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Abstract
We show that many graphs with bounded treewidth can be described as subgraphs of the strong product
of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the underlying
treewidth of a graph class G to be the minimum non-negative integer c such that, for some function f , for
every graphG ∈ G there is a graphH with tw(H)� c such thatG is isomorphic to a subgraph ofH �Kf (tw(G)).
We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any
graph class. Using this result, we prove that the class of planar graphs has underlying treewidth 3; the
class ofKs,t-minor-free graphs has underlying treewidth s (for t�max{s, 3}); and the class ofKt-minor-free
graphs has underlying treewidth t − 2. In general, we prove that a monotone class has bounded underlying
treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth
of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class
of graphs with no H subgraph has bounded underlying treewidth if and only if every component of H
is a subdivided star, and that the class of graphs with no induced H subgraph has bounded underlying
treewidth if and only if every component of H is a star.
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1. Introduction
Graph product structure theory describes complicated graphs as subgraphs of strong products1 of
simpler building blocks. The building blocks typically have bounded treewidth, which is the stan-
dard measure of how similar a graph is to a tree. Examples of graph classes that can be described
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1The strong product of graphs A and B, denoted by A� B, is the graph with vertex-set V(A)×V(B), where distinct vertices

(v, x), (w, y) ∈V(A)×V(B) are adjacent if v=w and xy ∈ E(B), or x= y and vw ∈ E(A), or vw ∈ E(A) and xy ∈ E(B).
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this way include planar graphs [29, 73], graphs of bounded Euler genus [23, 29], graphs excluding
a fixed minor [29], and various non-minor-closed classes [31, 41]. These results have been the
key to solving several open problems regarding queue layouts [29], nonrepetitive colouring [28],
p-centered colouring [25], adjacency labelling [27, 36], twin-width [3, 11], and comparable box
dimension [33].

This paper shows that graph product structure theory can even be used to describe graphs of
bounded treewidth in terms of simpler graphs. Here the building blocks are graphs of smaller
treewidth and complete graphs of bounded size. For example, a classical theorem by the referee
of [19] can be interpreted as saying that every graph G of treewidth k and maximum degree � is
contained2 in T �KO(k�) for some tree T.

This result motivates the following definition. The underlying treewidth of a graph class G is
the minimum c ∈N0 such that, for some function f , for every graph G ∈ G there is a graphH with
tw(H)� c such that G is contained in H �Kf (tw(G)). If there is no such c, then G has unbounded
underlying treewidth.We call f the treewidth-binding function. For example, the above-mentioned
result in [19] says that any graph class with bounded degree has underlying treewidth at most 1
with treewidth-binding function O(k).

This paper introduces disjointed coverings of graphs and shows that they are intimately related
to underlying treewidth; see Section 3. Indeed, we show that disjointed coverings characterise the
underlying treewidth of any graph class (Theorem 11). The remainder of the paper uses disjointed
coverings to determine the underlying treewidth of several graph classes of interest, with a small
treewidth-binding function as a secondary goal.

Minor-closed classes:We prove that every planar graph of treewidth k is contained inH �KO(k2)
where H is a graph of treewidth 3. Moreover, this bound on the treewidth of H is best possible.
Thus the class of planar graphs has underlying treewidth 3 (Theorem 21). We prove the following
generalisations of this result: the class of graphs embeddable on any fixed surface has underly-
ing treewidth 3 (Theorem 22); the class of Kt-minor-free graphs has underlying treewidth t − 2
(Theorem 18); and for t�max{s, 3} the class of Ks,t-minor-free graphs has underlying treewidth
s (Theorem 19). In all these results, the treewidth-binding function is O(k2) for fixed s and t.

Monotone classes: We characterise the monotone graph classes with bounded underlying
treewidth. We show that a monotone graph class G has bounded underlying treewidth if and only
if G excludes some fixed topological minor (Theorem 28). In particular, we show that for t� 5
the class of Kt-topological-minor-free graphs has underlying treewidth t (Theorem 25). The char-
acterisation for monotone classes has immediate consequences. For example, it implies that the
class of 1-planar graphs has unbounded underlying treewidth. On the other hand, for any k ∈N,
we show that the class of outer k-planar graphs has underlying treewidth 2 (Theorem 46), which
generalises the well-known fact that outerplanar graphs have treewidth 2.

We use our result for disjointed coverings to characterise the graphs H for which the class
of H-free graphs has bounded underlying treewidth. In particular, the class of H-free graphs
has bounded underlying treewidth if and only if every component of H is a subdivided star
(Theorem 29). For specific graphs H, including paths and disjoint unions of paths, we precisely
determine the underlying treewidth of the class of H-free graphs.

Hereditary classes: We characterise the graphs H for which the class of graphs with no induced
subgraph isomorphic toH has bounded underlying treewidth. The answer is precisely when every
component of H is a star, in which case the underlying treewidth is at most 2. Moreover, we
characterise the graphs H for which the class of graphs with no induced subgraph isomorphic to
H has underlying treewidth 0, 1 or 2 (Theorem 38).

Universal graphs: A graph U is universal for a graph class G if U ∈ G and U contains every
graph in G. This definition is only interesting when considering infinite graphs. For each k ∈N

2A graph G is contained in a graph X if G is isomorphic to a subgraph of X.
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there is a universal graph Tk for the class of countable graphs of treewidth k. Huynh, Mohar,
Šámal, Thomassen, and Wood [42] gave an explicit construction for Tk, and showed how prod-
uct structure theorems for finite graphs lead to universal graphs. Their results imply that for any
hereditary class G of countable graphs, if the class of finite graphs in G has underlying treewidth
c with treewidth-binding function f , then every graph in G of treewidth at most k is contained
in Tc � Kf (k). This result is applicable to all the classes above. For example, every countable
Kt-minor-free graph of treewidth k is contained in Tt−2 �KO(k2).

The definition of underlying treewidth suggests an underlying version of any graph parame-
ter. An extended version of this paper [12] explores this idea, focusing on underlying chromatic
number. It also includes details of some straightforward proofs omitted from this version.

The rest of this paper is organised as follows. Section 2 introduces some standard structural
graph theory notions that will be useful. Section 3 presents disjointed coverings, our main techni-
cal tool that characterises underlying treewidth. Section 4 defines two graphs that provide lower
bounds on the underlying treewidth of many graph classes. Sections 5–8 address the underly-
ing treewidth of graph classes defined by excluded minors, topological minors, subgraphs, and
induced subgraphs, respectively. Finally, Section 9 considers graphs defined by their drawings.

2. Preliminaries
2.1. Basic definitions
See [17] for graph-theoretic definitions not given here. We consider simple, finite, undirected
graphs G with vertex-set V(G) and edge-set E(G). A graph class is a collection of graphs closed
under isomorphism. A graph class is hereditary if it is closed under taking induced subgraphs. A
graph class is monotone if it is closed under taking subgraphs. A graph H is a minor of a graph G
if H is isomorphic to a graph obtained from a subgraph of G by contracting edges. A graph G is
H-minor-free ifH is not a minor of G. A graph class G isminor-closed if every minor of each graph
in G is also in G.

The class of planar graphs is minor-closed. More generally, the class of graphs embeddable on a
given surface (that is, a closed compact 2-manifold) is minor-closed. The Euler genus of a surface
with h handles and c cross-caps is 2h+ c. The Euler genus of a graph G is the minimum g ∈N0
such that there is an embedding of G in a surface of Euler genus g; see [56] for more about graph
embeddings in surfaces. A graph is linklessly embeddable if it has an embedding in R3 with no
two linked cycles; see [66] for a survey and precise definitions. The class of linklessly embeddable
graphs is also minor-closed.

A graph G̃ is a subdivision of a graph G if G̃ can be obtained from G by replacing each edge
vw by a path Pvw with endpoints v and w (internally disjoint from the rest of G̃). If each Pvw has t
internal vertices, then G̃ is the t-subdivision of G. If each Pvw has at most t internal vertices, then G̃
is a (� t)-subdivision of G. A graph H is a topological minor of G if a subgraph of G is isomorphic
to a subdivision of H. A graph G is H-topological-minor-free if H is not a topological minor of G.

A clique in a graph is a set of pairwise adjacent vertices. Let ω(G) be the size of the largest clique
in a graph G. An independent set in a graph is a set of pairwise non-adjacent vertices. Let α(G) be
the size of the largest independent set in a graph G. Let χ(G) be the chromatic number of G. Note
that |V(G)|� χ(G)α(G). A graph G is d-degenerate if every non-empty subgraph of G has a vertex
of degree at most d. A greedy algorithm shows that χ(G)� d + 1 for every d-degenerate graph G.

Let Pn be the n-vertex path. For a graph G and � ∈N, let �G be the union of � vertex-disjoint
copies of G. Let Ĝ be the graph obtained from G by adding one dominant vertex.

Let N := {1, 2, . . . } and N0 := {0, 1, . . . }. All logarithms in this paper are binary.

2.2. Tree-decompositions
For a tree T, a T-decomposition of a graphG is a collectionW = (Wx : x ∈V(T)) of subsets ofV(G)
indexed by the nodes of T such that (i) for every edge vw ∈ E(G), there exists a node x ∈V(T) with

https://doi.org/10.1017/S0963548323000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000457


354 R. Campbell et al.

v,w ∈Wx; and (ii) for every vertex v ∈V(G), the set {x ∈V(T) : v ∈Wx} induces a (connected)
subtree of T. Each set Wx in W is called a bag. The width of W is max{|Wx| : x ∈V(T)} − 1. A
tree-decomposition is a T-decomposition for any tree T. The treewidth tw(G) of a graph G is the
minimum width of a tree-decomposition of G. Treewidth is the standard measure of how similar
a graph is to a tree. Indeed, a connected graph has treewidth 1 if and only if it is a tree. Treewidth is
of fundamental importance in structural and algorithmic graph theory; see [6, 40, 62] for surveys.

We use the following well-known facts about treewidth. Every (topological) minorH of a graph
G satisfies tw(H)� tw(G). In every tree-decomposition of a graph G, each clique of G appears in
some bag. Thus tw(G)�ω(G)− 1 and tw(Kn)= n− 1. If {v1, . . . , vk} is a clique in a graph G1
and {w1, . . . ,wk} is a clique in a graph G2, and G is the graph obtained from the disjoint union of
G1 and G2 by identifying vi and wi for each i ∈ {1, . . . , k}, then tw(G)=max{tw(G1), tw(G2)}. For
any graph G, we have tw(Ĝ)= tw(G)+ 1 and tw(�G)= tw(G) for any � ∈N, implying tw(�̂G)=
tw(G)+ 1. Finally, every graph G is tw(G)-degenerate, implying χ(G)� tw(G)+ 1.

2.3. Partitions
To describe our main results in Section 1, it is convenient to use the language of graph prod-
ucts. However, to prove our results, it is convenient to work with the equivalent notion of graph
partitions, which we now introduce.

For graphs G and H, an H-partition of G is a partition (Vx : x ∈V(H)) of V(G) indexed by the
nodes ofH, such that for every edge vw ofG, if v ∈Vx andw ∈Vy, then x= y or xy ∈ E(H). We say
thatH is the quotient of such a partition. Thewidth of such anH-partition is max{|Vx| : x ∈V(H)}.
For c ∈N0, an H-partition where tw(H)� c is called a c-tree-partition. The c-tree-partition-width
of a graph G, denoted tpwc(G), is the minimum width of a c-tree-partition of G.

It follows from the definitions that a graph G has an H-partition of width at most � if and only
if G is contained in H �K�. Thus, tpwc(G) equals the minimum � ∈N0 such that G is contained
in H �K� for some graph H with tw(H)� c. Hence, the underlying treewidth of a graph class G
equals the minimum c ∈N0 such that, for some function f , every graphG ∈ G has c-tree-partition-
width at most f (tw(G)). We henceforth use this as our working definition of underlying treewidth.

