the
desired statement follows. �

Proposition 3.10. Let (S,m, k) be an Artinian local ring, (X, x) a local scheme of dimension
n and f : (X, x)→ (Spec S,m) a local morphism. Assume that f is flat in codimension t− 1. Let
N be a finite S-module with a filtration as in (2.1), and assume that (Xk, x), where Xk is the
fiber of f over the closed point of Spec S and has liftable ith local cohomology for i≥ n− t over
S. Then for each i > n− t and for each j, the natural sequence of morphisms induced by the
embeddings Nj+1 ↪→Nj forms a short exact sequence,

0−→H i
x(f

∗Nj+1)−→H i
x(f

∗Nj)−→H i
x

(
f∗

(
Nj

/
Nj+1

))

H i

x (OXk
)−→ 0.

Proof. Because ann
(
Nj

/
Nj+1

)
=m, there is a natural surjective morphism

f∗Nj ⊗OXk
� f∗

(
Nj

/
Nj+1

)
.

By Lemma 3.6 and (2.1.1), the natural homomorphism

H i
x(f

∗Nj)�H i
x

(
f∗

(
Nj

/
Nj+1

))

H i

x (OXk
) (3.10.1)

is surjective for all i≥ n− t. Next, consider the distinguished triangle

Lf∗Nj+1 −→ Lf∗Nj −→ Lf∗
(
Nj

/
Nj+1

)
+1−→,
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and the induced long exact cohomology sequence for the functor RΓx. By Corollary 3.9 the terms
of that long exact sequence may be replaced by terms in the form of H i

x(f
∗( )) for i≥ n− t,

and hence the statement follows from (3.10.1). �

3.11. The exceptional inverse image of the structure sheaves. Let (S,m, k) be an
Artinian local ring with a filtration by ideals as in (2.2). Further, let f :X→ Spec S be a mor-
phism that is essentially of finite type and fj = f |Xj

:Xj :=X ×Spec S Spec Sj → Spec Sj , where
Sj = S/Ij as defined in (2.2), e.g., Xq+1 =X and X1 =Xk, the fiber of f over the closed point
of S. By a slight abuse of notation, we will denote ωSpec S with ωS as well, but it will be clear
from the context which one is meant at any given time.

Using the description of the exceptional inverse image functor via the residual/dualizing
complexes [Con00, (3.3.6)] (cf. [R&D66, 3.4(a)], [StacksProject, Tag 0E9L]):

f ! = RHomX(Lf∗RHomS( ,ω
•
S), ω

•
X) (3.11.1)

and because S is Artinian, ω•
Sj


 ωSj
for each j, and we have that

ω•
Xj/Sj


 f !jOSpec Sj

 RHomXj

(Lf∗j ωSj
, ω•

Xj
). (3.11.2)

In the rest of this section, we will use the following notation and assumptions.

Assumption 3.12. Let (S,m, k) be an Artinian local ring, (X, x) a local scheme of dimension
n and f : (X, x)→ (Spec S,m) a local morphism. Assume that f is flat in codimension t− 1 and
that (Xk, x), where Xk is the fiber of f over the closed point of Spec S and has liftable ith local
cohomology for i≥ n− t over S.

Theorem 3.13. For each i > n− t and each j ∈N,

(i) there exists a natural surjective morphism �i,j : h
−i(ω•

Xj+1/Sj+1
)� h−i(ω•

Xj/Sj
),

(ii) there exists a natural surjective morphism �i = �i,1 ◦ · · · ◦ �i,q : h−i(ω•
X/S)� h−i(ω•

Xk
)

(iii) the natural morphisms �i,j fit into a short exact sequence,

0−→ h−i(ω•
Xk

)−→ h−i(ω•
Xj+1/Sj+1

)
�i,j−→ h−i(ω•

Xj/Sj
)−→ 0,

(iv) ker �i,j = Ijh
−i(ω•

Xj+1/Sj+1
)
 Ijh

−i(ω•
X/S)

/
Ij+1h

−i(ω•
X/S),

(v) h−i(ω•
Xj/Sj

)
 h−i(ω•
X/S)

/
Ijh

−i(ω•
X/S)
 h−i(ω•

X/S)⊗OX
OXj

and

(vi) ker �i =mh−i(ω•
X/S).

