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Abstract

To address the global climate crisis, it is urgent to achieve carbon neutrality by the mid-21st
century, balancing carbon emissions and carbon absorption from the atmosphere. This study
examines the current advancements in biologicalmethods for capturing carbon dioxide (CO2) in
response to global climate change, emphasizing the importance of sequestering CO2 through
biological carbon capture and utilization. First, we present an overview of typical carbon capture
methods, including geological and oceanic carbon storage. We then highlight the significance of
utilizing photosynthetic organisms, such as plants, algae and microorganisms, for carbon
capture and sequestration. We also analyze the role of photosynthesis in carbon capture and
explore the potential of microbial carbon capture, examining the impact of environmental
factors on capture efficiency. Additionally, we discuss the development of symbiotic approaches
to enhance carbon fixation capacity. Finally, this review provides key insights into the challenges
and future directions in advancing the field of biological carbon capture to achieve carbon
neutrality.

Impact statement

This review establishes biological carbon capture, leveraging plants, algae and microorganisms,
as an indispensable nature-based solution critical to achieving the urgent global target of mid-
century carbon neutrality. Through rigorous assessment of current progress and potential, the
study demonstrates that optimizing photosynthetic efficiency and harnessing microbial metab-
olism provide scalable pathways for removing CO₂ from the atmosphere and flue gas. This
approach transcends passive carbon storage by emphasizing biological utilization, converting
captured carbon into valuable bioproducts. Critically, advancing these biotechnologies promises
to diversify and strengthen our climate mitigation arsenal substantially, complementing engin-
eered approaches such as geological carbon storage. Success hinges on enhancing efficiency
through a deeper understanding of environmental modulators and deploying integrated sym-
biotic systems. Ultimately, accelerating innovation in the biological carbon capture field is not
merely scientifically significant but an urgent necessity. Establishing effective strategies to
redress the anthropogenic imbalance in the global carbon cycle through practical, sustainable
and universally applicable solutions is a critical strategic priority. This endeavor is paramount for
mitigating the most severe and potentially irreversible consequences of anthropogenic climate
change for ecosystems and human societies worldwide.

Introduction

The acceleration of anthropogenic activities globally promotes greenhouse gas emissions, leading
to a significant rise in atmospheric CO2 levels. The Intergovernmental Panel on Climate Change
(IPCC) released “Climate Change 2023” inMarch 2023, which established that the global surface
temperature from 2011–2020 increased by 1.1 °C compared to 1850–1900 and is projected to rise
by an additional 1.5 °C between 2021 and 2040 (Gayathri et al., 2021; Shu et al., 2022). Reports
indicate that CO2 constitutes 76% of total greenhouse gas emissions, with current atmospheric
CO2 levels at approximately 420 ppm (Saravanan et al., 2021). Consequently, achieving global
carbon neutrality through urgent CO₂ emission reduction is imperative. This necessitates a dual
strategy: curtailing fossil fuel consumption to mitigate emissions and deploying carbon capture,
utilization and storage (CCUS) technologies to reduce atmospheric CO₂ (Kim et al., 2021; Khan
et al., 2022).

According to the latest literature, by the end of 2024, atmospheric CO₂ concentrations had
reached levels approximately 52% higher than preindustrial values (around 278 ppm circa 1750).
Concurrently, anthropogenic CO₂ emissions for 2024 are projected to reach 41.6 GtCO₂�y⁻1
(Friedlingstein et al., 2025). Given this trajectory of persistently rising emissions, the imperative
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to enhance carbon capture capacity has become paramount. As of
the first quarter of 2025, the global operational capacity of CCUS – a
critical suite of technologies for decarbonizing fossil-based indus-
tries and achieving net-zero goals – exceeds 50 million metric tons
of CO₂ annually across operational facilities. Projections indicate
this capacity will scale significantly to approximately 430 million
tons per year by 2030, driven by ongoing large-scale demonstra-
tions in sectors like power generation, cement production and
hydrogen manufacturing (REF) (Tyagi et al., 2025). The main emer-
ging carbon capture technologies can be classified into direct carbon
capture, point source carbon capture, precombustion capture, bio-
logical carbon capture and ocean capture. Although microbial car-
bon sink currently represents a small fraction of global carbon fluxes
(~70–100 Gt annually), its scalability offers transformative potential
for enhanced carbon sequestration (Aguiló-Nicolau et al., 2025).
Furthermore, atmospheric CO₂ concentrations reached a record
420 ± 2 ppm in 2024 marking a 52% increase above preindustrial
levels (278 ppm) (Friedlingstein et al., 2025). Biological carbon
capture is primarily divided into ecosystem-based and industrial
biological carbon sequestration (Cowie et al., 2021; Gayathri et al.,
2021; Fu et al., 2022). Ecosystem-based carbon encompasses terres-
trial systems including forests and soil alongside marine environ-
ments, specifically blue carbon ecosystems and algal-mediated
sequestration pathways (Macreadie et al., 2021; Nunes, 2023). In soil
ecosystems, synergistic interactions between microorganisms and
plants augment plant-mediated carbon sequestration and liberate
bioavailable nutrients through the mineralization of organic matter,
thereby elevating soil fertility (Gayathri et al., 2021). This synergistic
effect establishes a self-sustaining ecosystem, promoting plant
growth rates and carbon fixation. The efficiency of these pro-
cesses is contingent upon environmental factors, including tem-
perature, pH and nutrient availability (Panchal et al., 2022). The
ocean carbon sink absorbed 2.9 ± 0.4 GtC yr⁻1 during 2023 and is
projected to increase to �3.0 GtC yr⁻1 in 2024 (Friedlingstein
et al., 2025). In addition, the ocean, the largest active carbon
reservoir on Earth, stores approximately 40 trillion tons of
dissolved inorganic carbon dioxide (CO2) and organic carbon
(Friedlingstein et al., 2023).

