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Abstract

Inspirational stimuli are known to be effective in supporting ideation during early-stage
design. However, prior work has predominantly constrained designers to using text-only
queries when searching for stimuli, which is not consistent with real-world design behavior
where fluidity across modalities (e.g., visual, semantic, etc.) is standard practice. In the current
work, we introduce a multi-modal search platform that retrieves inspirational stimuli in the
form of 3D-model parts using text, appearance, and function-based search inputs.
Computational methods leveraging a deep-learning approach are presented for designing
and supporting this platform, which relies on deep-neural networks trained on a large dataset
of 3D-model parts. This work further presents the results of a cognitive study (n = 21) where
the aforementioned search platform was used to find parts to inspire solutions to a design
challenge. Participants engaged with three different search modalities: by keywords,
3D parts, and user-assembled 3D parts in their workspace. When searching by parts that
are selected or in their workspace, participants had additional control over the similarity of
appearance and function of results relative to the input. The results of this study demonstrate
that the modality used impacts search behavior, such as in search frequency, how retrieved
search results are engaged with, and how broadly the search space is covered. Specific results
link interactions with the interface to search strategies participants may have used during the
task. Findings suggest that when searching for inspirational stimuli, desired results can be
achieved both by direct search inputs (e.g., by keyword) as well as by more randomly discov-
ered examples, where a specific goal was not defined. Both search processes are found to be
important to enable when designing search platforms for inspirational stimuli retrieval.

During idea generation, designers are known to benefit from external inspirational stimuli
toward achieving desirable design outcomes such as greater novelty, feasibility, or innovative-
ness (Chan et al., 2011; Fu et al., 2013b; Goucher-Lambert et al., 2020). The efficacy of a stim-
ulus in providing inspiration during the design process can depend on a variety of features. For
example, the modality of stimulus representation, analogical distance of the example to the
design problem, and the timing of example delivery have all been shown to impact the way
in which designers utilize stimuli (Linsey et al, 2008; Tseng et al, 2008; Chan et al., 2011).
Inspirational stimuli may vary with respect to modality of presentation. Different uses of visual
stimuli to support design ideation have been explored, such as when combined with text
(Borgianni et al, 2017), other images (Hua et al., 2019), or in contrast to interactions with
physical products (Toh and Miller, 2014). Representing stimuli visually compared to physi-
cally, or when combined with textual examples, has been shown to increase idea novelty
(Linsey et al., 2008; Toh and Miller, 2014). The impact of analogical distance of stimuli
from the design problem is also important to consider. Relative to the designer’s approach
to a design problem, far-field examples have been found to contribute to idea novelty
(Chan et al., 2011; Goucher-Lambert and Cagan, 2019). However, near-field examples can
also lead to design creativity as well as greater feasibility, relevance, and quantity of ideas
(Chan et al.,, 2015; Goucher-Lambert et al., 2019, 2020). A given stimulus may be more useful
depending on when it is accessed during the design process. Inspirational stimuli provided
after ideation on a design task has begun have been found to be more effective than when pro-
vided before ideation (Tseng et al., 2008). During ideation, designers who receive stimuli when
stuck produce more ideas than those who receive them at predefined intervals, indicating the
importance of timing of example delivery (Siangliulue et al., 2015). The level of abstraction of
inspirational examples can also impact their influence on the design process. Design stimuli at
the concept level may provide more rapid inspiration but miss the richer design details avail-
able in more comprehensive documents like patents (Luo et al., 2021). Examples can differ
further by being provided with descriptions that are more general versus domain-specific
(Linsey et al., 2008) or constitute concrete design examples versus abstract system properties
(Vasconcelos et al., 2017).
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While extensive prior research, as highlighted above, has
uncovered the characteristics of inspirational stimuli that contrib-
ute to their usefulness to designers, less is known regarding how
designers naturally discover them. Prior researchers have mostly
provided carefully curated examples to designers in controlled
studies to study how specific independent variables of inspira-
tional stimuli affect design outcomes. To better understand the
process of searching organically for inspiration during design, a
creativity-support platform is developed that allows designers to
search flexibly in realistic contexts and researchers to collect
data through custom instrumentation. Toward these research
goals, the core contribution of this work is two-fold:

(1) The development of a platform enabling search for inspira-
tional stimuli. This platform provides designers with the abil-
ity to search with multi-modal inputs and control the degree
of similarity between retrieved results and input queries.