If a graph G has an H-partition for some graph H of treewidth c, then we may assume that
H is edge-maximal of treewidth c. So H is a c-tree (which justifies the ‘c-tree-partition’ terminol-
ogy). Such graphsH are chordal. Chordal partitions are well studied with several applications [42,
63, 68, 74, 75]. For example, van den Heuvel and Wood [75] proved that every Kt-minor-free
graph has a (t − 2)-tree-partition in which each part induces a connected subgraph with maxi-
mum degree at most t − 2 (amongst other properties). Our results give chordal partitions with
bounded-size parts (for graphs of bounded treewidth).

Before continuing, we review work on the c= 1 case. A tree-partition is a T-partition for
some tree T. The tree-partition-width3 of G, denoted by tpw(G), is the minimum width of a
tree-partition of G. Thus tpw(G)= tpw1(G), which equals the minimum � ∈N0 for which G is
contained in T �K� for some tree T. Tree-partitions were independently introduced by Seese [69]
and Halin [39], and have since been widely investigated [7, 8, 19, 20, 24, 34, 76, 77]. Applications
of tree-partitions include graph drawing [13, 16, 30, 32, 80], nonrepetitive graph colouring [2],
clustered graph colouring [1], monadic second-order logic [51], network emulations [4, 5, 9, 37],
size Ramsey number [26, 43], statistical learning theory [81], and the edge-Erdős-Pósa property
[14, 38, 60]. Planar-partitions and other more general structures have also been studied [18, 21,
22, 63, 80].

Bounded tree-partition-width implies bounded treewidth, as noted by Seese [69]. This fact
easily generalises for c-tree-partition-width; see [12] for a proof.

3Tree-partition-width has also been called strong treewidth [8, 69].
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Figure 1. A disjointed partition with c= 2, where non-edges are dashed.

Observation 1. For every graph G and c ∈N0, we have tw(G)� (c+ 1)tpwc(G)− 1.

Of course, tw(T)= tpw(T)= 1 for every tree T. But in general, tpw(G) can be much larger than
tw(G). For example, fan graphs on n vertices have treewidth 2 and tree-partition-width�(

√
n); see

Lemma 12 below. On the other hand, the referee of [19] showed that if the maximum degree and
treewidth are both bounded, then so is the tree-partition-width, which is one of the most useful
results about tree-partitions.

Lemma 2 ([19]). For k,� ∈N, every graph of treewidth less than k and maximum degree at most
� has tree-partition-width at most 24k�.

This bound is best possible up to the multiplicative constant [77]. Note that bounded max-
imum degree is not necessary for bounded tree-partition-width (for example, stars). Ding
and Oporowski [20] characterised graph classes with bounded tree-partition-width in terms
of excluded topological minors. We give an alternative characterisation, which says that graph
classes with bounded tree-partition-width are exactly those that have bounded treewidth and
satisfy a further ‘disjointedness’ condition. Furthermore, this result naturally generalises for
c-tree-partition-width and thus for underlying treewidth.

3. Disjointed coverings
This section introduces disjointed coverings and shows that they can be used to characterise
bounded c-tree-partition-width and underlying treewidth (Theorem 11). On a high level, dis-
jointed coverings are simply a weakening of c-tree-partitions. As such, they are often easier to
construct than c-tree-partitions. This is important since disjointed coverings can in fact be used
to construct c-tree-partitions (Lemma 8).

Here is the intuition behind disjointed coverings. An important property of any c-tree G is
that for any set S of c+ 1 vertices and any component X of G− S, there is a set Q of at most c
vertices in X such that no component of X −Q is adjacent to all of S. Given a c-tree-partition of a
graph, an analogous property holds for the parts of the partition. Weakening this property slightly
and allowing the parts of the partition to overlap leads to the following definition of disjointed
coverings.

An �-covering of a graph G is a set β ⊆ 2V(G) such that |B|� � for every B ∈ β , and ∪{B : B ∈
β} =V(G).4 If B1 ∩ B2 =∅ for all distinct B1, B2 ∈ β , then β is an � -partition. As illustrated in
Figure 1, an �-covering β of a graph G is (c, d) -disjointed if for every c-tuple (B1, . . . , Bc) ∈ βc

and every component X of G− (B1 ∪ · · · ∪ Bc) there exists Q⊆V(X) with |Q|� d such that for
each component Y of X −Q, for some i ∈ {1, . . . , c} we have V(Y)∩NG

(
B′
i
) =∅, where B′

i :=
Bi \ (B1 ∪ · · · ∪ Bi−1). Note that we can take Q=∅ if some B′

i =∅, since NG(∅)=∅.
Let β be an �-covering of a graph G. For t ∈N, let β[t] := {⋃ B : B ⊆ β , |B|� t}. So β[t] is

a t�-covering of G. For a function f :N→R+ we say that β is (c, f )-disjointed if β[t] is (c, f (t))-
disjointed for every t ∈N.

4Our definition of �-covering differs from the standard usage where it refers to a covering in which each element of the
ground set is covered � times.
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While (c, d)-disjointed coverings are conceptually simpler than (c, f )-disjointed coverings, we
show they are roughly equivalent (Theorem 4). Moreover, (c, f )-disjointed coverings are essential
for the main proof (Lemma 8) and give better bounds on the c-tree-partition-width, leading to
smaller treewidth-binding functions when determining the underlying treewidth of several graph
classes of interest (for Kt-minor-free graphs for example).

Note that we often consider the singleton partition β := {{v} : v ∈V(G)} of a graph G, which is
(c, f )-disjointed if and only if, for every t ∈N, every t-partition of G is (c, f (t))-disjointed.

This section characterises c-tree-partition-width in terms of (c, d)-disjointed coverings (or par-
titions) and (c, f )-disjointed coverings (or partitions). The following observation deals with the
c= 0 case.

Observation 3. The following are equivalent for any graph G and d ∈N:

(a) G has a (0, d)-disjointed covering;
(b) every covering of G is (0, d)-disjointed;
(c) each component of G has at most d vertices;
(d) G has 0-tree-partition-width at most d.

Observation 3 implies that a graph class G has underlying treewidth 0 if and only if there is a
function f such that every component of every graph G ∈ G has at most f (tw(G)) vertices.

We prove the following characterisation of bounded c-tree-partition-width (which is new even
in the c= 1 case).

Theorem 4. For fixed c ∈N0, the following are equivalent for a graph class G with bounded
treewidth:

(a) G has bounded c-tree-partition-width;
(b) for some d, � ∈N, every graph in G has a (c, d)-disjointed �-partition;
(c) for some d, � ∈N, every graph in G has a (c, d)-disjointed �-covering;
(d) for some � ∈N and function f , every graph in G has a (c, f )-disjointed �-partition;
(e) for some � ∈N and function f , every graph in G has a (c, f )-disjointed �-covering.

Proof. Observation 3 handles the c= 0 case. Now assume that c� 1. Lemma 6 below says that (a)
implies (b). Since every �-partition is an �-covering, (b) implies (c), and (d) implies (e). Lemma 5
below says that (c) implies (d). Finally, Lemma 8 below says that (e) implies (a). �

By definition, every (c, f )-disjointed �-covering is (c, f (1))-disjointed. The next lemma gives a
qualitative converse to this.

Lemma 5. Let �, c, d ∈N, and let β be a (c, d)-disjointed �-covering of a graph G. Then β is (c, f )-
disjointed, where f (t) := dtc for each t ∈N.

Proof. Fix t ∈N. Let B1, . . . , Bc ∈ β[t]. Let X be a component of G− (B1 ∪ · · · ∪ Bc). For each i ∈
{1, . . . , c}, let Bi be a set of at most t elements of β whose union is Bi. LetF := B1 × · · · × Bc, and
for each y= (A1, . . . ,Ac) ∈F , define Qy as follows. Let Xy the component of G− (A1 ∪ · · · ∪Ac)
containing X. Since β is (c, d)-disjointed, there exists Qy ⊆V(Xy) of size at most d such that for
every component Y of Xy −Qy there is some i ∈ {1, . . . , c} such that V(Y)∩NG(Ai \ (A1 ∪ · · · ∪
Ai−1))=∅. Now let Q := ⋃

y∈F Qy, and note that |Q|� d|F |� dtc.
Suppose for contradiction that for some component Y of X −Q and each i ∈ {1, . . . , c}, there

is a vertex bi ∈NG(Y)∩ B′
i, where B′

i := Bi \ (B1 ∪ · · · ∪ Bi−1). Let y= (A1, . . . ,Ac) ∈F be such
that (b1, . . . , bc) ∈A1 × · · · ×Ac, and consider that component Y ′ of Xy −Qy containing Y . By
the definition of Qy, there is some i ∈ {1, . . . , c} such that Y ′ contains no neighbour of a vertex
in Ai \ (A1 ∪ · · · ∪Ai−1). In particular, all neighbours of vertices of Y are either vertices of Y ′ or
neighbours of vertices of Y ′, so bi is not a neighbour of any vertex of Y , a contradiction. �
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Now we prove that having a (c, d)-disjointed partition is necessary for bounded c-tree-
partition-width.

Lemma 6. For all c, � ∈N0, every graph G with c-tree-partition-width � has a (c, c�)-disjointed
�-partition.

Proof. By assumption, G has an H-partition β = (Vh : h ∈V(H)) where H is a graph of treewidth
at most c and |Vh|� � for all h. We first show that the singleton partition of H is (c, c)-disjointed.
Let v1, . . . , vc ∈V(H) and let X be a component ofH − {v1, . . . , vc}. Let (Wx : x ∈V(T)) be a tree-
decomposition ofH where |Wx|� c+ 1 for all x ∈V(T).Wemay assume thatWx 
=Wy whenever
x 
= y. For each i ∈ {1, . . . , c}, let Ti be the subtree of T induced by {x ∈V(T) : vi ∈Wx}.

First suppose thatV(Ti)∩V(Tj)=∅ for some i, j ∈ {1, . . . , c}. Let z ∈V(Ti) be the closest node
(in T) to Tj. Let Q := Wz ∩ X. Note that Q⊆Wz \ {vi} so |Q|� c. Any path from vi to vj in H
passes throughWz, so each component of X −Q is disjoint from NH(vi) or NH(vj).

Now assume that V(Ti)∩V(Tj) 
=∅ for all i, j ∈ {1, . . . , c}. Let TX be the subgraph of T
induced by {x ∈V(T) :V(X)∩Wx 
=∅}. Since X is connected, TX is a subtree of T. Suppose
that V(Ti)∩V(TX)=∅ for some i. Since NH(vi)⊆ ⋃

(Wx : x ∈V(Ti)), it follows that NH(vi)∩
V(X)=∅ and so we may take Q := ∅ in this case. Now assume that V(Ti)∩V(TX) 
=∅ for
all i ∈ {1, . . . , c}. By the Helly property, T̃ := T1 ∩ · · · ∩ Tc ∩ TX is a non-empty subtree of T.
For x ∈V(T̃), we have |Wx|� c+ 1 and so Wx = {v1, . . . , vc, u} for some u ∈V(X). First sup-
pose that |V(T̃)|� 2. Then there are adjacent x, y ∈V(T̃) with Wx = {v1, . . . , vc, u} and Wy =
{v1, . . . , vc, v} for u, v ∈V(X). Since Wx 
=Wy, we have u 
= v and thus there is no (u, v)-path in
H − {v1, . . . , vc}, contradicting the connectedness of X. Hence T̃ consists of a single vertex z; thus
Wz = {v1, . . . , vc, u} for some u ∈V(X). Let Q := {u} and consider a component Y of X −Q. Let
TY be the subtree of T induced by {y ∈V(T) :V(Y)∩Wy 
=∅}. Since TY is connected and does
not contain z, it is disjoint from some Ti. As above, NH(vi)∩V(Y)=∅, as required.