Industrial biological carbon capture primarily utilizes bacteria,
fungi, microalgae and other microorganisms. The biological pro-
cess does not necessitate a high-purity CO2 environment, as micro-
organisms can effectively capture and utilize CO2 even in the
presence of SO2 and NOx (Su et al., 2023). Studies have shown
that microorganisms possess the capability to metabolize CO₂
derived from anthropogenic flue gases at concentrations as low as
4.0% (v/v) (Oliveira et al., 2020). Notably, extremophilic taxa (e.g.,
halophiles, thermophiles) demonstrate conserved carbon seques-
tration functionality. The cyanobacterium Chroococcidiopsis ther-
malis achieves intracellular CO₂ concentrations 140× atmospheric
levels during desert photosynthesis. Parallel capabilities occur in
Chroococcidiopsis cubana PCC 7433, where this xerotolerant strain
maintains carbon fixation within hypolithic crusts at oxygen
production rates of 0.4 g O₂ g⁻1 biomass d⁻1 (Krings et al., 2023;
Aguiló-Nicolau et al., 2025). The potential of microbial carbon
capture lies in its capacity to fix CO2 directly while concurrently
generating valuable bioproducts (Duarte et al., 2013). This tech-
nology offers new opportunities for achieving sustainable devel-
opment goals. By integrating genetic engineering technologies,
microorganisms can be customized for specific environmental con-
ditions, significantly enhancing their carbon capture and conversion
capacities (Onyeaka and Ekwebelem, 2023). For phytoplankton
(microalgae), the carbon sequestration efficiency is predominantly

governed by photosynthesis and further modulated by environmen-
tal factors including temperature, light intensity and nutrient con-
centrations (Yahya et al., 2020; Salehi-Ashtiani et al., 2021; Saravanan
et al., 2021; Hasnain et al., 2023; Onyeaka and Ekwebelem, 2023).
Optimizing these environmental conditions can significantly
improve microalgae’s biomass production and CO2 absorption cap-
abilities. Furthermore,microalgae are used to developphotosynthetic
cell factories for synthesizing valuable bioactive compounds, such as
lipids and carotenoids (Kusmayadi et al., 2021).

In this review, we examine the recent advances in biological
carbon capture methodologies. Specifically, we analyze advances in
the processes and underlying mechanisms of biological carbon
sequestration, with particular emphasis on photosynthetic path-
ways. Furthermore, we synthesize key biological carbon sequestra-
tion pathways operating within both natural ecosystems and in
industry, critically evaluating the benefits and limitations inherent
in these approaches. Finally, we propose strategic research direc-
tions to enhance carbon fixation efficiency and optimize resource
utilization, thereby offering more effective solutions for mitigating
global climate change.

The processes and mechanisms of biological carbon capture

Plants and algae mainly capture and fix carbon through photosyn-
thesis. Photosynthesis is the process of synthesizing organic matter
fromCO2 and releasing O2, which provides the energy andmaterial
basis for the vast majority of life on Earth (Prajapati et al., 2023).

In terrestrial plants, the primary site of photosynthesis is the leaf,
which contains specialized pores called stomata. These stomata
serve to regulate gas exchange; under conditions of sufficient water
availability, they open to allow the uptake of atmospheric CO₂
(Melo et al., 2021). Photosynthesis takes place within the chloro-
plasts, organelles in leaf cells. Chloroplasts have a double-layered
membrane that encloses an internal matrix, consisting of small flat
sacs surrounded by multiple single-layer membranes, known as
thylakoids (Perez-Boerema et al., 2024).