(2) An investigation of search processes in design employed when
using this platform during a cognitive study. This study com-
pares the impact of using the afforded modalities on overall
search outcomes and behaviors.

The platform developed in this work involves the computa-
tional extraction of features of inspirational stimuli, and the subse-
quent ability to search based on these features using multiple
modalities. Semantic, visual, and function-based features are specif-
ically explored in this work, following past studies on design by
analogy, as introduced in the section “Computational methods
for inspirational stimuli retrieval”. By providing this creativity-
support platform (described in the section “Platform development”)
to designers during a cognitive study (described in the section
“Cognitive study design”), important insights regarding designers’
processes of searching for inspirational stimuli can be uncovered.
The findings of the cognitive study reveal how designers search
by different modalities and the effect of using these modalities on
the inspirational stimuli designers engage with and discover.
These insights into designers’” search behaviors and strategies, and
how they are differently influenced by search modality, can be help-
ful to future researchers when further developing computational
retrieval-based systems best fitted to the engineering design process.

The first objective of this work is to leverage computational
methods to develop a platform that enables the retrieval of
inspirational stimuli based on a given search input. This section
thus firstly presents a brief review of computational techniques
used to derive relationships between design ideas and inspira-
tional stimuli. The proposed platform also aims to support flexible
search for inspirational stimuli. Therefore, existing work on
design-support tools that specifically allow multi-modal interac-
tions, for example, visual sketch-based inputs, is also surveyed.
A second objective of this work is to conduct a cognitive study
to investigate how designers use the developed platform to search
for inspiration. Search processes from a cognitive perspective are
thus discussed to gain insight into designers’ search behavior.

In order to extract meaningful stimuli relevant to a given design
problem, design idea, or search query, computational methods
and tools are needed to derive similarity relationships between
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inspirational stimuli in a given dataset and a designer’s input.
Research in design by analogy offers insight into different tech-
niques used to establish relationships between examples in the
design space, which may be based on, for example, semantic,
functional, or visual information.

A variety of sources from which these stimuli may be derived
have been explored. Information-rich repositories such as patent
databases or biology textbooks are expansive sources of examples
that are commonly used to provide relevant design information in
both textual and pictorial representations (Chan et al, 2011;
Cheong et al, 2011; Fu et al., 2013b). Examples from these and
other sources are often used as functionally related inspirational
stimuli to support design by analogy. Using patent databases as
sources of design examples, function-based relationships between
these designs can be defined. Murphy et al. built a functional vec-
tor space model to quantify functional similarity of a design prob-
lem to designs described in patents (2014). This approach forms a
functional vocabulary through text-based processing of patent
documents, resulting in a vector representation of the patent data-
base. Latent semantic analysis (LSA) is another method for defin-
ing text-based contextual similarity between patents, used by Fu
et al. (2013a, 2013b). VISION is an exploration-based design-
by-analogy tool developed by Song and Fu that uses nonnegative
matrix factorization to assign topics to patents based on different
concepts, including function (Song and Fu, 2022). Patent data has
also been used to train semantic network databases to support
engineering design activities. While some semantic networks
such as WordNet or ConceptNet contain common words (Han
et al., 2022), the Technology Semantic Network (TechNet) was
developed using patent data to formulate a semantic network
database specialized in technology-based knowledge (Sarica
et al., 2020, 2021). Beyond patents, crowd-sourced design solu-
tions and ratings have also been provided to designers as sources
of inspiration (Goucher-Lambert and Cagan, 2019; Kittur et al.,
2019). Goucher-Lambert and Cagan used natural language pro-
cessing approaches to categorize near and far inspirational stimuli
based on the frequency of terms appearing in crowd-sourced
responses (2019).

Another category of approaches utilizing text-based functional
relationships include those that facilitate search for analogies in
biologically inspired design. Goel et al. used a structure-behav-
ior-function knowledge representation (2009) to represent bio-
logical models and provide biological inspiration in multiple
modalities, for example, text and visually represented behavior
and structure models (Vattam et al, 2011; Goel et al., 2012).
Representations of and relationships between biological analogies
have been differently approached by Chakrabarti et al. to empha-
size behavior of natural systems (e.g., motion) (2005). To imple-
ment keyword search for relevant biological analogies, Cheong
et al. extracted a set of biologically meaningful keywords corre-
sponding to functional terms in engineering (2011). Nagel and
Stone further contributed a computational method that presents
relevant biological concepts based on desired functionality, as
searched for by the designer (2012). Object functionality can be
differently defined based on the interaction context in which an
object is used, which Hu et al. explored with a functional similar-
ity network, a generative network, and a segmentation network
(2018).