We have shown that the singleton partition of H is (c, c)-disjointed. Now focus on G. By
assumption, β is an �-partition of G. Let Vv1 , . . . ,Vvc be parts in β , and let X be a component
of G− (Vv1 ∪ · · · ∪Vvc). Then X ⊆ ⋃{Vh : h ∈ X′} where X′ is a component of H − {v1, . . . , vc}.
Since H is (c, c)-disjointed, there exists Q′ ⊆V(X′) of size at most c such that each component
X′ −Q′ is disjoint from some NH(vi). Let Q := ⋃{Vh : h ∈Q′}, which has size at most c�. Each
component of X −Q is disjoint from some NG(Vvi). �

Note that (c, f )-disjointedness is preserved when restricting to a subgraph.

Lemma 7. If β is a (c, f )-disjointed �-covering of a graph G, then for every subgraph G̃ of G, the
restriction β̃ := {B∩V(G̃) : B ∈ β} is a (c, f )-disjointed �-covering of G̃.

Proof. Fix t ∈N. Let B̃1, . . . , B̃c ∈ β̃[t] and let X̃ be a component of G̃− (
B̃1 ∪ · · · ∪ B̃c

)
. For

each i ∈ {1, . . . , c}, there is a subset Si ⊆ β of size at most t such that B̃i = ⋃
B∈Si (B∩V(G̃)). Let

(B1, . . . , Bc) := (
⋃

S1, . . . ,
⋃

Sc), and let β ′′ be the t�-covering of G given by β ∪ {B1, . . . , Bc}.
Let X be the component of G− (B1 ∪ · · · ∪ Bc) which contains X̃, and for each i ∈ {1, . . . , c}
let B′

i := Bi \ (B1 ∪ · · · ∪ Bi−1). Since β is (c, f )-disjointed, there is a subset Q of V(X) of size
at most f (t) such that each component of X −Q disjoint from NG

(
B′
i
)
for some i ∈ {1, . . . , c}.

Let Q̃ := Q∩V(X̃), and note that |Q̃|� |Q|� f (t). Each component of X̃ − Q̃ is contained in a
component of X −Q, and hence is disjoint from NG̃

(
B̃i \

(
B̃1 ∪ · · · ∪ B̃i−1

)) ⊆NG
(
B′
i
)
for some

i ∈ {1, . . . , c}. Hence β̃ is (c, f )-disjointed. �
The next lemma lies at the heart of the paper.

Lemma 8. Let k, c, � ∈N and f :N→R+. For any graph G, if tw(G)< k and G has a (c, f )-
disjointed �-covering, then G has c-tree-partition-width tpwc(G)�max{12�k, 2c�f (12k)}.
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Figure 2. The graphs F1 and F2 in the case c= 2.

We prove Lemma 8 via the following induction hypothesis.

Lemma 9. Let k, c, � ∈N and let f :N→R+. Let G be a graph of treewidth less than k and let
β ⊆ 2V(G) be a (c, f )-disjointed �-covering of G. Let S1, . . . , Sc−1, R⊆V(G), where Si ∈ β[12k] for
each i ∈ {1, . . . , c− 1} and 4k� |R|� f (12k). Then there exists a c-tree-partition (Vx : x ∈V(H))
of G of width at most W := max{12�k, 2c�f (12k)}, and there exists a c-clique {x1, . . . , xc−1, y} of
H such that Vxi = Si \ (S1 ∪ · · · ∪ Si−1) for each i ∈ {1, . . . , c− 1}, and R \ (S1 ∪ · · · ∪ Sc−1)⊆Vy
with |Vy|� 2�(|R| − 2k).

Proof. We proceed by induction on |V(G)|. Let S := S1 ∪ · · · ∪ Sc−1.

Case 0.V(G)= R∪ S: LetH be the complete graph on vertices x1, . . . , xc−1, y. LetVxi := Si \ (S1 ∪
· · · ∪ Si−1) for each i and let Vy := R. Then (Vx : x ∈V(H)) is a c-tree-partition of G with width
at most W and |Vy| = |R|� 2(|R| − 2k)� 2�(|R| − 2k). From now on assume that G− (R∪ S) is
non-empty.

Case 1. 4k� |R|� 12k: Since β is an �-covering, and |R|� 12k, we can pick Sc ∈ β[12k] such that
R⊆ Sc and |Sc|� �|R|� 2�(|R| − 2k).

Let G1, . . . ,Ga be the connected components of G− (S∪ Sc). For each i ∈ {1, . . . , c}, let S′
i :=

Si \ (S1 ∪ · · · ∪ Si−1). To complete this case, we first prove the following.

Claim 1. For each j ∈ {1, . . . , a}, the subgraph G[V(Gj)∪ S∪ Sc] has a c-tree-partition
(
Vj
h : h ∈

V(Hj)
)
of width at most W such that there is a c-clique K = {x1, . . . , xc} in Hj, where S′

i =Vj
xi for

each i ∈ {1, . . . , c}.
Proof. If |V(Gj)| < 4k, then takeHj to be the complete graph on vertices x1, . . . , xc, zwith the par-
tition Vj

xi := S′
i for i ∈ {1, . . . , c} and Vj

z := V(Gj). Then this gives us the desired c-tree-partition
of G[V(Gj)∪ S∪ Sc]. So assume |V(Gj)|� 4k. Note that β[12k] is a (c, f (12k))-disjointed 12k�-
covering containing S1, . . . , Sc, so there is a subset Q′

j ⊆V(Gj) of size at most f (12k) and there
is a partition {A1, . . . ,Ac} of V

(
Gj −Q′

j
)
such that each Ai is a union of vertex sets of com-

ponents of Gj −Q′
j that do not intersect NG

(
S′
i
)
. Let Qj be a set such that Q′

j ⊆Qj ⊆V(Gj) and
4k� |Qj|� f (12k). As illustrated in Figure 2, consider the subgraph

Fi := G
[
Ai ∪Qj ∪ S1 ∪ · · · ∪ Si−1 ∪ (

Si+1 \ S′
i
) ∪ · · · ∪ (

Sc \ S′
i
)]

= G
[
Ai ∪Qj ∪ S′

1 ∪ · · · ∪ S′
i−1 ∪ S′

i+1 ∪ · · · ∪ S′
c
]
.

By Lemma 7, the restriction of β toV(Fi) is a (c, f )-disjointed �-covering of Fi. Apply induction
to Fi with the sets S1, . . . , Si−1, Si+1 \ S′

i, . . . , Sc \ S′
i in place of the sets S1, . . . , Sc−1 and the set Qj

in the place of R. For each i ∈ {1, . . . , c}, this gives a graph Li of treewidth at most c containing a
c-clique {x1, . . . , xi−1, xi+1, . . . , xc, y} such that Fi has an Li-partition

(
Vj,i
x : x ∈V(Li)

)
withVj,i

xm =
S′
m for allm ∈ {1, . . . , i− 1, i+ 1, . . . , c} and Qj \

(
(S∪ Sc) \ S′

i)
) ⊆Vj,i

y where

|Vj,i
y |� 2�(|Qj| − 2k)� 2�f (12k).
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Let L+
i be Li together with a vertex xi adjacent to the clique {x1, . . . , xi−1, xi+1, . . . , xc, y}. So

tw(L+
i )� c. SetVj,i

xi := S′
i. Then L

+
i contains the (c+ 1)-cliqueK+ := {x1, . . . , xc, y} and

(
Vj,i
h : h ∈

V(L+
i )

)
is an L+

i -partition of G[Ai ∪Qj ∪ S∪ Sc]. Now we may assume that V(L+
1 ), . . . ,V(L+

c )
pairwise intersect in exactly the clique K+. Let Hj := L+

1 ∪ · · · ∪ L+
c . Since each L+

i has treewidth
at most c, so does Hj. For x /∈K+, set Vj

x := Vj,i
x for the unique i for which x ∈V(L+

i ), for
i ∈ {1, . . . , c} set Vj

xi := S′
i, and set Vj

y := ⋃
i∈{1,...,c} V

j,i
y . Since |Vj

y|� 2c�f (12k), the partition(
Vj
x : x ∈V(Hj)

)
has width at mostW. Setting K := {x1 . . . , xc}, the claim follows. �

We may assume that V(H1), . . . ,V(Ha) pairwise intersect in exactly the clique K. Let H :=
H1 ∪ . . . ∪Ha. For x ∈V(H), setting Vx := Vj

x if x ∈V(Hj) is well defined, and yields an H-
partition (Vh : h ∈V(H)) of G. Since eachHi has treewidth at most c, so doesH. Let y := xc. Then
R \ S⊆ S′

c =Vy, and, as noted at the start of this case, |Vy| = |S′
c|� |Sc|� 2�(|R| − 2k). Hence, the

width of this partition is at mostW, as required.

Case 2. 12k< |R|� f (12k): Since tw(G)< k, by the separator lemma of Robertson and Seymour
[65, (2.6)], there is a partition (A, B, C) ofV(G) with no edges between A and B, where |C|� k and
|A∩ R|, |B∩ R|� 2

3 |R \ C|. Let G1 := G[A∪ C] and G2 := G[B∪ C]. Let R1 := (R∩A)∪ C and
R2 := (R∩ B)∪ C. Since |R|� 12k,

|R1| = |A∩ R| + |C|� 2
3 |R| + k< |R| and

|R1|� |R| − |B∩ R|� |R| − 2
3 |R \ C|� 1

3 |R|� 4k.
Hence, 4k� |R1|� f (12k) and similarly 4k� |R2|� f (12k). Also |V(G)−V(G1)| = |B|�

|R2| − |C|� 4k− k> 0, so |V(G1)| < |V(G)| and likewise for G2. Fix j ∈ {1, 2}. Let βj be the
restriction of β toV(Gj). By Lemma 7, βj is a (c, f )-disjointed �-covering ofGj. Let S

j
i := Si ∩V(Gj)

for each i ∈ {1, . . . , c− 1}; note that each set Sji is a union of at most 12k elements of βj.
Apply induction to Gj with Sji in place of Si and Rj in place of R. Thus, there is a graph Hj of

treewidth at most c, a c-clique {x1, . . . , xc−1, y} ofHj, and anHj-partition (Vj
x : x ∈V(Hj)) of Gj of

width at most W such that Vj
xi = Sji \

(
Sj1 ∪ · · · ∪ Sji−1

)
for each i and Rj \

(
Sj1 ∪ · · · ∪ Sjc−1

) ⊆Vj
y

with |Vy|� 2�(|Rj| − 2k). We may assume that the intersection of V(H1) and V(H2) is equal to
the clique K := {x1, . . . , xc−1, y}. Let H be the union of H1 and H2 and consider the H-partition
(Vx : x ∈V(H)) of G given by Vx := Vj

x for x ∈V(Hj) \V(H3−j) and Vx := V1
x ∪V2

x for x ∈K. As
H1 and H2 both have treewidth at most c, so does H.

Now {x1, . . . , xc−1, y} is a c-clique, Vxi = Si \ (S1 ∪ · · · ∪ Si−1) and R \ S⊆Vy with

|Vy| � |V1
y | + |V2

y | � 2�(|R1| + |R2| − 4k) � 2�(|R| + 2|C| − 4k) � 2�(|R| − 2k).

The other parts do not change and so we have the desired H-partition of G. �
We are now ready to prove Lemma 8.

Proof of Lemma 8. Let β be a (c, f )-disjointed �-covering of G. If |V(G)| < 4k, then the triv-
ial partition {V(G)} satisfies the claim. Otherwise |V(G)|� 4k. Let R⊆V(G) with |R| = 4k. Let
S1, . . . , Sc−1 be arbitrary elements of β . Since β is an �-covering, |Si|� �� 12�k for each i. Now
Lemma 8 follows from Lemma 9. �

Lemmas 5 and 8 imply the following result:

Corollary 10. Let k, c, d, � ∈N. For any graph G, if tw(G)< k and G has a (c, d)-disjointed
�-covering, then G has c-tree-partition-width tpwc(G)� 2cd�(12k)c.