Proof. Let N = ωS and consider the filtration on N given by Nj = ωSq+1−j
, cf. (2.3), (2.3.1).

Further, let ( )̂ denote the completion at x (the closed point of X). Then by Proposition 3.10,
for each i > n− t and each j, there exists a short exact sequence

0−→H i
x(f

∗ωSj
)−→H i

x(f
∗ωSj+1

)−→H i
x

(
f∗

(
ωSj+1

/
ωSj

))
−→ 0. (3.13.1)

Notice that f∗ωSj

 f∗j ωSj

. Combining this observation for both j and j + 1 with Corollary 3.9
yields that this short exact sequence may also be written as

0−→ RΓi
x(Lf

∗
j ωSj

)−→ RΓi
x(Lf

∗
j+1ωSj+1

)−→ RΓi
x

(
f∗

(
ωSj+1

/
ωSj

))
−→ 0. (3.13.2)
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Applying local duality [StacksProject, Tag 0AAK] to (3.13.2) gives the short exact sequence

0−→ Ext−i
X

(
f∗

(
ωSj+1

/
ωSj

)
, ω•

X

)̂−→ Ext−i
X (Lf∗j+1ωSj+1

, ω•
X)̂−→ Ext−i

X (Lf∗j ωSj
, ω•

X)̂−→ 0.

Since completion is faithfully flat [StacksProject, Tag 00MC], this implies that there are short
exact sequences

0 Ext −i
X

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

�

X

)
Ext −i

X Lf ∗
j+1ωSj+1

, ω
�

X

)
Ext −i

X Lf ∗
j ωSj

, ω
�

X

)
0.

(3.13.3)

By Grothendieck duality

RHomX(Lf∗j ωSj
, ω•

X)
 RHomXj
(Lf∗j ωSj

, ω•
Xj

),

and hence Ext−i
X

(
Lf∗j ωSj

, ω•
X

)

 h−i(ω•

Xj/Sj
) for each i, j, by (3.11.2). Therefore, defining �i,j as

the surjective morphism in (3.13.3) implies (i). Composing the surjective morphisms in (3.13.1)
for all j implies that the natural morphism

h−i(ω•
X/S)
 Ext−i

X (f∗ωS , ω
•
X)

�i

−→ Ext−i
X

(
f∗ωSq

, ω•
X

)
 h−i(ω•
Xk

)

is surjective, and hence (ii) follows as well.

By (2.3.1) f∗
(
ωSj+1

/
ωSj

)

OXk

, and hence Ext−i
X

(
f∗

(
ωSj+1

/
ωSj

)
, ω•

X

)

 h−i(ω•

Xk
),

(3.13.3) also implies (iii).
Composing the injective maps in (3.13.1) for all j shows that the embedding ς : ωS1

↪→ ωS

induces an embedding on local cohomology:

H i
x(f

∗ωS1
)⊆H i

x(f
∗ωS). (3.13.4)

Next we prove (iv) for j = q first. Because h−i(ω•
Xq/Sq

) is supported on Xq, it follows that

Iqh
−i(ω•

X/S)⊆K := ker h−i(�q)

Recall from (2.2) that there exists a tq ∈ Iq such that Iq = Stq 
 S
/
m and from Lemma 2.4 that

IqωS =Soc ωS . It follows that for j = q, the short exact sequence of (2.3.1) takes the form

0−−−→ ωSq
−−−→ ωS

τ−→ Soc ωS −−−→ 0, (3.13.5)

where τ : ωS � Soc ωS ⊂ ωS may be identified with multiplication by tq on ωS . Applying f
∗ and

taking local cohomology, we obtain the sequence

0−→H i
x(f

∗ωSq
)−→H i

x(f
∗ωS)

Hi
x(τ)−→ H i

x (f
∗Soc ωS)−→ 0, (3.13.6)

which coincides with (3.13.1) for j = q, and hence it is exact. Further note that the morphism
H i

x(τ) may also be identified with multiplication by tq on H
i
x(f

∗ωS). By Lemma 2.4 and (3.13.4),
the natural morphism H i

x(ς) :H
i
x (f

∗Soc ωS) =H i
x(Iqf

∗ωS) =H i
x(f

∗ωS1
)→H i

x(f
∗ωS) is injec-

tive. Because H i
x(τ), i.e., multiplication by tq on H i

x(f
∗ωS), is surjective onto H i

x (f
∗Soc ωS), it

follows that

H i
x (f

∗ SocωS)
Hi

x(ς)

