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1. Introduction

Following on from the work of T. P. Speed [1 ], we will deal with some obvious
conjectures, using particularly results 3.3 and 8.5 of [1].

Our notation will be the same as [1]. All lattices considered will be dis-
tributive with zero. The main question is whether a disjunctive lattice is uniquely
characterized by its minimal prime ideal space. By 8.1 of [1], an arbitrary lattice
L is isomorphic to the lattice n# under the mapping x -+J((?c) iff L is disjunctive;
and by 4.1 of [1], Min/?(=§?) £ Min/?(/i^). So when considering how much
minimal prime ideal spaces reflect the properties of lattices we need only consider
disjunctive lattices. The answer to this question turns out to be negative, and under
quite general conditions, there appear to be many disjunctive lattices with the
same minimal prime ideal space.

In section 3 is given an example to this effect which also shows that the con-
jecture that "The minimal prime ideal space of a disjunctive lattice being locally
compact implies that the lattice is generalised Boolean" is false.

Next the main result of [2] is treated in a more simple manner in section 4 (for
an earlier and better proof see [4] pp. 24—28). Finally the connection between
prime ideal spaces and compactifications is used in sections 5 — 7 to try to find
which disjunctive lattices give the same minimal prime ideal space. Only a small
amount of progress is made on this problem.

2. f-spaces

DEFINITION. A Hausdorff space (X, J*) is called a 0-dimensional space if
there is a basis of open closed subsets of X for the topology «/. This definition
is from Bourbaki.

DEFINITION. A topological space (X, J*) is called a 1,-space when the following
holds.

(i) (X, </) is a 0-dimensional space
(ii) There is a basis £ of open closed subsets of X such that the topology J
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generated by the family {b° : b e B} (denoted Bc) is such that (X, J) is a compact
space.

DEFINITION. A basis for a £-space (A",«/) satisfying the condition (ii) above
is called a (-basis.

Clearly there is no loss of generality in considering all bases as closed under
finite unions and intersections and we assume so from now on.

Propositions 3.1, 3.3 and 8.5 of [1] say the following:
Minimal prime ideal spaces are always (-spaces, with one (-basis being \i% (which

is isomorphic as a lattice to the original lattice). If a (-basis is considered as a lattice,
then its minimal prime ideal space is homeomorphic to the (-space.

We shall use the following well known and easy result:
A O-dimensional space (X, </) is locally compact iff there is a basis for J

consisting of the family of all open closed compact sets (see for example Lemma
2.4 of [2]), and this basis is contained in any other basis of open closed sets for
J (Lemma 2.10 of [2]).

LEMMA. A O-dimensional space (X, J') which is locally compact has a (-basis
for J consisting of the family of all open closed compact sets. Hence (X,<#) is a
(-space.

PROOF. Let B be the family of all open closed compact subsets of X. Sup-
pose J, the topology generated by {bc : b e B}, is not compact. Then there is a
family of elements of B with the FIP, say {bx : cteA} such that f]xeAbx = • •
This follows since B generates all the closed sets in Jf by arbitrary intersections.
But this contradicts the fact that each bx is a closed compact set.

COROLLARY. If a O-dimensional space (X, </) is compact then it is a (-space
and the only (-basis for J is the family of all open closed subsets of X.

PROOF. See the result stated just before the lemma.

REMARK. A £-space is compact iff the family of all open closed sets is a
C-basis. This £-basis when considered as a lattice is Boolean.

REMARK. An example of a non locally compact £-space is the following. Let
S be an uncountable set with the discrete topology. Let X = S u {v} where a
set containing v is said to be open iff its complement in X is countable. Then a
C-basis for A'is the singletons of S plus all open (closed) sets containing v.

3. Example: Non-isomorphic Disjunctive Lattices with the Same Minimal Prime
Ideal Space

To consider the questions outlined at the beginning, let (X, J) be an arbitrary
locally compact O-dimensional space. Denote by B the family of all open closed
compact subsets of X. We will assume also that (X, S) is not compact.
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PROPOSITION. Ifd is an arbitrary open closed subset ofX which is not a compact
subset of X then the basis for.f generated by B u {d} is a (-basis for (X, J).