Photosynthesis is divided into two parts: the light reaction and
the dark reaction. The reaction mechanism of photosynthesis is
shown in Figure 1. The light reaction occurs in the thylakoids,
where the pigments in Photosystem II (PSII) transfer the energy in
the light to the reaction center (RC), which excites a special chloro-
phyll a P680 into a strong reducing agent P680*. P680* transfers
electrons to the phytin molecule (Phe) to generate P680+, which
then transfers electrons in the plastoquinone (PQ) to ultimately
generate plastoquinol (PQH2) (Barber, 2003). Meanwhile, P680+

captures electrons in the (Mn)4 cluster, and this reaction is repeated
four times to catalyze the conversion of twomolecules of water into
oxygen, protons and electrons (Shevela et al., 2021). PQH2 is
oxidized by the cytochrome b6f (cytb6f) complex, releasing elec-
trons that are transferred to plastocyanin (PC) in the thylakoid
lumen. Photosystem I (PSI) then oxidizes reduced plastocyanin and
transfers electrons via ferredoxin to reduce NADP+ to NADPH.
Subsequently, ATP synthase transfers H+ from the thylakoid lumen
to the chloroplast stroma, while converting adenosine diphosphate
(ADP) to adenosine triphosphate (ATP) (Liu et al., 2021; Prasad
et al., 2021; Zeng et al. 2021). The dark reaction, also known as the
Calvin-Benson cycle, occurs in the chloroplast stroma and consists
of three main steps: (1) Conversion of CO2, H2O and ribulose-
1,5-bisphosphate (RuBP) in the stroma into 3-phosphoglycerate
(3-PGA) under the catalysis of ribulose-1,5-bisphosphate carboxylase
(Rubisco); (2) Phosphorylation of 3-PGAbyATP to intermediate 1,3-
bisphosphoglycerate under the action of 3-phosphoglycerate kinase,
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followed by reduction of 1,3-bisphosphoglycerate to glyceraldehyde-
3-phosphate (GAP) by glyceraldehyde-3-phosphate dehydrogenase
using NADPH; (3) Conversion of a small portion of GAP to carbo-
hydrates such as glucose, while the remaining GAP is used to regen-
erate RuBP (which requires ATP consumption) (Alami et al., 2021; Li
et al., 2022; Hu et al., 2023).

To combat photorespiration and maintain high levels of bio-
mass productivity, plants and algae have evolved CO2 concentrat-
ingmechanisms (CCMs). Some plants, such as corn and sugarcane,
fix and store CO2 in the form of malate through the C4 mechanism.
They then release CO2 from bundle sheath cells to participate in the
Calvin-Benson cycle while generating pyruvate (Ludwig, 2012). In
other higher plants such as Crassulaceae plants, there is another
CCM strategy called CAM (Crassulacean acid metabolism) mech-
anism, which fixes CO2 into malate through phosphoenolpyruvate
(PEP), stores it in vacuoles of plant cells at night and releases it into
tissues during the day to participate in photosynthesis (Nobel,
1991). In microalgae, CO2 and HCO3

� are transported into the
cell from the environment through active transport and diffusion.
Due to the alkaline environment in the cytoplasm, carbonic anhy-
drases (CAs) convertCO2 intoHCO3

�, forming ahigh-concentration
HCO3

� pool. Then, HCO3� diffuses into the chloroplast stroma,
where it is converted into CO2 by CAs under appropriate conditions
and utilized by dark reactions (Kupriyanova et al., 2023).

In addition, some microorganisms can oxidize inorganic mol-
ecules and use the generated chemical energy to fix CO2 into
organic matter. Compared to the Calvin-Benson cycle, the carbon
sequestration mechanisms of these microorganisms are different,
mainly including the reductive TCA cycle, reductive acetyl-CoA
pathway, 3-hydroxypropionate pathway, 3-hydroxypropionate/4-
hydroxybutyrate cycle, dicarboxylate/4-hydroxybutyrate cycle and
other pathways (Berg, 2011; Saini et al., 2011). For the reductive
TCA cycle (tricarboxylic acid cycle), citrate is cleaved to oxaloace-
tate and acetyl-CoA by ATP citrate lyase. Oxaloacetate undergoes a
series of reduction reactions to decarboxylate into citrate, while