�
imH i

x(ς) = IqH
i
x(f

∗ωS) H i
x(f

∗ωS), (3.13.7)
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i.e., H i
x (f

∗Soc ωS) coincides with IqH
i
x(f

∗ωS) as submodules of H i
x(f

∗ωS). Next let E be an

injective hull of κ(x) =OX,x

/
mX,x, and consider a morphism φ :H i

x(f
∗Soc ωS)→E. As E is

injective, φ extends to a morphism φ̃ :H i
x(f

∗ωS)→E. If a∈H i
x(f

∗ωS), then tqa∈ IqH i
x(f

∗ωS) =
H i

x (f
∗Soc ωS), so

tqφ̃(a) = φ̃(tqa) = φ(tqa) =
(
φ ◦H i

x(τ)
)
(a)

Therefore, φ ◦H i
x(τ) = tqφ̃. Similarly, if ψ :H i

x(f
∗ωS)→E is an arbitrary morphism, then set-

ting φ= ψ|Hi
x(f

∗Soc ωS) :H
i
x(f

∗Soc ωS)→E and applying the same computation as above, with

φ̃ replaced by ψ, shows that φ ◦H i
x(τ) = tqψ. It follows that the embedding induced by H i

x(τ),

α : HomOX,x
(H i

x(f
∗Soc ωS), E) ↪→HomOX,x

(H i
x(f

∗ωS), E) (3.13.8)

identifies HomX(H i
x(f

∗Soc ωS), E), with IqHomX(H i
x(f

∗ωS), E). By local duality it follows
that (

ker
[
�i,q : h

−i(ω•
X/S)� h−i(ω•

Xq/Sq
)
]/
Iqh

−i(ω•
X/S)

)
⊗ ÔX,x = 0

and hence, because completion is faithfully flat, this implies (iv) in the case j = q. Running
through the same argument with S replaced by Sj+1 gives the equality in (iv) for all j. In
addition, (iv) for j = q implies (v) for j ≥ q. Assuming that (v) holds for j = r+ 1 implies the
isomorphism in (vi) for j = r. In turn, the entire (iv) for j = r, combined with (v) for j = r+ 1,
implies (v) for j = r. Therefore, (iv) and (v) follow by descending induction on j, and then (vi)
follows from (iv) and the definition of �i. �

We will also need the following simple lemma from [KK20, 4.11].

Lemma 3.14. Let R be a ring , M an R-module, t∈R and J = (t)⊆R. Assume that (0 : J)M =

(0 : J)R ·M . Then the natural morphism J ⊗RM
�−→ JM is an isomorphism.

The the following proposition and its proof are essentially the same as that of [KK20, Prop.
4.12]. We include it here because the original situation here is slightly different than [KK20],
although the difference in the original situation does not influence anything in this particular
proof.

Proposition 3.15. Using the same notation as above,

(i) Ij ⊗ h−i(ω•
X/S)
 Ijh

−i(ω•
X/S),

(ii) for any l ∈N, Ij

/
Ij+l ⊗ h−i(ω•

X/S)
 Ijh
−i(ω•

X/S)
/
Ij+lh

−i(ω•
X/S), and

(iii) for any l ∈N, ml
/
ml+1 ⊗ h−i(ω•

X/S)
mlh−i(ω•
X/S)

/
ml+1h−i(ω•

X/S).

Proof. Notice that since H i
x(f

∗Soc ωS) is both a quotient and a submodule of H i
x(f

∗ωS),
there are two natural maps between HomOX,x

(H i
x(f

∗Soc ωS), E) and HomOX,x
(H i

x(f
∗ωS), E).

Regarding H i
x(f

∗Soc ωS) as a quotient module via H i
x(τ), we get the embedding α= ( ) ◦H i

x(τ)
in (3.13.8) and consider it a submodule on the restriction map

β : Hom
X,x

(H i
x(f

∗ωS), E) Hom
X,x

(H i
x(f

∗ SocωS), E).