Less frequently explored in prior research are computational
methods to support visual analogy. Setchi and Bouchard devised
a method to index images based on semantic information from
image labels and textual descriptions as one method of providing
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images as design inspiration (2010). To establish relationships
between examples based on non-textual information, emerging
methods using visual analogy in design have considered image-
based search. Recent work by Zhang and Jin has demonstrated
how visual analogy can be supported by sketch-based retrieval of
visually similar examples (2020, 2021). Specifically, they used a
deep-learning model to construct a latent space for a dataset of
sketches and computationally determined visual similarities within
this space (Zhang and Jin, 2020). Short and long-distanced visual
analogies can then be identified based on the level of visual similar-
ity shared between sketches (Zhang and Jin, 2021). Kwon et al.
explored the use of image-based search to find visually similar
examples to aid alternative-use concept generation (2019). Visual
information, along with topic-level international patent classifica-
tion (IPC) labels, have also been used in the retrieval of images
from patent documents (Jiang et al., 2020, 2021). Jiang et al. used
a convolutional neural network-based method to perform image-
based search using visual similarity and shared domain knowledge.

The methods and systems explored here are used to define text
and visual-based relationships within various design stimuli repo-
sitories (e.g., patent images, design concepts, sketches, etc.). In
prior research, these derived relationships have been used to iden-
tify stimuli related to a specified input, such as a design problem
or search term. The current work also relies upon computational
methods to extract semantic, functional, and visual information
from potentially inspirational examples as well as designers’
search inputs, as expressed through multiple modalities.

A second consideration for the platform developed in this work is
the interface through which designers explore and discover
inspirational stimuli. The role of non-text-based modalities in
providing flexible modes of interaction and expressing search is
examined. In general, expressing design ideas with visual attri-
butes importantly supports cognitive processes of emergence
and reinterpretation. Shape emergence is a process where
designers perceive emergent patterns not initially intended in a
visual stimulus (Soufi and Edmonds, 1996). Reinterpretation of
visual stimuli is a process that leads to the formation of alternate
interpretations and restructuring of design problems (Gross,
2001). During design exploration, these processes can importantly
trigger new mental images and thus new ideas for design
(Menezes and Lawson, 2006). Designers can benefit from inter-
acting with a system through sketch-based inputs specifically,
since in early-stage idea exploration, the act of sketching itself
can assist with idea formation (Botella et al., 2018). The ability
for a creativity-support tool to uncover meaning from a designer’s
developing sketch, intent, and task context can be valuable for
activating appropriate computational aid at the right time (Do,
2005). As an example, Kazi et al. developed DreamSketch, a
sketch-based user interface that uses generative design methods,
to provide designers with potential 3D-modeled design solutions
based on early-stage 2D-sketch-based designs (2017). SketchSoup
is another interface that inputs rough sketches and generates new
sets of sketches, which may be explored and inspire further con-
cept generation (Arora et al., 2017). Interfaces that capture these
sketch-based inputs can therefore be useful for supporting search
and exploration of the design space.

In addition to 2D sketches, design ideas can be expressed in a
3D representation, for which creativity support is also possible.
Through the InspireMe interface, Chaudhuri and Koltun
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provided data-driven suggestions for new components to add to
a designer’s initial 3D model (Chaudhuri and Koltun, 2010).
Retrieval of inspiring examples based on 3D-represented design
ideas can facilitate emergence and reinterpretation processes
important for the design process. Conventionally, 3D-modeling
environments recognize the unambiguous selection and place-
ment of different elements to build a model, and thus provide
limited support for new ideas to emerge or old ideas to be reinter-
preted (Gross, 2001). It is also important to note that while CAD
modeling enhances visualization and communication of ideas by
providing a form to early design ideas, it may also cause prema-
ture design fixation and limit ideation (Robertson et al., 2007).
Systems capable of recognizing and reinterpreting conceptual or
early-stage 3D design are valuable for overcoming limitations
related to developing 3D models in a typical CAD environment.