Note that the singleton partition of any graph with maximum degree � is (1,�)-disjointed.
So Corollary 10 with c= � = 1 and d = � implies Lemma 2 (even with the same constant 24).
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Indeed, the proof of Lemma 8 in the case of graphs with bounded degree is equivalent to the proof
of Lemma 2.

To conclude this section, Lemmas 6 and 8 imply the following characterisation of underlying
treewidth.

Theorem 11. The underlying treewidth of a graph class G equals the minimum c ∈N0 such that, for
some function g :N→N, every graph G ∈ G has a (c, g(tw(G)))-disjointed g(tw(G))-partition.

4. Lower bounds
We now define two graphs that provide lower bounds on the underlying treewidth of various
graph classes. Recall that �̂G is the graph obtained from � disjoint copies of a graph G by adding
one dominant vertex. For c, � ∈N, define graphs Gc,� and Cc,� recursively as follows. First, G1,� :=
P�+1 is the path on � + 1 vertices, and C1,� := K1,� is the star with � leaves. Further, for c� 2, let
Gc,� := ̂�Gc−1,� and Cc,� := �̂ Cc−1,�. Note that Cc,� is the closure of the rooted complete �-ary
tree of height c. Here, the closure of rooted tree T is the graph G with V(G)=V(T) and vw ∈ E(G)
whenever v is an ancestor of w or w is an ancestor of v.

The next lemma collects together some useful and well-known properties of Gc,� and Cc,�.

Lemma 12. For all c, � ∈N,

(i) tw(Gc,�)= tw(Cc,�)= c;
(ii) for any �-partition of G ∈ {Gc,�, Cc,�}, there is a (c+ 1)-clique in G whose vertices are in

distinct parts;
(iii) Gc,� and Cc,� both have (c− 1)-tree-partition-width greater than �;
(iv) G2,� is outerplanar, G3,� is planar, G4,� is linklessly embeddable;
(v) Gc,� is Kc,max{c,3}-minor-free;
(vi) Cc,� does not contain P4 as an induced subgraph;
(vii) Cc,� does not contain Pn as a subgraph for n� 2c+1.

Proof. Since tw(�̂G)= tw(G)+ 1 for any graph G and � ∈N, part (i) follows by induction.
We establish (ii) by induction on c. In the case c= 1, every �-partition of P�+1 or K1,� contains

an edge whose endpoints are in different parts, and we are done. Now assume the claim for c− 1
(c� 2) and let G ∈ {Gc−1,�, Cc−1,�}. Consider an �-partition of �̂G. At most � − 1 copies of G
contain a vertex in the same part as the dominant vertex v. Thus, some copy G0 of G contains no
vertices in the same part as v. By induction, G0 contains a c-clique K whose vertices are in distinct
parts. Since v is dominant, K ∪ {v} satisfies the induction hypothesis.

Let G ∈ {Gc,�, Cc,�}. Consider an H-partition of G of width at most �. By (ii), G contains a
(c+ 1)-clique whose vertices are in distinct parts. So ω(H)� c+ 1, implying tw(H)� c. This
establishes (iii).

Observe that G2,� is outerplanar (called a fan graph). The disjoint union of outerplanar graphs
is outerplanar and the graph obtained from any outerplanar graph by adding a dominant vertex is
planar; thus G3,� is planar. The disjoint union of planar graphs is planar, and the graph obtained
from any planar graph by adding a dominant vertex is linklessly embeddable; thusG4,� is linklessly
embeddable. This proves (iv).

We next show that Gc,� is Kc,max{c,3}-minor-free. G1,� is a path and so has no K1,3-minor. G2,� is
outerplanar and so has no K2,3-minor. Let c� 3 and assume the result holds for smaller c. Suppose
that Gc,� contains a Kc,c-minor. Since Kc,c is 2-connected, some copy of Gc−1,� in Gc,� contains a
Kc−1,c-minor. This contradiction establishes (v).

We show that Cc,� contains no induced P4 by induction on c. First, C1,� =K1,� does not contain
P4. Next, suppose that Cc−1,� does not contain an induced P4. P4 does not have a dominant vertex
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and so any induced P4 in Cc,� must lie entirely within one copy of Cc−1,�. In particular, Cc,� does
not contain an induced P4. This proves (vii).

Finally, Nešetřil and Ossona de Mendez [57] proved (vii). �
The underlying treewidth of the class of graphs of treewidth at most k is obviously at most k.

Lemma 12 (i) and (iii) imply the following.

Corollary 13. The underlying treewidth of the class of graphs of treewidth at most k equals k.

Corollary 14. The classes {Gc,� : c, � ∈N} and {Cc,� : c, � ∈N} both have unbounded underlying
treewidth.

Proof. Suppose that {Gc,� : c, � ∈N} has underlying treewidth b. Thus, for some function f , for
all c, � ∈N, we have tpwb(Gc,�)� f (tw(Gc,�))= f (c). In particular, with c := b+ 1 and � := f (c),
we have tpwc−1(Gc,�)� �, which contradicts Lemma 12 (iii). The proof for {Cc,� : c, � ∈N} is
analogous. �

The graphsGc,� andCc,� are common in the graph-theory literature, and are particularly impor-
tant for clustered colouring [35, 44, 58, 75], as we now explain. In an (improperly) vertex-coloured
graph, amonochromatic component is a connected component of the subgraph induced by all the
vertices of one colour. A graph G is c-colourable with clustering � if each vertex can be assigned
one of c colours such that each monochromatic component has at most � vertices. The clustered
chromatic number of a graph class G is the minimum c ∈N such that, for some � ∈N, every graph
in G has a c-colouring with clustering �. See [79] for a survey on clustered graph colouring. Note
that a graph G is c-colourable with clustering � if and only if G is contained in H �K� for some
graph H with χ(H)� c.

Consider a graph class G with underlying treewidth c, where every graph in G has treewidth
at most k. Thus every graph G ∈ G is contained in H �K� for some graph H with tw(H)� c,
where � := max{f (0), . . . , f (k)} and f is from the definition of underlying treewidth. Sinceχ(H)�
tw(H)+ 1 for every graph H, it follows that G has clustered chromatic number at most c+ 1.
This means that lower bounds on the clustered chromatic number of a graph class with bounded
treewidth provide lower bounds on the underlying treewidth of the class. In particular, it is known
that Gc,� and Cc,� are not c-colourable with clustering � (see [79]), which implies Lemma 12 (iii)
by the above connection. See [58] for more examples of graphs G that are not c-colourable with
clustering �, implying tpwc−1(G)> �.

5. Excluding a minor
This section uses disjointed partitions to determine the underlying treewidth of several minor-
closed classes of interest.

The next definition enables Kt-minor-free graphs and Ks,t-minor-free graphs to be handled
simultaneously. For s, t ∈N, let Ks,t be the class of graphs G for which there is a partition {A, B}
of V(G) such that |A| = s and |B| = t; vw ∈ E(G) for all v ∈A and w ∈ B; and G[B] is connected.
Obviously, every graph in Ks,t contains Ks,t . Similarly, we obtain Kt as a minor of any G ∈Kt−2,t
by contracting a matching between A and B of size t − 2 whose end-vertices are distinct from the
end-vertices of some edge of G[B].

Lemma 15. Let G be a graph with no minor in Ks,t . Assume {A, B} is a partition of V(G) such that
G[B] is connected and every vertex in B has at least s neighbours in A. Then |B|� δ|A| for some
δ = δ(s, t).

Proof. The following proof technique is well-known [53, 59]. Assign vertices in B to pairs of ver-
tices in A as follows. Initially, no vertices in B are assigned. If there is an unassigned vertex v ∈ B
adjacent to distinct vertices x, y ∈A and no vertex in B is already assigned to {x, y}, then assign
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v to {x, y}. Repeat this operation until no more vertices in B can be assigned. Let B1 and B2 be
the sets of assigned and unassigned vertices in B, respectively. Let G′ be the graph obtained from
G[A∪ B1] by contracting vx into x, for each vertex v ∈ B1 assigned to {x, y}. Thus G′ is a minor
of G with V(G′)=A and |E(G′)|� |B1|. For each vertex v ∈ B2, the set NG(v)∩A is a clique in G′
(otherwise v would have been assigned to a pair of non-adjacent neighbours) of size at least s. For
each s-clique C in G′, there are at most t − 1 vertices v ∈ B2 with C ⊆NG(v), otherwise G has a
minor in Ks,t (since G[B] is connected). Since G′ has no minor in Ks,t , we have |E(G′)|� δ|A| for
some δ = δ(s, t); see [45–50, 61, 71, 72] for explicit bounds on δ. Thus |B1|� δ|A|. Moreover, G′
is 2δ-degenerate. Every d-degenerate graph on n vertices has at most

( d
s−1

)
n cliques of order s [78,

Lemma 18]. Thus |B2|� (t − 1)
( 2δ
s−1

)|A|. Hence |B| = |B1| + |B2|�
(
δ + (t − 1)

( 2δ
s−1

))|A|. �
The following Erdős–Pósa type result is useful for showing disjointedness. It follows from well-

known results in the literature; see [12] for details.

Lemma 16. Let H be a set of connected subgraphs of a graph G. Then, for every non-negative inte-
ger �, either there are � + 1 vertex-disjoint graphs in H or there is a set Q⊆V(G) of size at most
�(tw(G)+ 1) such that G−Q contains no graph ofH.

Lemma 17. For fixed s, t ∈N, every graph G with no minor in Ks,t and of treewidth k has s-tree-
partition-width O(k2).

Proof. By Lemma 8 it suffices to show that the singleton partition of G is (s, f )-disjointed, where
f (n) := δsn(k+ 1) and δ := δ(s, t) from Lemma 15. Let S1, . . . , Ss be subsets of V(G) of size at
most n, let S := S1 ∪ · · · ∪ Ss, and for each i ∈ {1, . . . , s} let S′

i := Si \ (S1 ∪ · · · ∪ Si−1). Let X be a
connected component of G− S. Let H be the set of connected subgraphs H of X such that H ∩
N

(
S′
i
) 
=∅ for each i ∈ {1, . . . , s}. Say R is a maximum-sized set of pairwise disjoint subgraphs

in H. We may assume that
⋃{V(R) : R ∈R} =V(X). Let X′ be the graph obtained from G[S∪

V(X)] by contracting each subgraph R ∈R into a vertex vR. So V(X′)= S∪ {vR : R ∈R}. Since X
is connected, {vR : R ∈R} induces a connected subgraph of X′. By construction, in X′, each vertex
vR has at least s neighbours in S. By Lemma 15, |R|� δ|S|. By Lemma 16, there is a set Q⊆V(X)
of size at most δ|S|(k+ 1)� f (n) such that X −Q contains no graph inH. Thus each component
Y of X −Q satisfies V(Y)∩NG

(
S′
i
) =∅ for some i ∈ {1, . . . , s}. Hence, the singleton partition of

G is (s, f )-disjointed. �
We now determine the underlying treewidth of Kt- and Ks,t-minor-free graphs.

Theorem 18. For fixed t ∈N with t� 2, the underlying treewidth of the class of Kt-minor-free
graphs equals t − 2. In particular, every Kt-minor-free graph of treewidth k has (t − 2)-tree-
partition-width O(k2).