φ φ|Hi
x(f

∗ SocωS)
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These maps are of course not inverses to each other. In fact, we have already established
(cf. (3.13.8)) that φ|Hi

x(f
∗Soc ωS) ◦H i

x(τ) = tqφ, and hence the composition α ◦ β is simply
multiplication by tq:

φ ∈ Hom
X,x

(H i
x(f

∗ωS), E)

α◦β

β
Hom

X,x
(H i

x(f
∗ SocωS), E)

α�

tqφ ∈ Iq HomOX,x
(H i

x(f
∗ωS), E).

(3.15.1)

This implies, (cf. (3.13.4) and (3.13.7)), that �i may be identified with multiplication by tq
on h−i(ω•

X/S). Together with Theorem 3.12(vi) this implies that

(0 : Iq)h−i(ω•
X/S)

=ker �i =mh−i(ω•
X/S) = (0 : Iq)S · h−i(ω•

X/S),

and hence the natural morphism. The exceptional inverse image of the structure sheaves

Iq ⊗S h−i(ω•
X/S)

�−→ Iqh
−i(ω•

X/S) (3.15.2)

is an isomorphism by Lemma 3.14. Now assume, by induction, that (i) holds for Sq in place of

S. In particular, keeping in mind that Sq = S
/
Iq, the natural map

Ij

/
Iq ⊗Sq

h−i(ω•
Xq/Sq

)
�−→

(
Ij

/
Iq

)
h−i(ω•

Xq/Sq
) (3.15.3)

is an isomorphism for all j. Consider the short exact sequence (cf. Theorem 3.13(v)),

0−→ Iqh
−i(ω•

X/S)−→ h−i(ω•
X/S)−→ h−i(ω•

Xq/Sq
)−→ 0

and apply Ij

/
Iq ⊗S ( ). The image of Ij

/
Iq ⊗S Iqh

−i(ω•
X/S) in Ij

/
Iq ⊗S h−i(ω•

X/S) is 0 and

hence by (3.15.3),the natural map

Ij
/
Iq ⊗S h−i(ω

�

X/S) 
 Ij
/
Iq ⊗Sq h

−i(ω
�

Xq/Sq
)

� (
Ij
/
Iq

)
h−i(ω

�

Xq/Sq
) 




(
Ij
/
Iq

)
h−i(ω

�

X/S)
/
Iqh

−i(ω
�

X/S)

 Ijh

−i(ω
�

X/S)
/
Iqh

−i(ω
�

X/S)
.

is an isomorphism. This, combined with (3.15.2) and the 5-lemma, implies (i). Then (ii) is a
direct consequence of (i) and the fact that tensor product is right exact.

Finally, recall, that the choice of filtration in (2.2) was fairly unrestricted. In particular, we
may assume that the filtration I· of S is chosen so that for all l ∈N, there exists a j(l) such that
Ij(l) =ml. Applying (ii) for this filtration implies (iii). �

The following theorem is an easy combination of the results of this section.

Theorem 3.16. Let (S,m, k) be an Artinian local ring, (X, x) a local scheme of dimension
n, and f : (X, x)→ (Spec S,m) a local morphism. Assume that f is flat in codimension t− 1
and that (Xk, x), where Xk is the fiber of f over the closed point of Spec S, has liftable ith

local cohomology for i≥ n− t over S. Then for each i > n− t, h−i(ω•
X/S) is flat over Spec S. In

particular, if t > 0, then ωX/S is flat over Spec S and commutes with arbitrary base change.
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Proof. Flatness follows from Proposition 3.15(iii) and [StacksProject, Tag 0AS8]. If t > 0, then
this implies that ωX/S is flat over Spec S. Furthermore, it commutes with arbitrary base change
by Theorem 3.13(ii) and [Kol23, 9.17]. �

4. Du Bois singularities and liftable local cohomology

In this section we prove a criterion for a local scheme to have liftable ith local cohomology for
i≥ n− t. As before, Hi

x denotes R iΓx, the i
th derived functor of Γx, the functor of sections with

support at x, i.e., the ith local cohomology functor with support at x on the derived category of
quasi-coherent sheaves on X.