acetyl-CoA is converted to pyruvate through pyruvate: ferredoxin
oxidoreductase (POR) and then converted back to oxaloacetate via
pyruvate carboxylase to participate in subsequent biochemical
reactions (Zhang et al. 2021). The reductive acetyl-CoA pathway
is linear rather than cyclic and is divided into Western and Eastern
branches. In the Western branch, CO2 is reduced to CO under the
action of carbon monoxide dehydrogenase (CODH), and in the
Eastern (methyl) branch, CO2 is reduced to methyl-CFeSP through
a series of reduction reactions. Then, acetyl-CoA is synthesized by
reacting with CO from the Western branch using acetyl-CoA syn-
thase (ACS) (Ragsdale, 1991). For the 3-hydroxypropionate path-
way, acetyl-CoA is converted into succinyl-CoA through a series of
reactions and then regenerated into acetyl-CoA under the action of
enzymes such as succinic dehydrogenase and malyl-CoA lyase
(Zhao and Tian 2021). For the 3-hydroxypropionate/4-
hydroxybutyrate cycle: this cycle can be divided into two parts,
the first part transforms acetyl-CoA and two molecules of bicar-
bonate into succinyl-CoA and the other forms two molecules of
acetyl-CoA from succinyl-CoA (Liu et al., 2021); For
dicarboxylate/4-hydroxybutyrate cycle: This mechanism is also div-
ided into two parts, the first part involves the transformation of
acetyl-CoA and two inorganic carbon to succinyl-CoA using
pyruvate synthase and pyruvate carboxylase, as carboxylation
enzyme and the second part involves the regeneration of acetyl-CoA
from succinyl-CoA via a route similar to 4-hydroxybutyrate pathway
(Garritano et al., 2022).

Biological carbon sequestration pathways based on natural
ecosystems

Biogeochemical cycle of carbon

The biogeochemical cycle of carbon is shown in Figure 2. CO2 is a
critical greenhouse gas in the atmosphere that affects the Earth’s
climate. Plants and algae fix the absorbed solar energy in

Figure 1. Photosynthesis in land plants and microalgae. Abbreviations: PSII, Photosystem II; cytb6f, Cytochrome b6f; PSI, Photosystem I; PC, Plastocyanin; ATP, Adenosine
triphosphate; ADP, Adenosine diphosphate; NADP+, Nicotinamide adenine dinucleotide phosphate; NADPH, Nicotinamide adenine dinucleotide phosphate hydrogen; RuBP,
ribulose-1,5-bisphosphate; Rubisco, ribulose-1,5-bisphosphate carboxylase; 3-PGA, 3-phosphoglycerate;GAP, glyceraldehyde-3-phosphate.

Cambridge Prisms: Carbon Technologies 3

https://doi.org/10.1017/cat.2025.10005 Published online by Cambridge University Press

https://doi.org/10.1017/cat.2025.10005


carbohydrates through photosynthesis and transfer it to various
levels of organisms (Nunes, 2023). The carbon storage in the ocean
is approximately 3.77 × 1013 tC, including dissolved inorganic
carbon (DIC) 3.70 × 1013 tC, dissolved organic carbon (DOC)
6.85 × 1011 tC and particulate organic carbon (POC) 1.3–2.3 ×
1010 tC (Hansell and Carlson, 1998; Falkowski et al., 2000; Sar-
miento, 2013). The carbon storage in soil is 2.50 × 1012 tC, including
1.55 × 1012 tC of soil organic carbon (SOC) and 9.50 × 1011 tC of soil
inorganic carbon (SIC) (Lal, 2004). The circulation and exchange of
carbon between these major carbon reservoirs constitute the bio-
geochemical cycle of carbon on Earth (Li et al., 2024).

Land plants, microalgae and seaweed use photosynthesis to fix
atmospheric CO2 in their bodies, which is an important pathway
for carbon sequestration. These fixed carbons are transmitted along
the food chain and oxidized, releasing energy to organisms at
various levels, thereby driving the overall life activities of the
community. Plant litter and animal residues are humified by soil
microorganisms to form stable soil organic matter such as humus
(Hedges andOades, 1997). In addition, microbial residues combine
with minerals through ligand exchange, hydrogen bonding and
intermolecular forces, becoming part of mineral-bound organic
matter (Wu et al. 2023). Microbial secretions can also chemically
bond with mineral surfaces or be embedded in soil micropores,
ultimately forming stable mineral-bound organic matter (Lavallee
et al., 2020). Carbon from the atmosphere and soil flows into the
ocean through CO2 diffusion, microbial decomposition, weather-
ing, respiration and other processes and is then utilized by seaweed,
microalgae and other organisms. Marine organisms bury carbon in
seabed sediments for a long time through digestion, excretion and
corpse decomposition (DeVries, 2022). Before the Industrial Revo-
lution, the atmospheric CO2 concentration was relatively stable at
around 280 ppm (Beck, 2007). After the Industrial Revolution, with
the combustion of fossil fuels, the concentration of CO2 in the
atmosphere has been steadily increasing and has exceeded 400 ppm
(Major et al., 2018). Human industrial and agricultural activities
have become an important factor affecting the atmospheric CO2

level (Salam and Noguchi, 2005; Wilberforce et al., 2021). At
present, the global CO2 emissions are about 3.68 × 1010 tCO2, of
which China accounts for 31.2% (Hu et al., 2023).