PROOF. Denote by D the basis generated by B u {d}. Then an arbitrary
element y e D is of the form y = b,b e B or y = b (j d where be B. This follows
since for example d n b is an open closed compact set forbeB and so d n b
belongs to B.

Denote by (X, i^) the topological space on X generated by {yc :yeD}.
Suppose that (X, ir) is not compact. Then since the closed sets of V are inter-
sections of sets- of the form b,b u d where b e Bit follows that

(V , n f), (*, u <*) = •
where {£,5, by u d}dcA, yeC has the F I P . So clearly

(1) ()sbdnd=n,

(2) (V*(Vr=d-
By the lemma we have that B is a (-basis and so the family {bs, by}SeA, yeC cannot
have the FIP. Without loss of generality we may assume bSl n byi = • for some
<5t and yt. So using the FIP of the original family it follows that

bSi n (bn u d) = bSl n d * U-

Then, since
b» n bdi n (bn u d) = bit n bb n d =£ D,

we must have bs n d # D for any (5. Hence {Z>a n ^},5£A is a FIP family and is,
clearly contained in B. Then (1) contradicts B a £-basis.

In exactly the same way it can be shown that any finite number of non-
compact open closed sets can be added to B and the result is still a (-base.

We quickly show that B and D are not lattice isomorphic. B is easily seen to be
a generalised Boolean lattice. Suppose D is generalised Boolean. Then in particular
the principal ideal (d)D generated by d in D must be a Boolean lattice. As d is open
closed and non compact, clearly there exists b e B with 0 # b <= d. So d n bc,
which is the complement in (d)D of b e (d)D, must belong to (d)D and hence to D,
since (d)D is Boolean. Now d n bc e Z) means either d n bc e B or d n bc contains
rf. The latter is obviously impossible, so d n bc eB. Thus d = ( r f n i ) u ( ( / n &c)
and both of the summands are compact and in B. Therefore d e B, a contradiction.

By Lemma 3.3 of [5], any basis of open closed sets in a O-dimensional space
is a disjunctive lattice. So B and D are both disjunctive lattices. By proposition
8.5 of [1], it follows that

s Min p(D).

So putting all the results together gives an example of two non lattice-isomorphic
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disjunctive lattices with the same minimal prime ideal space. Also, since D is not
a generalised Boolean lattice it follows that the condition that the minimal prime
ideal space of a disjunctive lattice is locally compact does not imply that the
lattice is generalised Boolean.

REMARK. (This was kindly suggested by the referee). There can be no example
of a minimal prime ideal space of two non lattice-isomorphic disjunctive lattices with
one or both of the lattice finite.

The reason is that any finite distributive disjunctive lattice with 0 is Boolean.
Firstly any such lattice £P clearly has a finite and thus compact minimal prime
ideal space. Hence by the Corollary in section 2, the only £-basis for Min />(=£?) is a
Boolean lattice. So £C ~ fig. are both Boolean, for as already remarked in section
2, jig is a (-basis for Minp{£f).

So any such lattice has 2" elements, where n is the number of atoms (= number
of minimal prime ideals) of the lattice. Thus, if one of the two lattices is finite, so
must be the minimal prime ideal space and the other lattice. Hence both lattices
are finite Boolean with the same number of atoms, thus the same number of
elements; so they are isomorphic (Halmos, Lectures on Boolean Algebras, p 72
(exercise)). In this case the construction of a new (-basis D from the old one B
fails because the (finite) topological space is compact and so there are no non-
compact open closed sets to be added to B.