Lemma 4.1. Let (X, x) be a local scheme of dimension n which is essentially of finite type over
a field of characteristic 0. Then H i

x(OX)→Hi
x(Ω

0
X) is surjective for each i∈Z.

Proof. This follows by applying Matlis duality to the map in [MSS17, Lemma 3.2] (cf. [Kov99,
Lemma 2.2], [KS16a, Theorem 3.3], [KS16b, Theorem 3.2], [MSS17, Lemma 3.3]). �

Theorem 4.2. Let (X, x) be a local scheme of dimension n, which is essentially of finite type
over a field of characteristic 0. Fix t∈N, t > 0, and let Z ⊆X be a closed subset of codimension
t+ 2. Further let σ : Y →X be an affine morphism which is an isomorphism over U :=X \Z.
Assume that Y is Du Bois. Then

(4.2.1) H i
x(OX)→Hi

x(Ω
0
X) is an isomorphism for i≥ n− t, and

(4.2.2) X has liftable ith local cohomology for i≥ n− t.

Proof. Let W = σ−1(x)⊆ Y , and observe that there is an equality of functors:

Γx ◦ σ∗ =ΓW .

Because σ is an affine morphism, with σ∗ exact, we obtain an equality of derived functors:

RΓx ◦ σ∗ = RΓW . (4.2.3)

Consider the short exact sequence

0−→OX −→ σ∗OY −→Q−→ 0,

where Q is defined as the cokernel of the first non-zero morphism in this short exact sequence.
Applying the functor RΓx and taking into account (4.2.1), we obtain the following distinguished
triangle:

RΓxOX −→ RΓWOY −→ RΓxQ
+1−→

The assumption implies that Q is supported on Z, so H i
x(Q) = 0 for i > n− t− 2 and hence

H i
x(OX)
H i

W (OY ) for i≥ n− t. (4.2.4)

Next, consider the following diagram:

X Rσ∗ Y

Ω0
X Rσ∗Ω0

Y .
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Applying RΓx to each element and using (4.2.1) and (4.2.4) leads to the following:

H i
x( X)

(for i ≥ n− t)

�
H i

W ( Y )

�

Hi
x(Ω

0
X) Hi

W (Ω0
Y )

(4.2.5)

The top horizontal arrow is an isomorphism for i≥ n− t, and the right vertical arrow is
an isomorphism for all i because Y is Du Bois. It follows that the diagonal map is also an
isomorphism and, in particular, injective for i≥ n− t. In particular the left vertical arrow is also
injective for i≥ n− t. It is surjective for each i by Lemma 4.1 and hence an isomorphism for
i≥ n− t. This proves (4.2.1).

Let (R,m) be a noetherian local ring and I ⊂R a nilpotent ideal such that R/I 
OX,x. In
order to prove (4.2.2) we need that the induced natural morphism on local cohomology

H i
m(R)�H i

x(OX) (4.2.6)

is surjective for i≥ n− t. Let X ′ := SpecR and consider the following diagram:

H i
m(R) H i

x( X)

(for i ≥ n− t by (4.2.1))�

Hi
m(Ω

0
X′) � Hi(Ω0

X)

As above, the left vertical arrow is a surjection by Lemma 4.1. The bottom horizontal arrow is an
isomorphism because X ′

red 
Xred and Ω0 depends only on the reduced structure by definition,
cf. [MSS17, p.2150]. Finally, the right vertical arrow is an isomorphism for i≥ n− t by (4.2.1),
and the combination of these implies (4.2.6) and hence (4.2.2). �

Proof of Theorem 1.6 It follows from Theorem 4.2 that the assumptions of Theorem 1.6 imply
those of Theorem 3.16, which in turn implies the desired statement of Theorem 1.6 if S is
Artinian.

If ωX/B is known to commute with base changes, then one can check flatness over Artin
subschemes of B by the local criterion of flatness.

The general case follows from [Kol23, 9.17], which is a variant of the local criterion of flatness,
combined with obstruction theory. �

Proof of Theorem 1.2. We may assume that B is a local scheme with closed point b∈B. We
will consider three, increasingly more general, cases.
Case I: Δ= 0 and ω

˜Xb
is locally free, where π : X̃b →Xb is the demi-normalization as in (1.3.5).