Proof. Since Kt is a minor of every graph in Kt−2,t , Lemma 17 implies that every Kt-minor-free
graph of treewidth k has (t − 2)-tree-partition-width O(k2). Thus the underlying treewidth of the
class of Kt-minor-free graphs is at most t − 2. Suppose for contradiction that equality does not
hold. That is, for some function f , every Kt-minor-free graph G has (t − 3)-tree-partition-width
at most f (tw(G)). Let � := f (t − 2). The graph Gt−2,� in Lemma 12 has treewidth t − 2 and is thus
Kt-minor-free. However, by Lemma 12, tpwt−3(Gt−2,�)> � = f (t − 2)= f (tw(Gt−2,�)), which is
the required contradiction. �
Theorem 19. For fixed s, t ∈N with t�max{s, 3}, the underlying treewidth of the class of Ks,t-
minor-free graphs equals s. In particular, every Ks,t-minor-free graph G of treewidth k has s-tree-
partition-width O(k2).

Proof. Since Ks,t is a subgraph of every graph in Ks,t , Lemma 17 implies that every Ks,t-minor-
free graph G of treewidth k has s-tree-partition-width O(k2). Thus the underlying treewidth of
the class of Ks,t-minor-free graphs is at most s. Suppose that it is at most s− 1. Thus for some
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function f , every Ks,t-minor-free graph G satisfies tpws−1(G)� f (tw(G)). Let � := f (s). The graph
Gs,� given by Lemma 12 has treewidth s and is Ks,max{s,3}-minor-free, implying it is Ks,t-minor-free
(since t�max{s, 3}). However, by Lemma 12, tpws−1(Gs,�)> � = f (s)= f (tw(Gs,�)), which is the
required contradiction. �

For t� 2, Theorem 19 is improved as follows:

Proposition 20. For s, t ∈N with s� t� 2, the underlying treewidth of the class of Ks,t-minor-free
graphs equals s− 1.

Proof. Every K1,1-minor-free graph G has no edges, and so tpw0(G)� 1. Every K1,2-minor-free
graph G has at most one edge in each component, and so tpw0(G)� 2. Each block of any K2,2-
minor-free graph G is a triangle, an edge or an isolated vertex; so tpw1(G)� 2. �

Since planar graphs are K5- and K3,3-minor-free, Theorem 18 or Theorem 19 imply the next
result (where the lower bound holds since the graph G3,� in Lemma 12 is planar).

Theorem 21. The underlying treewidth of the class of planar graphs equals 3. In particular, every
planar graph of treewidth k has 3-tree-partition-width O(k2).

It follows from Euler’s formula that every graph with Euler genus at most g is K3,2g+3-minor-
free. Thus Lemma 12 and Theorem 19 imply the following.

Theorem 22. The underlying treewidth of the class of graphs embeddable on any fixed surface 


equals 3. In particular, every graph embeddable in 
 and of treewidth k has 3-tree-partition-width
O(k2).

Since every linklessly embeddable graph is K6-minor-free and K4,4-minor-free [67],
Theorem 18 or Theorem 19 imply the next result, where the lower bound follows from Lemma 12.

Theorem 23. The underlying treewidth of the class of linklessly embeddable graphs equals 4. In
particular, every linklessly embeddable graph of treewidth k has 4-tree-partition-width O(k2).

It is an open problem to determine the underlying treewidth of a given minor-closed class G.
It is possible that the clustered chromatic number of G equals the underlying treewidth of G plus
1. This is true for any minor-closed class with underlying treewidth at most 1 by results of Norin,
Scott, Seymour, andWood [58] and Ding and Oporowski [20]; see [12]. See [58] for a conjectured
value of the clustered chromatic number of G. It follows from a result of DeVos, Ding, Oporowski,
Sanders, Reed, Seymour, and Vertigan [15] that every minor-closed graph class G with underlying
treewidth c has clustered chromatic number at most 2(c+ 1); see [12].

6. Excluding a topological minor
This section studies the underlying treewidth of graphs classes defined by an excluded topological
minor. We conclude that a monotone graph class has bounded underlying treewidth if and only
if it excludes some fixed topological minor.

Theorem 24. For every fixed multigraph X with p vertices, every X-topological minor-free graph G
of treewidth k has p-tree-partition-width O(k2).

Proof. By Lemma 8 it suffices to show that the singleton partition of G is (p, f )-disjointed, where
f (n) ∈O(kn). To this end, let S1, . . . , Sp be subsets of V(G) of size at most n, let S := S1 ∪ · · · ∪ Sp,
and for each i ∈ {1, . . . , p} let S′

i := Si \ (S1 ∪ · · · ∪ Si−1). We may assume that V(X)= {1, . . . , p}.
Let H be the set of connected subgraphs H of G− S such that V(H)∩NG

(
S′
i
) 
=∅ for each i ∈

{1, . . . , p}.
Consider any set J of pairwise vertex-disjoint graphs inH of maximum size. Assign subgraphs

in J to pairs of vertices in S as follows. Initially, no subgraphs in J are assigned. If there is an
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unassigned subgraphH ∈J adjacent to vertices x ∈ S′
i and y ∈ S′

j, for some distinct i, j ∈ {1, . . . , p},
and no subgraph in J is already assigned to {x, y}, then assign H to {x, y}. Repeat this operation
until no more subgraphs in J can be assigned.

Let J1 and J2 be the sets of assigned and unassigned subgraphs in J respectively. Let G′ be
the graph obtained from G as follows: for each H ∈J1 assigned to {x, y}, contract an (x, y)-path
throughH down to a single edge xy. Delete any remaining vertices not in S. ThusG′ is a topological
minor ofGwithV(G′)= S and |E(G′)|� |J1|. Consider a subgraphH ∈J2. SinceH ∈H there are
neighbours v1, . . . , vp ofH with vi ∈ S′

i for each i ∈ {1, . . . , p}. SinceH ∈J2, the set {v1, . . . , vp} is
a clique in G′ (otherwise H could have been assigned to some non-adjacent vi and vj). Charge H
to (v1, . . . , vp).

Suppose that there is a set J ′ of at least |E(X)| subgraphs in J2 charged to some clique
(v1, . . . , vp) in G′ with vi ∈ S′

i. Label J ′ = {He : e ∈ E(X)}. For e= ij ∈ E(X), let Pe be a (vi, vj)-path
throughHe. Thus {viPevj : e= ij ∈ E(X)} defines an X-topological minor in G with branch vertices
v1, . . . , vp. This contradiction shows that there are fewer than |E(X)| subgraphs in J2 charged to
each clique (v1, . . . , vp) in G′ with vi ∈ S′

i.
SinceG′ is X-topological-minor-free, |E(G′)|� γ |S| for some γ = γ (X); see [10, 70] for explicit

bounds on γ . Thus |J1|� γ |S|. Moreover, G′ is 2γ -degenerate. Every d-degenerate graph on n
vertices has at most

( d
p−1

)
n cliques of order p [78, Lemma 18]. Thus |J2| < |E(X)|( 2γ

p−1
)|S|. Hence

|J | = |J1| + |J2| < (γ + |E(X)|( 2γ
p−1

)
)|S|. Define

f (n) := (k+ 1)
(
γ + |E(X)|( 2γ

p−1
))

np.

Since |S|� pn, by Lemma 16, there is a setQ⊆V(G− S) of size at most f (n) such that no subgraph
of G− (S∪Q) is in H. So every component Y of G− (S∪Q) satisfies Y ∩NG

(
S′
i
) =∅ for some

i ∈ {1, . . . , p}. Hence the singleton partition of G is (p, f )-disjointed. �
Theorem 25. The underlying treewidth of the class of Kt-topological-minor-free graphs equals t − 2
if t ∈ {2, 3, 4} and equals t if t� 5.

Proof. For t ∈ {2, 3, 4}, a graph is Kt-topological-minor-free if and only if it has treewidth at most
t − 2. So the result follows from Corollary 13. Now assume that t� 5.

Theorem 24 implies that the underlying treewidth of the class of Kt-topological-minor-free
graphs is at most t. Suppose for the sake of contradiction that it is at most t − 1. That is, there is
a function f such that every Kt-topological-minor-free graph G has (t − 1)-tree-partition-width
at most f (tw(G)). Let � := f (t). Let G1 be the graph Gt−2,� from Lemma 12. So tw(G1)= t − 2,
implying G1 is Kt-topological-minor-free, and for every H-partition of G1 with width �, there is a
(t − 1)-clique in G1 whose vertices are in distinct parts.

Let n� t, � be a sufficiently large integer as detailed below. Let G2 be the graph with vertex-
set {v1, . . . , vt−1} ∪ {x1, . . . , xn}where {v1, . . . , vt−1} is a clique, x1, . . . , xn is a path, and vixj is an
edge whenever j= a(t − 1)+ i for some a ∈N0. Each subpath xa(t−1)+1, . . . , xa(t−1)+(t−1) is called
a clump. By construction, each vertex vi has one neighbour in every clump. Since each vertex xj
has degree at most 3, the graph G2 has exactly t − 1 vertices of degree at least 4. Thus G2 contains
no Kt-topological minor (since t� 5). Let Xj := {v1, . . . , vt−1, xj, xj+1}. Then (X1, X2, . . . , Xn−1)
is a path-decomposition of G2 with width t; thus tw(G2)� t.

Let G be obtained by pasting a copy of G2 onto each (t − 1)-clique C of G1, where the vertices
v1, . . . , vt−1 in G2 are identified with C. Since each of G1 and G2 have treewidth at most t, so too
does G. Since each of G1 and G2 contain no Kt-topological-minor, G contains no Kt-topological
minor. Thus G has a (t − 1)-tree-partition P = (Vh : h ∈V(H)) of width �.

Since G1 is a subgraph of G, there is a (t − 1)-clique C in G1 whose vertices are in distinct parts
of P . Let C′ be the set of parts in P intersecting C. Thus |C′| = |C| = t − 1. Let P0 be the path in
the copy of G2 pasted onto C in G. At most (t − 1)(� − 1) of the vertices in P0 are in the parts of P
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in C′. Thus, for n� t, �, there is a subpath P1 of P0 that contains at least (t − 1)� + 2 clumps, and
no vertex of P1 is in the parts of P in C′. Let A be the first clump in P1. Let A′ be the parts of P
that intersect A. Since G[A] is connected,H[A′] is connected. Since |A′|� |A| = t − 1, there are at
most (t − 1)� vertices in the parts in A′. Thus at most (t − 1)� clumps in P1 intersect parts in A′.
Hence P1 contains a clump B that intersects no part in A′. Let B′ be the parts in P that intersect
B. Thus A′ ∩ B′ =∅. Since G[B] is connected, H[B′] is connected. Since P1 is connected and no
vertex of P1 is in a part in C′, there is a path Q in H − C′ from A′ to B′, with no internal vertex
of Q in A′ ∪ B′. Let H′ be obtained from H by contracting H[A′] to a vertex a, contracting H[B′]
to a vertex b, and contracting Q down to an edge ab. Each vertex in C′ has a neighbour in A and
in B. Thus C′ ∪ {a, b} is a (t + 1)-clique in H′. Thus H contains Kt+1 as a minor, contradicting
that tw(H)� t − 1. Therefore the underlying treewidth of the class of Kt-topological-minor-free
graphs equals t. �

The proof of Theorem 19 is easily adapted to show that for s� 3 and fixed t, every Ks,t-
topological-minor-free graph G of treewidth k has s-tree-partition-width O(k2); see [12]. So
the underlying treewidth of the class of Ks,t-topological minor-free graphs equals s if s� 3 and
t�max{s, 3}. But the proof does not generalise for s� 4. Determining the underlying treewidth
of the class of Ks,t-topological-minor-free graphs is an interesting open problem. Also, in the s= 2
case we can use Menger’s Theorem instead of Lemma 16 to show that every K2,t-topological-
minor-free graph of treewidth k has 2-tree-partition-width O(t2k); see [12]. A result of Leaf and
Seymour [52, (4.4)] implies that every K2,t-minor-free graph has treewidth at most 3t/2. Thus
everyK2,t-minor-free graph has 2-tree-partition-widthO(t3). It is open whether everyK2,t-minor-
free graph has 2-tree-partition-width O(t), which would be best possible by Observation 1. It is
easily seen that every K1,t-minor-free graph has tree-partition-width O(t); see [12].