4. O-Dimensional compactifications of O-dimensional spaces

We will now turn to the question of compactifications of a O-dimensional
space and the relation this has to minimal prime and prime ideals. The most natural
way of getting such compactifications as considered in [1] and [2] is as follows:

Let (X, Jf) be a O-dimensional space. We will denote points of X by Greek
letters and subsets of X by small Latin letters. Let D be a Boolean lattice of open-
closed subsets of X such that D is a basis for the topology J. Let Spec D be the
space of prime ideals of D with the hull-kernel topology.

LEMMA. The mapping xfrom X to 5pec. D given by

is a homeomorphismfrom X onto a dense subspace o/Spec D.

PROOF. The fact that xX is dense follows since kernel (tX) = n i J = Q.
See Lemma 4.3 of [5] for the full proof. We can now identify A'with rZand so can
consider X to be embedded in Spec D.

LEMMA. Since D is a Boolean lattice, Spec D is a compact Hausdorjf space.
Also there is a lattice isomorphism between G, the family of all open closed subsets
of Spec D, and D itself.
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PROOF. This is just the well known result of [6] for the case of a Boolean lat-
tice. See also Th. 7.4 of [5] and Page 762 of [2]. In fact

G = {&>(d) :deD} where &>(d) = {P e Spec D:d$P}.

Then the lattice isomorphism between G and D is given by &(d) -* d. When X
is identified with TX, the useful relationship

&>(d) nX= d holds.

We will show later that a similar result holds for F any O-dimensional compacti-
fication of (X, J). The main result of [2] (Th. 3.6 p. 762) (see also [4] pp. 24-28)
is the following, which we divide into two parts for ease of proof.

THEOREM 1. Let 3> be the family of all Boolean lattices of open closed sets
which form a basis for (X, J) and let Spec 3> = {Spec D : D e 3>}. Order 2 by
inclusion and order Spec 2 by Spec Dx ^ Spec D2 iff there is a continuous mapf
from Spec D2 onto Spec Dx such that X is fixed relative to f. Then 2 and Spec 2
are order isomorphic.

THEOREM 2. The family of all O-dimensional compactifications of (X, </)
coincides with Spec 3>, where homeomorphic compactifications relative to X are
not distinguished {i.e. X is fixed under each such homeomorphism).

PROOF OF THEOREM 1. That S> -> Spec 2 is a bijection is clear from the cor-
respondence between GSpec D and D.

To show 2 -> Spec £to is an order isomorphism clearly we need only show
Dy c D2 iff Spec Dx ^ Spec D2. Suppose Dt s D2. Then for any P2 e Spec D2,
P2n Dj e Spec Dt. So / : P2 -* P2 n D^ is a well defined mapping from Spec D2

to Spec Dt.
To show:/fixes X, is onto, and is continuous. Let ^ e Xbe arbitrary. We must

show/(T2({)) = ti(£) where T, : Z -> {dt: ^ d, and dt e Dji = 1, 2.
But then/(r2(O) = {d2 : i t d2, d2 e D2} n Dx = {dt -.itd^d^Dj

since Dy <=, D2. Hence/fixes X. Suppose Pt is any element of SpecZ)x. Take
P2 as the prime ideal of D2 generated by Px (well defined since D2 is Boolean;
ideals are prime iff maximal).

Then/(P2) = P2 n Dt 2 Pt.
Also since Dt is Boolean, P^ is a maximal ideal. So if the above inclusion is

proper then P2 n Dt = Z)j and so XeP2, which contradicts P2 a proper ideal.
So/(P2) = Pi and/ i s onto.

Finally/is continuous follows since if ^ i (^x) is a basic open (closed) subset
of Spec Z>! then/-1(^>

1(</1))= {P2 : P2 e Spec D2 and dx # P2} = ^2{dx) which
is also open (closed) in Spec D2.

Conversely suppose / : Spec D2 ->• Spec Dx is a continuous onto mapping
which fixes X. Then for any dxe Dx, there exists d2 e D2 such t h a t / " 1(^>i(d1)) —
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&2{d2). But ^>
1(d1) nX=dt. This means f1(&l{di)) n X = dt since X is

fixed. So ^2{d2) n X = dt = d2 and this is just Z)t £ D2.