Note that ωX/B is flat and commutes with arbitrary base change by Theorem 1.6. By further
localization we may assume that ω

˜Xb
is free. Because ωXb


 π∗ω ˜Xb
by Lemma 1.5, we see that

ωX/B has a section σ such that σb does not vanish on Ub; hence σ :OX → ωX/B is an isomorphism
away from a closed subset W for which Wb ⊂Zb. In particular, depthWb

OX ≥ 2 by (1.2.5). Now
we use the easy [Kol23, Lem.10.6] to conclude that OX 
 ωX/B. Thus g is flat, ωX/B is locally
free and so are all of its powers.
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Case II: Δ=D is a Z-divisor and ω
˜Xb
(D̃b) is locally free. Note that OU (−D)
 ωU/B is flat over

B and commutes with base changes by assumption. Thus Proposition 5.1 applies, so ωX/B(D)
is flat over B and commutes with base changes.

We may assume that ω
˜Xb
(D̃b) is free with generating section σ̃b. By Lemma 1.5 we can

identify σ̃b with a section σb of ωXb
(Db). By flatness it lifts to σ :OX → ωX/B(D), which is an

isomorphism over U . By (1.2.5) (and the easy [Kol23, 10.6]), σ is an isomorphism. Thus ωX/B(D)
is locally free and so are its powers.
Case III: The general case. We may assume that X is local, and by [Kol23, 9.17] it is sufficient
to prove the case when B is Artinian.

Write Δ=
∑

i∈I aiDi, where ai = 1− 1
i , I ⊂ {2, 3, 4, . . . ,∞} is a finite subset and the Di are

reduced divisors.
Choose m> 0 such that ω

[m]
Ub

(mΔb)∼OUb
. The kernel of Pic(U)→Pic(Ub) is a k-vectorspace

and is hence divisible and torsion free. Thus there is a unique line bundle LU on U such that

LUb
∼OUb

and ω
[m]
U/B(mΔ)[⊗]Lm

U ∼OU . Let L be the push-forward of LU to X. Take the

corresponding cyclic cover

π : Y := SpecX
∑m−1

j=0 ω
[j]
X/B(

∑
i�jai�Di)[⊗]L[j] →X.

Note that π ramifies along the Di as follows. If i≥ 3, then π has ramification index i along Di,
and π is unramified along D∞. The i= 2 case is somewehat special. Then πb has ramification
index 2 along an irreducible divisor Fb ⊂Xb if it has multiplicity 1 in D2|b, and Yb is nodal along
π−1
b (Fb) if Fb has multiplicity 2 in D2|b. Thus

KYb
+ π∗bD∞ ∼Q π

∗
b (KXb

+Δb).

In particular, (Y, π∗D∞)→B satisfies the assumptions (1.2.1)–(1.2.6). (Note that Y →B is
known to be flat only over U , so requiring flatness only in codimension ≤ 2 is essential here.)

By duality, we get that

π∗ωY/B(π
∗D∞) 
 ∑m−1

j=0 ω
[1−j]
X/B (D∞ −∑

i�jai�Di)[⊗]L[−j], and

(πb)∗ω˜Yb
(π∗bD∞) 
 ∑m−1

j=0 ω
[1−j]
Xb

(D∞|b −
∑

i�jai�Di|b)[⊗]L
[−j]
b .

The j = 1 summand of (πb)∗ω˜Yb
(π∗bD∞) is trivial. Thus ω

˜Yb
(π∗bD∞) has a section that is nowhere

zero on Ub, so ω˜Yb
(π∗bD∞) is trivial. The previous case applies, and we conclude that all the

ω
[1−j]
X/B (D∞ −∑

i�jai�Di)[⊗]L[−j]

are flat over B and commute with base changes.
The j = 1 summand is L[−1], whose restriction to Xb is trivial. By flatness, the constant 1

section of L[−1]|Xb
lifts to a section of L[−1]; hence L is trivial.

Now fix 0≤ r <m and set 1− j = r−m. Then we get that

ω
[r]
X/B(D∞ +

∑
i(maiDi − �(m− r+ 1)ai�)Di)
 ω

[1−j]
X/B (D∞ −∑

i�jai�Di)[⊗]L[−j]

is flat over B and commutes with base changes. Now, observe that

�ra�+ �(m− r+ 1)a�=
{
m+ 1 if a= 1, and

m if a= c−1
c for some 1< c |m.