Carbon capture by microalgae and plants

The global forest area accounts for over 30% of the total land area,
reaching 4 × 103 Mha. The balance of CO2 captured by photosyn-
thesis in forests is 5.17 × 1010 tCO2�y�1, and the balance of CO2

released through respiration and forest fires is 4.25 × 1010 tCO2�y�1,
with net capture of 9.17 × 109 tCO2�y�1, accounting for 24.92% of
global CO2 emissions (Nunes et al., 2020). The direct way to
enhance forest carbon capture capacity is afforestation, which
involves planting trees in areas without forests. China has the
highest afforestation rate in the world. In the past decade, the forest
area in southwestern China has increased by approximately 4 to 4.4
Mha (Wang et al. 2020). There is still 67.2 Mha of land in China
suitable for afforestation, with a maximum storage capacity of 3.99
× 109 tC (Jiang et al., 2022).

Currently, blue carbon ecosystems (BCEs) only include man-
groves, salt marsh wetlands and seagrass beds. The dynamic
changes in their carbon storage can affect the blue carbon balance.
BCEs have stored over 3 × 1010 tC on approximately 185 Mha of
land and can still capture 2.98 × 108 tCO2�y�1 (Bertram et al., 2021).
Due to human activities and environmental pollution, BCE is
suffering from large-scale losses: the annual loss rates are 1%–2%
for salt marsh wetlands, 1.5% for seagrass beds and 0.4% for
mangrove forests, respectively (Macreadie et al., 2021). Therefore,
it is necessary to carry out BCE restoration. It is estimated that
the recoverable areas are 0.2 to 3.2 Mha for salt marsh wetlands,
8.3–25.4 Mha for seagrass beds and 9–13 Mha for mangroves
(Worthington and Spalding 2018). If these BCEs can be successfully
restored, an additional 8.41 × 108 tCO2(equivalent to 2.21% of the
current global CO2 emissions) can be reduced annually by 2030
(Macreadie et al., 2021). However, currently, BCEs do not calculate
the carbon capture and storage by mudflats (Tidal flats), coastal

Figure 2. Schematic process of biogeochemical cycling of carbon. Abbreviations: BCP, biological carbon pump; SCP, solubility carbon pump; CP, carbonate pump; DOC, dissolved
organic carbon; POC, particulate organic carbon; RDOC, recalcitrant dissolved organic carbon; MCP, microbial carbon pump.
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algae ecosystems, etc., due to accountability issues; therefore, blue
carbon may be largely underestimated and needs to be expanded
with an updated definition.

The ocean stores more CO2 than all forests, with excellent
carbon capture capacity. Algae, including macroalgae (seaweed)
and microalgae, are widely distributed with diverse species and
large amounts (Mann and Vanormelingen, 2013). Seaweed are one
of the main primary photosynthetic organisms and are considered
to have the highest productivity among plants in coastal areas, with
an average of carbon capture at 5.58 × 109 tCO2 y

�1 over a total area
of 3.5 Mkm2, equivalent to 15.16% of global CO2 emissions (Zahed
et al. 2021). Microalgae are a group of photosynthetic microorgan-
isms that can grow in both marine and freshwater environments.
They can rapidly capture CO2 and form biomass, making them one
of the best candidates for biological carbon capture to achieve
carbon neutrality (Onyeaka et al., 2021; Su et al., 2024). Photosyn-
thesis by microalgae accounts for about 50% of O2 evolution and
atmospheric CO2 capture (Mao et al., 2024). Future marine fertil-
ization strategies could deploy two primary methodologies:
(i) Terrestrial-sourced nutrient supplementation, involving land-
based production of tailored fertilizer composites transported via
subsea infrastructure beyond the continental shelf break; and
(ii) Deep ocean macronutrient upwelling, utilizing wave-driven
pumping systems to elevate nutrient-rich waters (400–1000 m
depth) to the photic zone. Both approaches enhance micro- and
macroalgal cultivation to stimulate photosynthetic carbon seques-
tration and macronutrient supply from the deep ocean, which
involves the use of local wave power to pump deep nutrient-rich
water from depths of several hundred meters to the surface, to
cultivate microalgae and macroalgae, promoting their growth and
helping to fix more CO2 (Rees et al., 2006; Lovelock and Rapley,
2007; Lampitt et al., 2008; Sethi et al., 2020). The common