PROOF OF THEOREM 2. Let F be a O-dimensional compactification of (X, J\
Firstly we will show there is a Injection between ^ , the family of all open-closed
subsets of F, and D, for some De £).

Define a mapping/by/: G -* G n Xfor all G 6 IS. Then {/(G) : G e f } € ®
because J on A' is induced by the topology on T, and so we can take this family
as 9).

We need only show / i s 1 - 1 . Suppose Gxc\X' = G2n X. Then (G x — G2) n
Z = D- But A' is dense in F and so G±-G2 = D- So ^ - G 1 ! = • also and
finally Gx = G2.

Taking Z> = {/(G) : G e ^} we will show that F and Spec D are homeo-
morphic with respect to a function which fixes X. Clearly D and <8 are lattice
isomorphic; consequently Spec D s Spec ^ . Also F is itself a O-dimensional
space with IS as the Boolean lattice of all open closed sets, which clearly forms
a basis. So we can consider Spec & as a compactification of F. But then under the
usual embedding of F in Spec 'S, it follows that F is a compact subset of a Haus-
dorff space and so is closed. But F is also dense in Spec 9 and so F and Spec &
coincide under the embedding.

Hence F and Spec & and so F and Spec D are homeomorphic. It is easily
verified that X is fixed under this homeomorphism.

REMARK. This shows that if ^ is a Boolean lattice of open closed subsets
which forms a basis for some compact O-dimensional space F, then F and Spec ^
are homeomorphic.

5. ^-Spaces, minimal Boolean extensions, and compactifications

Now to return to the problem of ^-spaces i.e. minimal prime ideal spaces, and
the connection between them and compactifications.

Let (X, J) be a (-space with B a (-basis of open closed subsets of X. Then
we wish to consider the relationship between B and the minimal Boolean lattice
D of open-closed sets containing B. If we assume as usual that (X, J) is not
compact then it follows that B is not Boolean. In the example of a locally compact
(-space as discussed previously, the complement of any member of the smallest
(-basis of compact open closed subsets can be adjoined to give a larger (-basis.
Clearly the two Abases are non isoraott^Mc (the lax%et has, a tvow-traval cevitTe axvd

a unit) while they both give rise to the same minimal Boolean lattice, that of all
open closed compact sets and their complements.

A partial description of the family of (-bases which generate the same minimal
soo/eanratticeis given, in section. <\ We used tke.fQttQma%ces.uft woico. is contained
implicitly in [3].
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THEOREM 3. Let D be a Boolean lattice which is the minimal Boolean extension
of some lattice B which is distributive and contains 0 and 1. Consider D as embedded
in Spec D. IfF is the underlying set for Spec D then F can be retopologized by taking
B, embedded in F, as a basis, which gives Spec B as the new topological space.

NOTE. The process can be reversed to give Spec D as a new topology on
Spec B (see [3], Th. 2.1].

PROOF. Firstly we will show there is a bijection between Spec D and Spec B.
Define a mapping by / : P -> P n B for all P e Spec D. Then/is a well denned

map from Spec D to Spec B, in the case that B has a 1. For assume that B has a 1.
Then supposing that P n B = B holds gives the conclusion that P is not a proper
ideal of D, a contradiction.

Suppose i5! n B = P2 n B. Since D is Boolean, for any be B exactly one
of b e P or bc e P holds for any P e Spec D.
But then b e P t iff b e P2 bc ePliSbc eP2 must follow.

Finally b1^ibceP1, iffbt e Pt and b $ Pt iSb1 <ubceP2

bt nbc ePY, iffbx ePt or b $Pt iff b1nbceP2.

So P1 = P2 as D = {b, bc, bt u bc, b1 n bc}.
To show/is onto, if Q is a prime ideal of i? then define P e Spec Z> by

beP iff fee g fex u fec eP iff i^ 6 g and b £ g
Z > c e P i f f Z > £ e b1nbceP iS bteQ or b£Q.