We now show that c-tree-partition-width is well-behaved under subdivisions (for c� 1).

Lemma 26. For c, t ∈N, if G̃ is a subdivision of a graph G with tpwc(G)� t, then tpwc(G̃)� t2 + t
if c= 1 and tpwc(G̃)� t if c� 2.

Proof. We first prove the c= 1 case. If t = 1, then G is a forest. So G̃ is a forest and the claim
follows. Now assume t� 2. Let (Vx : x ∈V(T)) be a tree-partition of G with width at most t. We
construct a tree T′ from T and a T′-partition of G̃ iteratively as follows. Orient the edges of T
so that each vertex has in-degree at most 1. Say an edge vw of G is replaced by the (v,w)-path
v0, v1, . . . , vs, vs+1 in G̃. If v and w are in the same part Vx (where x ∈V(H)), then add a path of
bags Vx, {v1, vs}, {v2, vs−1}, . . . to T′. If v ∈Vx and w ∈Vy then xy ∈ E(T). Assume xy is directed
from x to y. Add v1 to Vy and add a path of bags Vy, {v2, vs}, {v3, vs−2}, . . . to T′. Since |{uw ∈
E(G) : u ∈Vx,w ∈Vy}|� t2, we have |Vx|� t2 + t for all x ∈V(T′). This defines a tree-partition
of G̃ with width at most t2 + t.

Now consider the c� 2 case. If t = 1, then tw(G)� c. Since subdividing edges does not increase
treewidth, tw(G̃)� c, and the claim follows. Now assume t� 2. Let (Vx : x ∈V(H)) be an H-
partition of G with width at most t where tw(H)� c. We construct a graph H′ of treewidth at
most c from H and a H′-partition of G̃ iteratively as follows. Say an edge vw of G is replaced by
the (v,w)-path v0, v1, . . . , vs, vs+1 in G̃. If v and w are in the same part Vx (where x ∈V(H)), then
add a path of bags Vx, {v1, vs}, {v2, vs−1}, . . . to H′. If v ∈Vx and w ∈Vy then xy ∈ E(H); add a
path of bags {v1, vs}, {v2, vs−1}, . . . to H′, where {v1, vs} is adjacent to x and y in H′. This defines a
c-tree-partition of G̃ with width at most t, as desired. �

Lemma 27. For all c ∈N, for every graph G and every subdivision G′ of G,

tpwc(G)� 4c212c
(
c tpwc(G

′)+ 1
)
tpwc(G

′)2
(
tw(G′)+ 1

)c.
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Proof. Let � := tpwc(G′). By Lemma 6, G′ has a (c, c�)-disjointed �-partition β ′. Let β :=
{B′ ∩V(G) : B′ ∈ β ′} be the corresponding �-partition of G. We show that β is (c, 2c�(c� +
1))-disjointed. The result then follows from Corollary 10 as tw(G′)= tw(G).

Let B1, . . . , Bc ∈ β be distinct non-empty parts and let B′
1, . . . , B′

c be the corresponding parts
in β ′. Let B := ⋃{Bi : i ∈ {1, . . . , c}} and B′ := ⋃{B′

i : i ∈ {1, . . . , c}}. Observe that every vertex in
B′ − B is an internal vertex of some subdivided edge in G. Let Q̃⊆V(G) be the set of end-vertices
of these subdivided edges, so |Q̃|� 2|B′ − B| < 2c�.

Let X be a component of G− B and let Y ′
1, . . . , Y ′

m be the components of G′ − B′ that intersect
X. Since β ′ is (c, c�)-disjointed, for each j there is some Q′

j ⊆V
(
Y ′
j
)
of size at most c� such that

every component of Y ′
j −Q′

j is disjoint from some NG′
(
B′
i
)
. Define Qj as follows. For each w ∈Q′

j
either w ∈V(G) or w is an internal vertex of some subdivided edge uv in G. In the first case add w
to Qj, and in the second case add u and v to Qj. Thus |Qj|� 2c�.

Let Q := (
⋃{Qj : j ∈ {1, . . . ,m}} ∪ Q̃)∩V(X). Then |Q|� 2mc� + 2c� = 2c�(m+ 1). Let Z be

a component of X −Q. Consider any path P within Z: in G′ this is subdivided to give a path P′. As
P avoids Q̃, the path P′ avoids B′. Hence V(Z) is contained in some component of G′ − B′ and so
within some Y ′

j . Further, P avoidsQj, so P′ avoidsQ′
j. HenceV(Z) is contained in some component

Z′ of Y ′
j −Q′

j. By the definition of Q′
j, there is some i with NG′

(
B′
i
) ∩V(Z′)=∅.

We claim that NG(Bi)∩V(Z)=∅. Indeed suppose u ∈ Bi and v ∈V(Z) are adjacent and con-
sider the corresponding (u, v)-path P′ in G′. Since v 
∈ Q̃, the path P′ − u avoids B′ and so is
within Y ′

j (as v ∈V(Z)⊆V(Yj)). As v 
∈Qj, the path P′ − u avoids Q′
j. Hence P′ − u is a con-

nected subgraph of Yj −Q′
j so is within Z′ (as v ∈V(Z)⊆V(Z′)). But then NG′(u)∩V(Z′) 
=∅, a

contradiction. Hence β is (c, 2c�(m+ 1))-disjointed. We are left to show thatm� c�.
For each i ∈ {1, . . . ,m}, let vi ∈V(Y ′

i )∩V(X). For distinct i, j ∈ {1, . . . ,m}, let Pi,j be a (vi, vj)-
path in X. Since Y ′

i and Y ′
j are distinct components in G′ − B′, there exist a vertex w ∈ B′ − B that

is an internal vertex of a subdivided edge in Pi,j. Therefore,m− 1� |B′ − B| < c�. �
Theorem 28. Amonotone graph class G has bounded underlying treewidth if and only if G excludes
some fixed topological minor.

Proof. (⇐=) Say G excludes some fixed topological minor X on p vertices. By Theorem 24, every
graph G ∈ G has p-tree-partition-width at most O(tw(G)2). Thus G has underlying treewidth at
most p.

(=⇒) Say G has underlying treewidth c. That is, there is a function f such that tpwc(G)�
f (tw(G)) for every graphG ∈ G. For any n ∈N, by Lemma 12, there is a graphH of treewidth c+ 1
and tpwc(H)> n. Suppose for the sake of contradiction that some subdivision H′ of H is in G.
Thus tpwc(H′)� f (tw(H′))= f (tw(H))= f (c+ 1). By Lemma 27,

n < tpwc(H) � 4c212c (ctpwc(H
′)+ 1)tpwc(H

′)2 (tw(H′)+ 1)c

� 4c212c (cf (c+ 1)+ 1)(f (c+ 1))2 (c+ 2)c.

We obtain a contradiction taking n� f (c+ 1). Thus no subdivision of H is in G. Since G is
monotone, G excludes H as a topological minor, as desired. �

7. Excluding a subgraph
For a graph H, a graph G is H-free if G contains no subgraph isomorphic to H. For a finite set
of graphs H, we say that G is H-free if G is H-free for all H ∈H. Let GH be the class of H-free
graphs and let GH be the class ofH-free graphs. This section characterises when GH has bounded
underlying treewidth, and determines the exact underlying treewidth for several natural classes. A
spider is a subdivision of a star and a spider-forest is a subdivision of a star-forest. For s, t ∈N with
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s� 2, the (s, t)-spider, denoted Ss,t , is the (t − 1)-subdivision of K1,s. If v is the centre of Ss,t , then
each component of Ss,t − v is called a leg.

Theorem 29. For all �, n, s, t ∈N where n, s� 3 and �� 2, and for every finite setH of graphs,

(a) GH has bounded underlying treewidth if and only ifH contains a spider-forest;
(b) the underlying treewidth of GPn equals �log n� − 1;
(c) the underlying treewidth of G� Pn equals �log n�;
(d) the underlying treewidth of GSs,t equals �log t� + 1;
(e) the underlying treewidth of G� Ss,t equals �log t� + 2.

We prove Theorem 29 through a sequence of lemmas.

Lemma 30. For every finite set H of graphs, if GH has bounded underlying treewidth, then H
contains a spider-forest.

Proof. For the sake of contradiction, suppose thatH does not contain a spider-forest. Then each
graph H ∈H contains a cycle or two vertices with degree at least 3 in the same component of H.
Let sH be the minimum of the girth of H and the minimum distance between distinct vertices
with degree at least 3 in the same component of H. Let s := max{sH :H ∈H} and let G be any
graph class with unbounded underlying treewidth (such as that in Corollary 14). Let G′ be the
class of (s+ 1)-subdivisions of graphs in G. Then G′ is H-free for all H ∈H and has unbounded
underlying treewidth by Lemma 27, a contradiction. �

Lemma 30 proves the necessity of (i) in Theorem 29.
We now work towards showing GH has bounded underlying treewidth when H is a spider. For

a graph G and λ ∈N, let G(λ) be the graph with V(G(λ))=V(G) and uv ∈ E(G(λ)) whenever there
are λ internally disjoint (u, v)-paths in G.

Lemma 31. For all k, λ ∈N where λ� k+ 1, if a graph G has treewidth at most k, then
tw(G(λ))� k.

Proof. LetW := (Wx : x ∈V(T)) be a tree-decomposition ofGwith width k. Wemay assume that
Wx 
=Wy for each xy ∈ E(T). We claim that W is also a tree-decomposition of G(λ), for which it
suffices to show that for every edge vw of G(λ), v and w are in a common bag of W . To this end,
suppose that vw ∈ E(G(λ)) but there is no bag ofW containing both v and w. Then there is an edge
xy ∈ E(T) separating {z ∈V(T) : v ∈Wz} and {z ∈V(T) :w ∈Wz}, which implies thatWx ∩Wy is
a set of at most k vertices separating v and w in G. On the other hand, since vw ∈ E(G(λ)) and
λ� k+ 1, any vertex-set separating v and wmust have at least k+ 1 vertices, a contradiction. �
Lemma 32. For all s, t ∈N and λ� 1+ s+ st(2t + 1), if a graph G contains no Ss,2t+1 subgraph,
then G(λ) contains no Ss,t subgraph.

Proof. Suppose for contradiction that Ss,t is a subgraph of G(λ). Since G does not contain Ss,2t+1
as a subgraph, there is no set of s internally disjoint paths of length at least 2t + 2 inG between any
pair of vertices. Hence, since λ� 1+ s+ st(2t + 1) we may greedily replace each edge uv of Ss,t
with a (u, v)-path inG of length between 2 and 2t + 1 such that all these paths are internally vertex
disjoint from each other, and each of these paths internally avoids V(Ss,t). This works because the
number of vertices to avoid when replacing an edge uv ∈ E(Ss,t) is at most 1+ (2t + 1)(|E(Ss,t) \
{uv}|)= 1+ (2t + 1)(st − 1), and there is a collection of λ − s� 1+ st(2t + 1) internally disjoint
(u, v)-paths in G of length between 2 and 2t + 1. Finally, since each leaf of Ss,t has degree at least
λ� 1+ s+ st(2t + 1) in G, we can extend each leg of the spider thus constructed by one further
vertex by adding a distinct neighbour in G of each leaf of Ss,t . We obtain Ss,2t+1 as a subgraph of
G, a contradiction. �
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Lemma 33. There exists a function f such that for all c, k, s, t, λ, γ ∈N, if a graph G has treewidth
at most k and no Ss,t subgraph, and tpwc(G(λ))� γ , then tpwc+1(G)� f (c, k, s, t, λ, γ ).