microalgae species involved in carbon capture are shown in
Table 1. In recent years, microalgae have been commonly used to
fix CO2 from human activities in urban ecosystems. For urban
ecosystems, open or closed photoreactors can be installed near
major carbon emission sources such as steel plants, utilizing micro-
algae to reduce CO2 content in flue gas (Branco-Vieira et al., 2022).
In addition, introducing microalgae into industrial wastewater,
aquaculture wastewater or aquaculture can significantly reduce
carbon emissions through water bodies (Ji and Liu, 2022; Liang
et al., 2024). A central research priority involves developing genet-
ically engineered microorganisms for enhanced carbon sequestra-
tion. Proof-of-concept studies confirm that engineered microalgae
strains improve CO₂ assimilation and storage kinetics. Notably,
chloroplast-targeted expression of cyanobacterial fructose-1,6-
bisphosphate aldolase (FBA) in Chlorella vulgaris elevated photo-
synthetic quantum yield and carbon fixation rates by 1.2-fold (Yang
et al. 2017).

Carbon capture by other microorganisms

In addition to microalgae, many other microorganisms (including
bacteria, fungi, etc) are involved in carbon capture and are widely
distributed in environments such as oceans and soils. Table 1 shows
some carbon capture microorganisms. Among them, bacteria that
can survive in a chemosynthetic autotrophic mode account for a
large proportion, such as nitrifying bacteria, which can obtain
energy by oxidizing inorganic nitrogen compounds and reducing
CO2 to organic carbon, including ammonia-oxidizing microorgan-
isms (AOMs) and nitrate-oxidizing bacteria (NOB). AOMs oxidize
ammonia nitrogen to nitrite, and NOB oxidizes nitrite to nitrate.
NOB, such as Nitrobacter vulgaris and Nitrococcus mobilis, use the
Calvin-Benson cycle to fix CO2, while Nitrospira uses the reductive

Table 1. Types of microorganisms for carbon capture

Category Phylum Species
CO2 capture/biomass production*

(g�1L�1d�1) References

Microalgae Bacillariophyta Phaeodactylum
tricornutum

0.24* Buono et al. (2016), Quelhas et al. (2019)

Chlorophyta Acutodesmus obliquus 0.36 Yun et al. (2016), Natsi and Koutsoukos
(2022)

Chlamydomonas
reinhardtii

2.00 Lin et al. (2022), Tiwari et al. (2024)

Chlorella vulgaris 0.32* Ayatollahi et al. (2021)

Tetraselmis suecica 0.09 Herold et al. (2021), Xu et al. (2024)

Cyanobacteriota Phormidium valderianum 0.32 Nair et al. (2023)

Haptophyta Isochrysis galbana 0.33 Xia et al. (2023; Liang et al. (2024)

Other
microorganisms

Actinomycetota Rhodococcus opacus 6.60 Feisthauer et al. (2008)

Bacillota Bacillus pasteurei NA Warren et al. (2001)

Clostridium
autoethanogenum

NA Schuchmann and Müller (2014)

Mucoromycota Funneliformis mosseae NA Tang et al. (2023)

Nitrospirota Leptospirillum ferriphilum NA Mi et al. (2011)

Pseudomonadota Nitrobacter vulgaris NA Elling et al. (2022)

Nitrococcus mobilis NA Elling et al. (2022)

Sulfuricella denitrificans NA Liu et al. (2022)

Note:1–7 are microalgae and 8–15 are other microorganisms. *This refers to biomass production, while the rest refers to CO2 capture.
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TCA cycle to fix CO2 (Elling et al., 2022). Fe (II)-oxidizing bacteria
(FeOB) synthesize organic matter by oxidizing Fe (II) to Fe (III) to
obtain energy. Among FeOB, the acidophilic iron-oxidizing bac-
teria Leptospirillum ferriphilum can fix carbon through a reductive
TCA cycle under aerobic conditions (Emerson et al., 2010; Mi et al.,
2011). In addition, some bacteria fix carbon through mineraliza-
tion, such as Bacillus pasteurei, which can induce CO2 or DIC to
form carbonate crystals, such as calcite, and also increase soil pH
through metabolic processes, thereby increasing DIC concentra-
tion and promoting the formation of carbonate crystals (Warren
et al. 2001; Li et al., 2007). Apart from bacteria, fungi such as the
arbuscular mycorrhizal fungi (AMF) also indirectly participate in
carbon fixation by affecting carbon turnover between plants and
soils. AMF can fix carbon in the soil by transferring photosynthetic
products from the host plant to the root hyphae of AMF, then to the
outer hyphae and finally releasing them into the soil (He et al.,
2023). The presence of AMF can cause host plants to release 4%–
20% of their carbon into their hyphae, which can then be buried in
the soil.