Then clearly P n B = Q and so/is a bijection.
Finally 5 is a basis for Spec B on F since by the embedding of D in Spec Z>,

i e B z D corresponds to £?(b) e Spec D = F under the same embedding. If
we now use the mapping/to identify F with Spec B, the subset corresponding to
b becomes {P n B : P e ^(b)} = {Q:Qe Spec 5 and b $ Q) = (̂Z>) taken in
Spec B (denote by ^B(b)).

So clearly 5 is a basis for Spec B on F.

REMARKS. The assumption that B has a unit does not imply any loss in
generality for the following reasons.

Suppose B is a distributive lattice without a unit (but with a zero as throughout
this paper).

Adjoin a unit to B to give a new lattice B' i.e. 5 ' = B u {1}. The only dif-
ference between the prime ideal spaces of B and B' is that B' has a single maximum
prime ideal added.

In fact Spec B' is just Spec B with a single point added to each closed subset,
which obviously gives a compactification of Spec B. Also since we are interested
primarily in the minimal prime ideal space of B which is unaltered, there is no
restriction of generality. (Minp{B) identical with Minp(B') corresponds to the

https://doi.org/10.1017/S1446788700009162 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009162


430 J. H. Rubinstein [8]

fact that B a f-basis for (X, J) such that X$ B then B u {X} is also a (-basis for
(X, J)). We can get a similar compactification in a different way as follows.

Take B a distributive lattice without a unit. As in [3] form the topology
on Spec B given by taking {0(b), h{b)} = {0>(b), 0>(b)c} as a basis for the topology

Then it can easily be shown that this new topology on the space F of Spec B
gives Spec C where C is the minimal generalised Boolean lattice containing B.
This result follows exactly as the result in [3].

We can then get Spec D, where D is the minimal Boolean extension of either
B or C by taking the Alexandroff one point compactification of Spec C. This
method is applicable since Spec C has a basis of compact open closed subsets for
its topology. The Spec D topology relativized to F provides the new topology
Spec C of the above result.

6. Application to 0-dimensional spaces

Theorem 3 can be applied to the case of a 0-dimensional space (X, -f) as
follows.

Let D be a Boolean lattice of open closed subsets which is a basis for J and
has a sublattice B such that \3, X e B, and D is the minimal Boolean extension
of B.

Then as before Spec D is a compactification of (X, • / ) . Let F be the under-
lying set for Spec D. The topology of Spec B on F is then generated by {0>{b) :beB)
which is the family of open closed subsets of Spec D which correspond to B.

(When (X, J') is compact it follows that (X,<#) and Spec D coincide by the
remark following the proof of theorem 2, and so we are back in the case of
theorem 3.)

Now we wish to consider which points of F correspond to the minimal prime
ideals of B. Let Fbe the subset of F consisting of these points. Under the embedding
of ^fin F, £ e X corresponds to {d : d e D and £<£ d) in Spec D. Thus it corresponds
to {b : b e B and %$. b) in Spec B. Denote this prime ideal by M?.

THEOREM 4. The following are equivalent
1. X S Y = {points of F corresponding to minimal prime ideals}
2. bc is a union of elements of B, for all b e B.
3. B is a basis for J on X.
4. Spec B induces J on X.

PROOF. 1 o 2. A prime ideal P is minimal iff for any beP there exists
b' $ P such that b n b' = • (see lemma 3.1, [5]). So the M$ are minimal for every
£ e X iff for any b e B and £,$ b, there exists &b' e B such that %eb' andb n b' = •
But this is just the condition that bc is a union of elements of B.

3 t> 4. Since ^(b) n X = b as noted previously, it follows that Spec B on F
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induces the topology on X given by taking B alone as basis. Thus B is a basis for
the topology J on X iff Spec B induces the topology J on X.

2 => 3. Assuming 2, it follows that the topology generated by B on X equals
the topology generated by D on X, as D is the minimal Boolean extension of B.
Since we have assumed D is a basis for </, the result follows.