Proof. Let d := st, � := s · (1+ λ2t
)
, m := (

1+ �d) · γ c+1 and n := (k+ 1)m. Let β :=
(Vh : h ∈V(H)) be an H-partition of G(λ) with width at most γ , where tw(H)� c. We show that
β is a (c+ 1, n)-disjointed γ -covering of G. By Corollary 10, G has (c+ 1)-tree-partition-width at
most f (c, k, s, t, λ, γ ) := 2(c+ 1) · n · γ (12k)c.

Consider distinct V1, . . . ,Vc+1 ∈ β and a connected component X of G− (V1 ∪ · · · ∪Vc+1).
Let F be the collection of connected subgraphs in X that intersect NG(Vi) for each i ∈ {1, . . . , c+
1}. Let R′ be a maximum-sized set of vertex-disjoint elements of F . By Lemma 16, it suffices to
show that |R′| <m.

We make two simplifying assumptions. First, we may assume that each Vi consists of a sin-
gle vertex at the cost of a factor of γ c+1: by averaging over all (c+ 1)-tuples in V1 × · · · ×Vc+1,
there is one such tuple (x1, . . . , xc+1) and a subsetR⊂R′ such that |R′|� γ c+1|R| and NG(xi)∩
V(R) 
=∅ for each R ∈R and i ∈ {1, . . . , c+ 1}. Thus it suffices to show that |R|� 1+ �d.
Second, we may assume that

⋃{V(R) : R ∈R} =V(X).
Let X′ be the quotient graph of R (with respect to X). If |V(X′)| < λ, then we are done. Thus

we may assume that |V(X′)|� λ and so the vertices {x1, . . . , xc+1} form a (c+ 1)-clique in G(λ).
To show that |R| = |V(X′)|� 1+ �d, we use the well-known fact that every graph with diameter
less than d and maximum degree � has at most 1+ �d vertices [55].

Claim 2. X′ contains no path on d vertices and thus has diameter less than d.

Proof. For the sake of contradiction, suppose that X′ contains a path P′ = (R0, . . . , Rd−1)
on d vertices. Consider the vertex-disjoint paths

(
P′
j : j ∈ {1, . . . , s}) in X′ where P′

j :=(
R(j−1)t , . . . , Rjt

)
. For each j ∈ {1, . . . , s} fix uj ∈V

(
R(j−1)t

) ∩NG(x1). Then there is a (uj, vj)-path
Pj in X

[ ⋃ (
V(R) : R ∈V

(
P′
j
))]

of length at least t − 1 for some vertex vj ∈V
(
Rjt

)
. Since the paths(

Pj : j ∈ {1, . . . , s}) are pairwise vertex-disjoint, it follows that G[{x1} ∪ ⋃ (
V(Pj) : j ∈ {1, . . . , s})]

contains Ss,t (see Figure 3a), a contradiction. �
It remains to show that X′ has maximum degree less than �. For the sake of contradiction,

suppose that X′ contains a vertex R′ with degree at least�. Let R1, . . . , R� be neighbours of R′ and
for each i ∈ {1, . . . ,�}, let yi ∈V(Ri) be adjacent to some wi ∈V(R′). Let L := {yi : i ∈ {1, . . . ,�}}
and let R∗ be obtained from R′ by adding L and {yiwi : i ∈ {1, . . . ,�}}. Let T be a vertex-minimal
tree in R∗ such that L⊆V(T). Then L is precisely the set of leaves of T.

Claim 3. T has maximum degree less than λ.

Proof. For the sake of contradiction, suppose there is a vertex v ∈V(T) with degree (in T) at least
λ. Then there exists a set of λ internally vertex-disjoint paths from v to distinct leaves y1, . . . , yλ

in T. Then for each i ∈ {1, . . . , c+ 1} and j ∈ {1, . . . , λ}, since Rj is connected, there is an
(
xi, yj

)
-

path in G[V(Rj)∪ {xi}]. As such, there exists λ internally disjoint (v, xi)-paths in G for each i ∈
{1, . . . , c+ 1} (see Figure 3b). Thus vxi ∈ E(G(λ)). So {x1, . . . , xc+1, v} is a (c+ 2)-clique in G(λ).
However, as each vertex of this clique belongs to a different part in β , it follows that H contains a
(c+ 2)-clique, which contradicts tw(H)� c. �

Thus, balls of radius r (in T) have fewer than 1+ λr elements. Since |L| = � = s · (1+ λ2t
)
,

there are vertices y1, . . . , ys ∈ L whose balls of radius t in T are pairwise disjoint. Let ui ∈V(Ri)∩
NG(x1) and let vi ∈V(T) be a vertex with distance (in T) exactly t from yi. By construction, there
exists a set of disjoint paths (Pi : i ∈ {1, . . . , s}) such that Pi is a (ui, vi)-path of length at least t.
Then, G[{x1} ∪ ⋃

(V(Pi) : i ∈ {1, . . . , s})] contains Ss,t (see Figure 3c), a contradiction. Thus X′
has maximum degree less than �. �
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Figure 3. Finding spiders and cliques in the proof of Lemma 33.

Figure 4. Construction of Jc,N.

Lemma 34. For each n ∈N with n� 3, the underlying treewidth of GPn equals �log n� − 1.

Proof. Let c := �log n�. For the lower bound, Lemma 12 (ii) and (vii) imply that {Cc−1,� : � ∈N}
has underlying treewidth at least c− 1 and is a subset of GPn . The lower bound follows.

We prove the upper bound by induction on c� 1 with the hypothesis that there is a non-
decreasing function f such that every P2c+1−1-free graph G has (c− 1)-tree-partition-width at
most f (tw(G), c). Since Pn ⊆ P2c+1−1, the claim follows. We make no attempt to optimise f .
When c= 1, G contains no P3 and so each component has at most two vertices. Therefore,
tpw0(G)� f (tw(G), 1) := 2.

Now assume c� 2 and the lemma holds for c− 1. Let G be a graph with no P2c+1−1 and let
λ := max{3+ (2c − 2)(2c − 1), tw(G)+ 1}. By Lemmas 31 and 32, G(λ) has treewidth at most
tw(G) and contains no P2c−1. By induction, tpwc−2(G(λ))� γ := f (tw(G), c− 1). By Lemma 33,
tpwc+1(G)� f (tw(G), c) := f̃ (c, tw(G), 2, 2c − 1, λ, γ ) where f̃ is from Lemma 33, as required. �

Lemma 34 proves (ii) in Theorem 29.
To prove (iv) in Theorem 29, we need the following lower bound result.

Lemma 35. For all c ∈N, there exists an S3,2c -free graph class {Jc,N :N ∈N} with underlying
treewidth c+ 1.

Proof. Let Jc,N be the graph obtained from a path PN+1 = (p1, . . . , pN+1) where for each edge
pipi+1 ∈ E(Pn+1), we add a copyXi of (2N − 1)Cc−1,N and let pi and pi+1 dominateXi (see Figure 4;
this construction also provides a lower bound on the clustered chromatic number [58]). To prove
the lemma, it suffices to show that Jc,N is S3,2c-free, tw(Jc,N)= c+ 1 and tpwc(Jc,N)>N.
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The claimed treewidth of Jc,N holds since tw((2N − 1)Cc−1,N)= c− 1 (Lemma 12 (i)), and the
two dominant vertices for each copy of (2N − 1)Cc−1,N give tw(Jc,N)= c+ 1. Now suppose, for
the sake of contradiction, that S3,2c is a subgraph of Jc,N with centre v ∈V(Jc,N). Observe that v
has at most two neighbours pi and pj in PN . Moreover, each neighbour of v in Jc,N \ {v, pi, pj} is
contained in a component that is a subgraph of Cc−1,N . Since S3,2c has three legs, one of the legs
must be contained in a copy of Cc−1,N which contradicts Cc−1,N not having a path on 2c vertices
(Lemma 12 (vii)).

It remains to show that tpwc(Jc,N)>N. For the sake of contradiction, suppose that Jc,N has a
c-tree-partition β := (Vh : h ∈V(H)) with width at mostN. Since |V(PN+1)| =N + 1, there exists
an edge pipi+1 ∈ E(PN+1) such that pi and pi+1 belong to different parts in β . Let Vi and Vi+1
be such that pi ∈Vi and pi+1 ∈Vi+1. Since |(Vi ∪Vi+1) \ {pi, pi−1}|� 2N − 2, there exists a copy
of Cc−1,N in Xi such that V(Cc−1,N)∩ (Vi ∪Vi+1)=∅. By Lemma 12 (ii), Cc−1,N contains a c-
clique whose vertices are in different parts in β . Together with pi and pi+1, it follows that Jc,N
contains a (c+ 2)-clique whose vertices are in different parts in β . Thus H has a (c+ 2)-clique, a
contradiction. �
Lemma 36. For all s, t ∈N where s� 3, the underlying treewidth of GSs,t is �log t� + 1.

Proof. Let c := �log t�. For the lower bound, GS3,2c has underlying treewidth at least c+ 1 by
Lemma 35. Since S3,2c ⊆ Ss,t , it follows that GS3,2c ⊆ GSs,t , which implies the lower bound.

We prove the upper bound by induction on c ∈N0 with the following hypothesis: There is
an increasing function f such that for each s ∈N, every Ss,2c+1−1-free graph G has (c+ 1)-tree-
partition-width at most f (tw(G), c, s). Since Ss,t ⊆ Ss,2c+1−1, the claim follows. When c= 0, G
has maximum degree at most s− 1, and G has 1-tree-partition-width at most f (tw(G), 0, s) :=
24(tw(G)+ 1)(s− 1) by Lemma 2.

Now assume c� 1 and the lemma holds for c− 1. Let G be an (s, 2c+1 − 1)-spider-free graph
and let λ := max{1+ s+ st(2t + 1), tw(G)+ 1}. By Lemmas 31 and 32, tw(G(λ))� tw(G) andG(λ)

contains no Ss,2c−1. By induction, tpwc(G(λ))� γ := f (tw(G), c, s). By Lemma 33, tpwc+1(G)�
f (tw(G), c, s) := f̃ (c, tw(G), s, 2c+1 − 1, λ, γ ) where f̃ is from Lemma 33, as required. �

Lemma 36 proves (iv) in Theorem 29.

Lemma 37. For every connected graph H and � ∈N where �� 2, if GH has underlying treewidth c
then G�H has underlying treewidth c+ 1.

Proof. We first prove the lower bound. Since GH has underlying treewidth c, there exists k ∈N

such that for all j ∈N, there is a graph Gj ∈ GH with tw(Gj)= k and tpwc−1(Gj)> j. Consider the
graph class J := {ĵ Gj : j ∈N}. Observe that every graph in J is �H-free, so J ⊆ G�H . Moreover,
since adding a dominant vertex increase the treewidth of a graph by 1, tw(ĵ Gj)= k+ 1 for all
j ∈N. Finally, consider a j-partition β := (Vx : x ∈V(J)) of ĵ Gj. At most j− 1 copies of Gj contain
a vertex in the same part Vy as the dominant vertex v. Thus, some copy G of Gj contains no vertex
in Vy. Consider the sub-partition β ′ := (Vx ∩V(G) : x ∈V(J′)) of G where J′ ⊆ J. Since β ′ has
width at most j, J′ has treewidth at least c and so J[V(J′)∪ {y}] has treewidth at least c+ 1. Thus
J has underlying treewidth at least c+ 1.