Biological carbon capture in industry

Potential of microalgae for carbon capture and producing
zero-carbon-emission fine chemicals

Microalgae play a crucial role in carbon capture through photo-
synthesis, fixing CO₂ from diverse sources, including the atmos-
phere, industrial waste gases and soluble carbonates. On a dry
weight basis, microalgae biomass comprises approximately 50%
carbon, meaning 100 tons of algal biomass can sequester roughly

183 tons of CO₂ (Zhang et al. 2021). Due to their rapid growth and
efficient nutrient absorption, microalgae effectively treat waste-
water while doubling their biomass in short periods. The produc-
tion of high-value coproducts further offsets carbon capture costs,
enhancing economic feasibility.

In industrial applications,microalgae likeChlorella demonstrate
significant environmental benefits. For instance, when cultivated in
pretreated landfill leachate, Chlorella removes 91% of dissolved
organic carbon (DOC), 86% of total nitrogen (TN), 90% of ammo-
niacal nitrogen (NH₄-N) and 96% of phosphate via photosynthesis
– simultaneously treating wastewater and generating biomass
(Singh and Ahluwalia, 2012). Colocating Chlorella cultivation facil-
ities near power plants could mitigate up to 9.8 × 10⁸ kg of CO₂
emissions annually (Oliveira et al., 2020). Microalgae also utilize
CO₂ from cement production flue gas, despite trace heavy metal
contaminants (Olofsson et al., 2015; Lara-Gil et al., 2016).

Beyond environmental applications, microalgae are rich sources
of bioactive compounds (Figure 3), such as polyunsaturated fatty
acids, carotenoids, peptides, vitamins and polysaccharides; these
compounds possess substantial market size and generate significant
economic contributions. For instance, the global carotenoids mar-
ket reached approximately1.84 billion in 2024, with projections
indicating growth to 2.842 billion by 2031. This represents a
compound annual growth rate (CAGR) of 6.8% from 2025 to
2031. Separately, the DHA (docosahexaenoic acid) market was
valued at around 14.4 billion in 2024 (Zhang et al. 2024). Cultiva-
tion and extraction methods influence compound yields, enabling
the development of pharmaceuticals and functional foods.
Research highlights microalgae extracts’ anti-inflammatory,
anticancer and therapeutic potential (Chen et al., 2011; Besednova

Figure 3. Applications of microalgae in carbon capture and production of high-value products. Abbreviations: ALE: Adaptive Laboratory Evolution; FAME: Fatty acid methyl ester.
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et al., 2020; Wu et al. 2021; Sasaki et al., 2022; Moradi et al., 2023),
underscoring their value in nutrition and medicine.

Microalgae further benefit agriculture and animal husbandry.
Microalgae-based fertilizers enhance seed germination, increase
sugar and carotenoid content in tomatoes (Ferrazzano et al.,
2020) and boost rice yields (Dineshkumar et al., 2017). As feed
additives, they improve daily weight gain in livestock and poultry
while optimizing fatty acid profiles via n-3 LCPUFAs (Hopkins
et al., 2014; Madeira et al., 2017). They also support pet gastro-
intestinal health by promoting beneficial microbiota (Delsante
et al., 2022; Cabrita et al., 2023). These dual agricultural and
environmental advantages position microalgae as sustainable tools
for resource recycling (Shah et al., 2017; Saadaoui et al., 2021).

Finally, microalgae serve as a versatile feedstock for producing
diverse biofuels – including biodiesel, methane, ethanol and buta-
nol – through biochemical or thermochemical conversion. This
capability not only offers renewable alternatives to fossil fuels but
also embodies a closed-loop resource model: utilizing waste CO₂
and nutrients for cultivation, converting biomass into energy and
recycling byproducts. Consequently, microalgae systems signifi-
cantly advance circular economies by valorizing waste streams,
reducing net emissions and sustaining resource cycles without
competing with arable land.

Other biological carbon capture technologies

Beyond microalgae-based carbon capture, several alternative bio-
logical systems demonstrate significant potential for carbon seques-
tration, as shown in Table 2. Bacteria, in particular, are capable of
biological carbon fixation and the production of high-value products.
Chemoautotrophic bacteria, for instance, utilize atmospheric CO₂ as
a carbon source to synthesize various organic compounds (Cantera
et al., 2018). Specific strains, such as Halomonas stevensii, have been
shown to convert CO₂ into valuable fatty alcohols like lauryl alcohol
and pentanol (Claassens et al., 2018). Furthermore, specific bacterial
consortia, includingmethane-oxidizing bacteria (e.g.,Methylophilus)
and ammonia-oxidizing bacteria, offer dual benefits: they effectively
treat wastewater by removing ammoniawhile concurrently perform-
ing biological carbon fixation (Kim et al., 2021).