To implement useful features in the proposed search platform and
link interactions with the platform to insights on search behavior,
cognitive processes involved when searching for inspiration are
reviewed. Early work on the role of search processes in design
identified incidental experience and intentional learning as rele-
vant sources of knowledge (Purcell and Gero, 1992). More
recently, inspiration has been proposed as an iterative process
that begins with an intention, is actualized by a search input,
and ends when the problem has been solved (Goncalves et al.,
2016). In this process, active approaches to find specific stimuli
more intentionally or passive approaches to randomly encounter
relevant stimuli may take place (Herring et al, 2009; Goncalves
et al., 2016). Active search refers to the deliberate search for a par-
ticular stimulus with a specific goal in mind (Eckert and Stacey,
2003). Alternatively, when what designers are searching for is
unclear, they typically depend on randomly finding relevant stim-
uli. Randomness of web-based search, for example, has been
found to be beneficial for inspiration due to the sometimes unex-
pectedness of results, related to more passive search strategies
(Herring et al., 2009). In information retrieval theory, search
behavior has classically been categorized as exploratory versus
specific (or lookup) (Sutcliffe and Ennis, 1998). Lookup search
activities involve precise search goals whereas exploratory search
is related to knowledge acquisition and evolving needs
(Marchionini, 2006). Users have been found to examine more
results in open-ended exploratory search tasks than during lookup
tasks (Athukorala et al., 2016). For computational tools to suc-
cessfully support search for inspiration, user studies suggest that
they should provide control and flexibility over the level of
abstraction versus literalness of search terms (Mougenot et al.,
2008). To facilitate search for inspiration, it is important that
active and passive search strategies are both supported.
Designers should be able to express what they are looking for
with a high level of agency and encounter inspirational stimuli
more passively when what they are looking for is undetermined.
Relevant to the current work, these insights into search for
inspiration both guide the design of the search platform and pro-
vide a basis for interpreting the anticipated results of the cognitive
study presented.

To effectively support and subsequently study how inspirational
stimuli are retrieved in the design process, a platform that enables
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similarity-based, multi-modal search for stimuli in the form of
3D-model parts was developed. This section describes in detail
(1) the process of defining similarity among stimuli using
deep-neural networks and (2) the development and design of
the multi-modal search interface that participants interacted
with in a cognitive study.

A major component of the platform is a system that supports the
search for and retrieval of inspirational design stimuli in large
datasets using multi-modal inputs. Relying solely on text-based
search using semantic relationships may limit discovery of
inspirational stimuli to concepts that are well enough defined to
express using words. As described previously, search processes
using more passive or exploratory processes are sometimes pre-
ferred and may not be as well supported by tools requiring
such direct input (Goncalves et al, 2016). Introducing new
modes of expressing search may be one approach to aid different
search strategies when needed during the design process. As such,
the proposed system is designed to support queries of 3D-model
examples while also maintaining support for text-based queries.
Beyond aiming to support additional query modalities, the plat-
form provides a measure of similarity that allows users to control
the similarity level between retrieved examples and their multi-
modal queries. It is believed that having such agency in the system
will allow researchers to better understand and analyze users’
intentions in the retrieval process of inspirational examples.

To support the research goals in the current work, a large-scale
dataset of 3D models is used to train the deep-neural networks
and provide users with relevant examples. Specifically, the
PartNet dataset was used, which contains 26,671 unique 3D mod-
els (assemblies) in 24 object categories, each further splitting into
trees of individually named parts within each assembly (e.g., cap
as a child of bottle) (Mo et al., 2018). Names for each part are
assigned in the dataset through expert-defined annotations. In
total, the dataset contains 573,585 part instances, across 24 object
categories. Each object category contains varying numbers of part
instances. For example, bags, hats, bowls, mugs, and scissors con-
tain on the order of ~1 K parts whereas vases, trash cans, lamps
contain ~10 K parts and chairs, storage furniture, and tables con-
tain >100 K parts. The 24 object categories include everyday
objects at various scales (e.g., microwave, scissors, tables). Since
these categories represent only a small subset of possible objects
that mechanical engineers might design, part-based data within
these objects are instead used and presented in the proposed sys-
tem. These parts (e.g., legs, cover, lid) may be present in object
categories beyond those in the dataset. This allows the system to
cover diverse design cases and to potentially provide inspiration
between distant design goals. While the PartNet dataset was
used in this work, alternative datasets could be leveraged that sim-
ilarly contain large-scale, hierarchical, fine-grained annotations of
data.