We now prove the upper bound. Let G be an �H-free graph. Let A1, . . . ,Am be a maximal
set of pairwise disjoint copies of H in G. Then m< �. Let B := G−V(A1 ∪ · · · ∪Am). By the
maximality of m, B is H-free. Thus B has a c-tree-partition (Vx : x ∈V(J′)) with width at most
f̃ (tw(B)) for some function f̃ . Let J be the graph obtained from J′ by adding a dominant vertex y,
and let Vy := V(A1 ∪ · · · ∪An). Then (Vx : x ∈V(J)) is a (c+ 1)-tree-partition of G with width at
most f (tw(G)) := max{(� − 1)|V(H)|, f̃ (1), . . . , f̃ (tw(G))}, as required. �

Lemmas 34, 36 and 37 prove Theorem 29 (iii) and (iv). Since every spider-forest is a subgraph
of � Ss,t for some �, s, t ∈N, these results also imply the sufficiency of (i) in Theorem 29.
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8. Excluding an induced subgraph
For a graph H, let IH be the class of graphs with no induced subgraph isomorphic to H. This sec-
tion characterises the graphs H such that IH has bounded underlying treewidth, and determines
the precise underlying treewidth for each such H.

Theorem 38. For any graph H,

(a) IH has bounded underlying treewidth if and only if H is a star-forest;
(b) if H is a star-forest, then IH has underlying treewidth at most 2;
(c) IH has underlying treewidth at most 1 if and only if H is a star or each component of H is a

path on at most three vertices;
(d) IH has underlying treewidth 0 if and only if H is a path on at most three vertices, or

E(H)=∅.

We prove Theorem 38 by a sequence of lemmas.

Lemma 39. If IH has bounded underlying treewidth, then H is a star-forest.

Proof. Suppose that IH has underlying treewidth c. So GH has underlying treewidth at most c
(since GH ⊆ IH). Lemma 30 implies that H is a spider-forest. By Corollary 14, {Cc,� : c, � ∈N} has
unbounded underlying treewidth. Hence, H is an induced subgraph of some Cc,�. By Lemma 12,
Cc,� has no induced P4 and so H contains no induced P4. Every spider-forest with no induced P4
is a star-forest. So H is a star-forest. �

Lemma 39 proves the necessity of (i) in Theorem 38.

Lemma 40. If H is a star K1,s, then IH has underlying treewidth at most 1.

Proof. Say G ∈ IH . For each vertex v ∈V(G), if Gv := G[NG(v)] then α(Gv)� s− 1 and χ(Gv)�
tw(Gv)+ 1� tw(G), implying degG (v)= |V(Gv)|� χ(Gv)α(Gv)� tw(G)(s− 1). By Lemma 2,
tpw(G)� 24tw(G)2(s− 1). Hence IH has underlying treewidth at most 1. �
Lemma 41. If H is a star-forest, then IH has underlying treewidth at most 2.

Proof. Say H has � components, each with at most s leaves. Let G ∈ IH . Let A1, . . . ,An be a max-
imal set of pairwise disjoint induced K1,s subgraphs in G. Define J to be the graph obtained from
G[V(A1 ∪ · · · ∪An)] by contracting each Ai into a vertex vi. Then n� χ(J)α(J)� (tw(J)+ 1)(� −
1)� (tw(G)+ 1)(� − 1) since J is a minor ofG. Thus |V(A1 ∪ · · · ∪An)|� (tw(G)+ 1)(� − 1)(s+
1). Let B := G−V(A1 ∪ · · · ∪An). By the maximality of n, B contains no induced K1,s. As in the
proof of Lemma 40, B has a tree-partition (Vx : x ∈V(T)) of width at most 24tw(G)2(s− 1). Let
H be the graph obtained from T by adding a dominant vertex y, and let Vy := V(A1 ∪ · · · ∪An).
Then (Vh : h ∈V(H)) is a 2-tree-partition of Gwith width at most max{24tw(G)2(s− 1), (tw(G)+
1)(� − 1)(s+ 1)}. Hence IH has underlying treewidth at most 2. �

Lemma 41 proves (ii) and the sufficiency of (i) in Theorem 38.

Lemma 42. If H is a forest in which each component is a path on at most three vertices, then IH has
underlying treewidth at most 1.

Proof. Say H has k components. Let G ∈ IH . Let A1, . . . ,An be a maximal set of pairwise dis-
joint induced P3 subgraphs in G. Let J be the minor of G obtained from G[V(A1 ∪ · · · ∪An)]
by contracting each Ai into a vertex. Thus n= |V(J)|� χ(J)α(J)� (tw(J)+ 1)(k− 1)� (tw(G)+
1)(k− 1). Let B1, . . . , Bm be the components of G−V(A1 ∪ · · · ∪An). By the maximality of n,
each Bi has no induced P3 subgraph, so Bi is a complete subgraph and |V(Bi)|� tw(G)+ 1. Let T
be the star with centre x and leaves y1, . . . , ym. Let Vx := V(A1 ∪ · · · ∪An) and Vyj := V(Bj). So
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(Vh : h ∈V(T)) is a tree-partition of G with width at most max{3(k− 1)(tw(G)+ 1), tw(G)+ 1}.
Hence IH has underlying treewidth at most 1. �
Lemma 43. If H is a star-forest with at least two components and at least one component of H has
at least three leaves, then IH has underlying treewidth 2.

Proof. Consider a star S with at least three leaves that is a subgraph of a fan F with dominant
vertex v. Since F − v has maximum degree 2, v is in S. Since every vertex of F is adjacent to v, H is
not an induced subgraph of F. By Lemma 12, the class of fan graphs has underlying treewidth 2.
Thus IH has underlying treewidth at least 2, with equality by Lemma 41. �

Lemmas 40, 42 and 43 prove (iii) in Theorem 38.

Lemma 44. If E(H)=∅ or H is a path on at most three vertices, then IH has underlying
treewidth 0.

Proof. First suppose that E(H)=∅. For each G ∈ IH , {V(G)} is a 0-tree-partition of G with
width |V(G)|� χ(G)α(G)� (tw(G)+ 1)(|V(H)| − 1). Hence IH has underlying treewidth 0.
Now suppose H is a path on at most three vertices. For each G ∈ IH , if G1, . . . ,Gk are the con-
nected components of G, then each Gi is a complete graph, implying {V(G1), . . . ,V(Gk)} is a
0-tree-partition of G with width maxi |V(Gi)| = tw(G)+ 1. �
Lemma 45. If H is a star-forest with at least one edge and at least two components, then IH has
underlying treewidth at least 1.

Proof. Let G := K2,n. Then for every edge vw of G, every vertex x ∈V(G) \ {v,w} is adjacent to
v or w. Thus G ∈ IH . Since G is connected, tpw0(G)= n+ 2. Since tw(G)� 2, IH has underlying
treewidth at least 1. �

Lemmas 44 and 45 prove (iv) in Theorem 38.
We finish this section with an open problem. For any set X of graphs, let IX be the class of

graphsG such that no induced subgraph ofG is isomorphic to a graph inX . For which setsX does
IX have bounded underlying treewidth? Consider the case when X is finite. If some star-forest is
in X , then IX has bounded underlying treewidth by Lemma 41. If no star-forest is in X and IX
still has bounded underlying treewidth, then some spider-forest is in X (by Lemma 30), and some
graph for which every component is the closure of a rooted tree is also in X (by Corollary 14).
In related work, Lozin and Razgon [54] proved a graph class defined by finitely many excluded
induced subgraphs has bounded treewidth if and only if it excludes a complete graph, a complete
bipartite graph, a tripod (a forest in which every connected component has at most three leaves),
and the line graph of a tripod.

9. Graph drawings
A graph is k-planar if it has a drawing in the plane with at most k crossings on each edge, where we
assume that no three edges cross at the same point. Of course, the class of 0-planar graphs is the
class of planar graphs, which has underlying treewidth 3 (Theorem 21). However, 1-planar graphs
behave very differently. It is well-known that every graph has a 1-planar subdivision: take an arbi-
trary drawing of G and for each edge e add a subdivision vertex between consecutive crossings on
e. Since the class of 1-planar graphs is monotone, Theorem 28 implies that the class of 1-planar
graphs has unbounded underlying treewidth.

By restricting the type of drawing, we obtain positive results. A circular drawing of a graph G
positions each vertex on a circle in the plane, and draws each edge as an arc across the circle, such
that no two edges cross more than once. A graph is outer k-planar if it has a circular drawing
such that each edge is involved in at most k crossings. The outer 0-planar graphs are precisely
the outerplanar graphs, which have treewidth 2. We show below that for each k ∈N, the class of
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Figure 5. Setup to define Q (circled vertices) with k= 2.

outer k-planar graphs has underlying treewidth 2. In fact, we prove a slightly more general result.
A graph is weakly outer k-planar if it has a circular drawing such that whenever two edges e and f
cross, e or f crosses at most k edges. Clearly every outer k-planar graph is weakly outer k-planar.

Theorem 46. Every weakly outer k-planar graph G has 2-tree-partition-width O(k3).

Proof. Wood and Telle [80, Prop. 8.5] proved that any weakly outer k-planar graphG has tw(G)�
3k+ 11. Thus, by Corollary 10, it suffices to show that the singleton partition of G is (2, 4k+ 4)-
disjointed. Let v1, . . . , vn be the cyclic ordering of V(G) given by the drawing. Addition is taken
modulo n in this proof. If n� 2, then the claim holds trivially, so assume that n� 3. We may
assume that vivi+1 ∈ E(G) for all i ∈ {1, . . . , n}.

Consider distinct vi, vj ∈V(G). If j 
= i+ 1, then let v′
r be the clockwise-closest vertex to vi that

is adjacent to vj and let v′
s be the anticlockwise-closest vertex to vi that is adjacent to vj. If v′

rvj
is involved in more than k crossings, then let vr be the anticlockwise-closest vertex to vj that is
incident to an edge er that crosses v′

rvj. Otherwise v′
rvj is involved in at most k crossings so let

vr := v′
r and er := v′

rvj. Similarly, if v′
svj is involved in more than k crossings, then let vs be the

clockwise-closest vertex to vj that is incident to an edge es that crosses v′
svj. Otherwise let vs := v′

s
and es := v′

svj. Let R be the set of vertices that are incident to edges that cross er and let S be the
set of vertices incident to edges that cross es. Let Q := (R∪ S∪ {vr , vs, v′

r , v′
s}) \ {vi, vj}. The setup

so far is illustrated in Figure 5, with vertices in Q circled. We have |Q|� 4k+ 4, since er and es are
involved in at most k crossings.

Let a ∈N(vi) \ (Q∪ {a, b}), b ∈N(vj) \ (Q∪ {a, b}), and P be an (a, b)-path inG− {vi, vj}. Since
G is weakly outer k-planar, if P does not contain vr or vs as an internal vertex, then it contains an
edge that crosses er or es. Thus V(P)∩Q 
=∅ and hence Q separates N(vi) from N(vj) in G−
{vi, vj}. As such, G is (2, 4k+ 4)-disjointed. �

Theorem 46 implies the next result, where the lower bound holds since G2,� from Lemma 12 is
outerplanar.

Theorem 47. For every fixed k ∈N, the underlying treewidth of the class of weakly outer k-planar
graphs equals 2, with constant treewidth-binding function.

A graph D is a planarisation of a graph G if G has a drawing in the plane and D is the graph
obtained by replacing each crossing point with a dummy vertex. Observe that G is a topological
minor of D�K2. As such, we have the following consequence of Observation 1, Lemma 27, and
Theorem 21.
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Corollary 48. For every graph G, if D is a planarisation of G where tw(D)< k then G has 3-tree-
partition-width O(k9).

As a special case of Corollary 48, consider a drawing of a graph G with at most k crossings
per edge. If G has radius r, then the planarisation of G has radius at most r(k+ 1) and thus has
treewidth at most 3r(k+ 1) [64, (2.7)]. Thus we have the following:

Corollary 49. If G is a k-planar graph with radius r, then G has 3-tree-partition-width O((rk)9).
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