Microbial electrosynthesis systems (MES), microbial electroly-
sis carbon capture (MECC), photosynthetic microbial fuel cells
(pMFCs) and microbial fuel cells (MFCs) are technologies that
facilitate wastewater treatment while simultaneously generating
energy (Zhu et al., 2022). MES can convert CO2 into biofuels,
organic acids and other high-value chemicals (Chen et al., 2023).
MECC primarily utilizes microorganisms to convert organic carbon

in wastewater into electricity while capturing carbon (Kumar et al.,
2023). Additionally, enzymes play an important role in the carbon
capture process. Supplementing fungal-derived cellulase during the
conversion of corn stover to ethanol can reduce production costs and
improve carbon capture efficiency, achieving negative carbon emis-
sions (Krings et al., 2023). Similarly, immobilized carbonic anhydrase
effectively captures CO2 in an aqueous solution, by catalyzing its
hydration reaction, thereby enhancing carbon capture efficiency
(Zhu et al., 2023; Lim and Jo, 2024).

Conclusions and future perspectives

Biological carbon sequestration is mainly a process in which plants,
bacteria, microalgae and other microorganisms directly fix CO2

through photosynthesis, or microorganisms fix CO2 from industrial
waste gases, soluble carbonate and other sources. If all land were
covered with plants, terrestrial and marine ecosystems could seques-
ter a significant amount of CO2 each year. Although biological
carbon sequestration in natural ecosystems has environmental sig-
nificance, it also faces many difficulties in practical applications,
mainly including: (1) Biological carbon sequestration requires a large
amount of land for vegetation cultivation, which may compete with
agriculture, urban development and natural ecosystems, leading to
land resource conflicts; (2) Climate adaptability: the climate varies
greatly in different regions, and some plants may performwell under
certain climatic conditions, butmay not growwell or survive in other
regions; (3) Long-term ecological impacts and assessment, for
example, the effects of artificial plantation and ocean fertilization
on ecosystems need to be monitored and evaluated over time to
ensure that these technologies have minimized adverse impacts.

Compared to biological carbon sequestration in natural ecosys-
tems, industrial biological carbon sequestration has the advantages of
efficient carbon capture, process-controlled diversification of prod-
ucts, efficient use of resources and capital utilization, reduced depend-
ence on natural ecology and flexibility to cope with climate change.
Microalgae are an important candidate for industrial biological car-
bon sequestration because of their high photosynthetic efficiency,
capability to produce various valuable products, strong adaptability
and wide applications. Despite substantial research on microalgae-
based carbon fixation technology in recent years, several challenges
remain. The isolation and purification of microalgae typically require
lengthy cycles, and the carbon fixation performance of isolated strains
demands further investigation, resulting in low efficiency. While
genetic editing offers high transformation efficiency, the vastly dif-
ferent genetic backgrounds and high specificity among microalgal
species limit its broad application. Continuous CO₂ influx during
carbon fixation acidifies the algal culture medium, adversely impact-
ing fixation efficiency. Sustaining elevated carbon fixation rates under
high-CO₂ conditions, therefore, necessitates optimization of carbon-
tolerant strain selection methods and enhanced research into genetic
andmetabolic engineering approaches. In addition, further optimiza-
tion of bioreactor parameters is essential to improve the carbon
fixation efficiency of microalgae within these systems.

At the same time, there are still challenges hindering the suc-
cessful development and commercialization of microalgae-based
carbon capture technologies. Specifically, economic constraints and
feasibility assessments necessitate consideration of microalgal bio-
reactor costs, footprints and spatial requirements. At the same time,
further research is needed to obtain better light conditions and
higher photosynthetic efficiency at a low cost on a commercial
scale. In addition, when using microalgae to treat industrial waste-
water or flue gas, some toxic biomass may be generated and

Table 2. Other biological carbon capture systems

Type Features Reference

Carbon capture by
bacteria

CO2 in waste gas and
wastewater is fixed by
photosynthesis and
chemosynthesis

Cantera et al. (2018),
Claassens et al.
(2018), Kim et al.
(2021)

Carbon capture by
microbial
electrochemical
technologies

Promoting electricity
generation and chemical
conversion through the
metabolic activities of
microorganisms.

Kumar et al. (2023),
Nandhini et al.
(2023)

Carbon capture by
enzyme catalysis

Enzymatic reaction
promotes carbon capture.

Kubis et al. (2023),
Zhu et al. (2023), Lim
et al. (2024)
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accumulated due to different sources. Appropriate utilization of
such biomass should be developed. The development of genetic
engineering technology has enabled the creation of transgenic
microalgae with enhanced carbon sequestration capabilities. How-
ever, policy and regulations are important to support transgenic
technologies, which remain to be addressed concerning algal tech-
nology. Through technological innovation, economic model
exploration and policy support, carbon capture by biological
methods will demonstrate great potential, paving theway to achieve
carbon neutrality and sustainability shortly.
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