The use of such a large-scale 3D-model dataset also allows the
system to leverage data-driven, deep-learning-based methods.
These methods are used to extract computationally derived simi-
larities between stimuli within the platform, based on their
semantic, visual, and functional features. The platform uses deep-
neural networks to contrastively model similarities between
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design examples (3D-model parts in this application) and
natural-language-model keywords. This deep-learning approach
directly consumes 2D snapshots of 3D-modeling parts and uti-
lizes knowledge from large text corpuses, which subsequently
enables the efficient retrieval of relevant examples in the large
dataset used. Deep-neural networks are suitable candidates for
this task because they are highly effective in understanding com-
plex patterns in high-dimensional data, such as multi-perspective
image snapshots of 3D models in the platform. In their review of
data-driven methods to support design-by-analogy, Jiang et al.
identify deep-learning models as an effective technique for learn-
ing complex features from datasets (Jiang et al., 2022).

Using the PartNet dataset, three neural networks were used with
the intent to embed raw 3D-model data to high-level concepts
and modeling parameters to be used in the platform. Each of
these networks handles a unique modality or type of similarity.
These networks are respectively (1) a text network that encodes
similarity of design concepts in natural language; (2) an appear-
ance network that encodes similarity of 3D models only by
their appearance and geometric presence; and (3) a functionality
network that extends beyond (2) to encode similarity of functions
of 3D models based on their neighboring 3D parts.

The text network in the platform relies on the Universal
Sentence Encoder (Cer et al., 2018) pre-trained on web text to
find parts with names similar to the keyword queries provided
by users. The Universal Sentence Encoder is trained on nontech-
nical text to solve general text-understanding tasks such as senti-
ment analysis and question classification. As a result, the model
should be able to obtain a general semantic understanding of
English words and thus be able to identify synonyms (e.g.,
“box” should be semantically similar to “container” in the embed-
ding space). Alternative semantic networks exist beyond the
Universal Sentence Encoder, such as TechNet (Sarica et al,
2020), which consists of technology-related terms. However,
since the PartNet dataset contains everyday objects that are not
highly technical, the use of the Universal Sentence Encoder to
understand common words is sufficient for this work. The
Universal Sentence Encoder is also effective for working with,
not only sentences, but short phrases, which other semantic
embedding methods, for example, BERT (Bidirectional Encoder
Representations from Transformers), are not trained on (Devlin
et al, 2019).

The appearance network was trained by embedding knowledge
from 2D snapshots of 3D-model parts. This network is trained to
consider snapshots of the same 3D model as “similar” to each
other, and snapshots from different 3D models as “dissimilar”
from each other in the embedding space. This leads to the
model learning the general physical form and presence of the
3D model by visually analyzing it from different angles. More
concretely, consider a training example (x) as a 3D-modeling
part (e.g., a leg of a chair). Eight 2D snapshots (images) [S(x);,
i€l, ..., 8] of the part are first taken by rendering the part in
Blender. Snapshots are normalized to the size of the image,
meaning that the whole part takes the size of the entire image
and the relative scale of the part is not considered. After obtaining
these screenshots, each snapshot is passed through a neural
network f to get a single n-dimensional real-valued embedding
f(S(x);) € R". These embeddings for other examples in the dataset
were similarly gathered.
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To train this model toward the goal of considering snapshots
of the same 3D model as similar, other examples are also needed
to allow the model to contrast the dissimilar embeddings with the
similar embeddings. As such, to obtain a loss function for each
embedding in the dataset, real-value embeddings of multiple
other 3D models in the dataset were also gathered. Without loss
of generality, another randomly sampled but different 3D model
(a) and its embeddings f(S(a);) were considered in the following
formulation. The model was then trained with sampled positive
pairs that consist of snapshots that come from the same 3D model,

PH=(f(SG)), f(Sx))), i # 1)
and negative pairs:
P =(F(S()), f(S(a),). @

The following training objective L [in Eq. (3)] was used to
minimize the distance [measured by the distance function (D)]
of positive pairs and maximize the distance of negative pairs
(up to the margin m):

L =D(p")* — (max(m — D(p™), 0))*, 3)

D(a, b) = [|a — bl];. “4)

On a high level, this model considers these snapshots as sim-
ilar among themselves and dissimilar to snapshots of other 3D
models in the latent space. Such similarity is considered primarily
by the overall appearance and geometric presence of the 3D-
model parts.