3 => 2. bc is open closed in the topology«/, because Z> is.

COJIOLLARY. Suppose B is a basis for the topology J' on X. Then B is a (-basis
and X is a (-space iff Y and X coincide.

Finally if (X, J) is compact then since B has a J it can be easily seen that Spec
B and Min p B = Y coincide iff B and D coincide. This is just the special case of
B Boolean of the well known result that Spec B is Hausdorff exactly when B is
generalised Boolean.

7. Equivalent £-bases

Our final result is a partial characterization of the family of all (-bases which
generate the same Boolean lattice.

Let B be a (-basis in the (-space (X, J). We will assume as before that B has
a unit i.e. XeB. We can identify beB with J((b~) = {M: Me Minp(B) and

When considering B as a disjunctive lattice we will write the elements of B
as b e B. However in (X,-_/) we will write them as *J?(b) e B instead . Also denote
^4f(bc), i.e. the corresponding element for bc, as h(b) = {M: Me Minp(B) and
b e M}. bc $ B corresponds exactly to the case when b $ centre of B, denoted
Z(B).

We wish to find a condition for when such bc can be added to B and the result
is still a (-basis.

THEOREM 5. Under the above assumptions, ifb $ Z(B) then bc cannot be added
to B iff there exists a prime ideal P e Spec B such that b e P and for any minimal
prime ideal M £ P implies that b$ M.

PROOF. bc not being able to be added to B is equivalent to X being not compact
in the dual topology J" generated by Bc u {b}. This means that there exists
{h}.eA c 5 such that

(1) f]^(K) n h(b) = •
aeA

where {^(bx), h{b)} is a FIP family. But in this case {bx : a e A) can be embedded
in a dual ideal

n

T = {b : b 2 f] bx. for some finite subset {a,} of A}.
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Also clearly b $ Tsince {^(bx), h(b)} have the FIP. So by the usual argument
with Zorn's lemma it follows that there is a prime ideal P with b e P and P n T = Q,
Pe Spec B (Th. 6 of [6]). Now suppose Mis a minimal prime ideal such that
beM i.e. Meh(b). Then by (1), there is some ccoeA such that M$^?(bao).
But this is just bXoe M. So M n T ^ • and M n Pc ¥= • • So equivalently if A/
is a minimal prime ideal with M <~ P then b $ M.

Suppose now that the condition holds. To show that no complement of an
element not in Z(B) can be added to B.

Since B is a disjunctive lattice, if bx $ 62 then there is a minimal prime ideal
M with b2e M and 6: $ Af. [Proof: ^ $ b2 implies that there exists a c e B such
that • # c £ £>!, c n b2 — • ; hence the principal ideals (c), (62) are disjoint.
By Th. 8 of [6], there is a prime ideal P such that P 2 (b2), (c) £ P. Then ^x eP
would imply c e P. Contradiction. A minimal prime ideal inside P may then be
selected.] So suppose that P is the prime ideal corresponding to b $ Z(B). Index
the elements of Pc i.e. set

Pc = {A,:ae A} or pf(&J : a e ,4}.

Since /*c is a prime dual ideal, clearly {^(ba) : aeA) has the FIP, since dual
ideals are closed under finite meets.

Also since b e P it follows that ba $ b for all a. So for each a there is a
minimal prime ideal Ma with b e Mx,bx$ Mx. But this means just that Mx e h(b),

A finite intersection of elements from {^(bx), h(b)} reduces to either
) n h(b) or^(6a o) , because {J^(bx)} is a dual ideal. We have just shown

that MXo e^(bxo) n A(Z>); consequently {u^(fea), h(b)} has the FIP.
So {h{b),^K{bx)} is the required FIP family which proves that h(b) is not

compact, using the condition assumed on P.

I would like to express my gratitude to Dr. T. P. Speed for his help and en-
couragement in this work, and also to the referee for his many valuable suggestions.
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