This gives that

ω
[r]
X/B(D∞ +

∑
i(mai − �(m− r+ 1)ai�)Di)
 ω

[r]
X/B(

∑
i�rai�Di).
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Thus the ω
[r]
X/B(

∑
i�rai�Di) are flat over B and commute with base changes. �

Corollary 4.3. Using the notation and assumptions of Theorem 1.2, set D∞ :=
∑

i:ai=1Di.
Then OX(−D∞) and OD∞ are flat over B and commute with base changes.

Proof. Arguing as in Case III above, we get that

π∗ωY/B 
∑m−1
j=0 ω

[1−j]
X/B (−∑

i�jai�Di)[⊗]L[−j].

We proved that L is trivial, so the j = 1 summand is OX(−D∞). It is thus flat over B with S2
fibers. Therefore, the induced maps OX(−D∞)|Xb

→OXb
are injections; hence OD∞ is also flat

over B and commutes with base changes. �

5. KSBA stability

It is possible that the analog of Theorem 1.2 holds for arbitrary KSBA stable pairs as in [Kol23,
Sec. 8.2]. Note that by [Kol23, 7.5], K-flatness of divisors is automatic in codimension ≥ 3. This
would mean that the whole theory of KSBA stability is determined in codimension 2.

The next result is a very small step in this direction. It shows that the reduced part of the
boundary divisor behaves well in codimension ≥ 3.

Proposition 5.1. Let g :X→B be a morphism of finite type and of pure relative dimension
over a field of characteristic 0, Δ be a relative Mumford R-divisor and be 0≤D≤Δ a relative
Mumford Z-divisor. Let Z ⊂X be a closed subset, and set U :=X \Z. Assume that

(5.1.1) codim(Zb ⊂Xb)≥ 3 for every b∈B,

(5.1.2) g|U :U →B is flat with demi-normal fibers,

(5.1.3) OU (−D|U ) is flat over B and commutes with base changes, and

(5.1.4) the demi-normalization (X̃b, Δ̃b) of (Xb,Δb) is semi-log-canonical for b∈B.

Then ωX/B(D) is flat over B and commutes with base changes.

Proof. Take two copies (Xi,Δi)
 (X,Δ), and glue them together along D1 
D2 to get

gY := (g1 � g2) : Y :=X1 �D1�D2
X2 →B.

Let π : Y →X be the projection. Set ΔY := π∗(Δ−D), and consider the short exact sequence

0−→OX1
(−D1)−→OY −→OX2

−→ 0.

Because π is finite, the push-forward of this remains exact, and using the fact that π|Xi
is an

isomorphism, the natural morphism OX → π∗OY provides a splitting of the push-forward of the
above exact sequence. Therefore, π∗OY 
OX ⊕OX(−D), so (Y,ΔY )→B is flat over π−1(U)
with semi-log-canonical fibers. The demi-normalization of (Yb,ΔY |b) is the amalgamation of two
copies of (X̃b, Δ̃b) along D̃b, hence semi-log-canonical. Thus ωY/B is flat over B and commutes
with base changes by Theorem 1.6. Finally note that π∗ωY/B 
 ωX/B ⊕ ωX/B(D); thus ωX/B(D)
is flat over B and commutes with base changes. �

Remark 5.2. We claim that AFI stability, where we float all coefficients as in [Kol23, Sec. 8.3],
is determined in codimension 2.

To see this, note that the boundary divisor Δ is necessarily R-Cartier. Thus, for every point
x∈Zb as in Theorem 1.2, either x �∈ suppΔb, and then local stability holds by Theorem 1.2,
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or x∈ suppΔb, and then x is not an lc center of Xb. Then depthxO ˜Xb
≥ 3 by [Kol13b, 7.20]

(cf. [Kov11] and [AH12]); hence local stability holds by [Kol23, 10.73].
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in part by NSF Grants DMS-1951376,-2100389 and a Simons Fellowship.

Journal Information

Moduli is published as a joint venture of the Foundation Compositio Mathematica and the
London Mathematical Society. As not-for-profit organisations, the Foundation and Society
reinvest 100% of any surplus generated from their publications back into mathematics through
their charitable activities.

References

[AH12] V. Alexeev and C. D. Hacon, Non-rational centers of log canonical singularities , J.
Algebra 369 (2012), 1–15. MR 2959783.

[Con00] B. Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol.
1750, Springer-Verlag, Berlin, 2000. MR 1804902.

[DB81] Ph. Du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math.
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