The functionality network was built to learn a slightly different
notion of similarity than the appearance network. While consid-
ering the exact functions of different 3D models could be difficult
and greatly depend on context, as a first step toward this goal, 3D
models are considered to be similar if they have similar neighbor-
ing parts within their respect assemblies. Hu et al. demonstrate
the effectiveness of this approach in capturing the function of
3D models through the usage contexts of the models (2018).
Using this method means that 3D-model parts that perform a cer-
tain function should have similar neighbors in their respective
assemblies (e.g., different styles of chair legs, despite having differ-
ent appearances, are considered similar since they share “chair
seat” as a neighbor). The functionality network builds upon the
appearance network such that it takes the appearance embeddings
and transforms them into function-aware embeddings. The func-
tionality network is trained with a very similar paradigm as the
appearance network, with an almost identical loss function to
Eq. (3). The only difference is that the functionality network (g)
is now used to obtain a transformation of the appearance embed-
dings [g( f(S(x);))], and the group of similar parts extend beyond
the snapshots of a single 3D-model part itself to neighboring
parts. For instance, given a chair leg x and a chair seat z, and
an irrelevant lamp cover b, positive pairs are formed

Pr=(f(S(x)), g(f(S(2))), (5)
as well as negative pairs:

pm=@(f(8x)), g(f(S(b)))).- (6)
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These pairs are then trained using the same loss function
[Eq. (3)]. Figure 1 displays how the functional embeddings are
derived from appearance embeddings using the described networks.

The appearance network consists of five stacked groups of a
convolution layer with kernel sizes of 5x 5 or 3 x 3 followed by
a 4x4 or 2x2 max pooling layer (see Fig. 1 for arrangement).
This network also consists of a final 4 x 4 convolution layer that
flattens the output to 128-dimensional appearance embeddings.
The functional network then takes these appearance embeddings
and passes them through its four stacked 128-dimensional fully
connected layers and one 64-dimensional fully connected layer
to produce 64-dimensional functional embeddings. On a high
level, these embeddings encode the context of the usage of the
3D-model parts and consider 3D-model parts that are used
along with other parts as similar by assuming that they have sim-
ilar functions.

The appearance and functionality models are implemented with
Tensorflow Keras. An Adam Optimizer with a learning rate of
0.001 was used to train each model until the validation loss pla-
teaued. The appearance model took 26 h to train on a machine
with two GPUs (a NVIDIA GeForce 1080 Ti and a Titan X
Pascal), while the functional network took 10 h to train on the
same machine. The text network did not involve any training as
it is directly taken from the pre-trained Universal Sentence
Encoder provided in Tensorflow Hub.

Leveraging the underlying platform for inspirational stimuli
retrieval described in the previous section , functionality for
multi-modal search was subsequently enabled for use in a cog-
nitive study. This was achieved by comparing the semantic, visual,
and functional features of the participant’s input to the parts in
the dataset populating the platform. The modalities of input avail-
able and additional features of the search interface are discussed
below.

Using the search interface that relies on the neural networks
described above, participants were able to search for parts in
the dataset using three types of input. The first search type is
keyword-based, where text input by the participant is embedded
using the text network, as described in the section
“Computationally deriving similarity between 3D-model parts”.
Embedding values are then compared against those of the data-
set’s part names and the nearest neighbors from the dataset are
retrieved. The results from a keyword search for the term “con-
tainer” is shown in Figure 2a. The second and third search
types are part-based and workspace-based, where new parts are
retrieved using visual snapshots taken of a selected 3D-model
part or the participant’s current workspace (composed of
3D-model parts), respectively. For workspace searches, snapshots
of the whole workspace are taken, which may include multiple
parts. These snapshots are passed through the appearance and
functional networks and the resulting appearance and functional
embedding values are compared with those of other parts in the
dataset. The same computational approach used to derive similar-
ities between 3D-model parts, as described in the section
“Computationally deriving similarity between 3D-model parts”,
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Fig. 1. Overview of process of transformation of embeddings from appearance network to functional embeddings. Appearance embeddings of input part (scissor
blade) were used to generate a predicted functional transformation using the functional network. Functional network was then trained by considering this pre-
diction as similar to the appearance embedding of a neighboring part (scissor handle) and dissimilar to the appearance embedding of an unrelated part (chair
leg). Intermediate representation within the functional network was used as the functional embedding of each model part in the dataset.

SEARCH PARAMETERS SEARCH PARAMETERS
Select search input Keyword search Select search input Appearance Similarity
KEYWORD ONLY v container SELECTED PART v Low@ High
Functional Similarity
Low e Hioh
SEARCH : :
No image search Search with selected
part
SEARCH
SEARCH RESULTS SEARCH RESULTS

SELECTED PART SELECTED PART
ADD TO WORKSPACE ADD TO WORKSPACE
VIEW IN CONTEXT VIEW IN CONTEXT
ADD TO GALLERY ADD TO GALLERY
®

Fig. 2. (a) Search results for a keyword search of the term “container”; (b) search results for a part search of a result from keyword search for “container”.
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is used to produce embedding values for search inputs from the
relevant neural networks.

Part and workspace-based searches are made using two addi-
tional user-specified parameters, appearance similarity and func-
tional similarity, which participants can specify in the platform
interface with sliders. The closest neighbors are retrieved for the
participants according to the weighted sum of the distances spe-
cified by the appearance and functional sliders in the user inter-
face. Figure 2b shows the use of similarity sliders and the search
results for a part search of the first keyword search result for “con-
tainer”. Sliders controlling similarity in appearance and function
allow participants to conduct multiple searches using the same
part or workspace input with increased agency. In the example
shown in Figure 2b, parts are searched for with low similarity
in appearance but high similarity in function to the selected con-
tainer. As represented in Figure 1, neighboring parts of visually
similar parts to the input part are considered functionally similar
to the input. In this example, the shared visual characteristics
between the chair seats and container have caused chair legs to
be considered functionally similar to the container. Based on
the results retrieved, participants are then able to modify these
inputs to continue to search for new results.

After relevant 3D-model parts are retrieved from the dataset, the
model pushes the images of the 3D models, as well as their asso-
ciated STL files, to the web front-end of the platform, which is
based on the editor code of the open-source threejs library.
Participants can thus preview three of the retrieved 3D models
in the “Search Results” panel of the interface (Fig. 2). An example
in Figure 3a shows how parts can also be added to and modified
in the user’s 3D workspace using the “Add to Workspace” button.
Workspace-based searches are made with snapshots of the entire
workspace with parts added by the participant using this action.
Moreover, since all results are retrieved from the PartNet dataset,
which contains information on neighboring parts in the assembly
of the results, participants may view this information (Fig. 3b)
using the “View in Context” button. For a selected part, this
action allows further understanding of the retrieved parts’ utility
in their original context. Finally, participants have the ability to
use the “Add to gallery” button to save a part to a gallery of col-
lected 3D parts (Fig. 3c). The gallery is accessible to the partici-
pant to access and select parts from at any point during the

e

design task. For any given search result, participants could per-
form none to all actions, in any order.

These search modalities and part interactions are envisioned to
enable search for inspiration during early-stage design. Keyword
and part searches may provide initial, rapid inspiration by retriev-
ing results based on the designer’s text-based query or based on
similarity to a previously discovered part. Workspace search,
more similar to 2D or 3D sketch-based retrieval platforms intro-
duced in the section “Motivating multi-modal search for inspira-
tional stimuli” (e.g., SketchSoup, InspireMe, DreamSketch), can
further support the discovery of inspiration during later stages
of design, based on the designer’s developing 3D-model. In gen-
eral, the various representations of inspiration provided by the
platform (i.e., 2D representation, 3D representation, text label)
make it suitable for aiding various stages and forms of early-stage
design, such as in generating conceptual design ideas, 2D
sketches, or 3D sketches.

To understand the processes and behaviors associated with
searching for and exploring design examples, a cognitive study
was conducted using the platform. During the study, participants
searched with different modalities available in the platform to find
and select relevant 3D parts that could help inspire solutions to a
design challenge. The main approach taken in this work was to
analyze participants’ interactions in the platform and relate
these actions to strategies involved in searching for inspirational
examples. A 30-minute study was administered to understand
how participants engaged with the three search types available
in the platform. Participants searched for parts using each search
modality in three separate subtasks and worked toward collecting
inspirational stimuli for a given design challenge.

Participants were recruited from announcement emails sent to
undergraduate and graduate mechanical engineering students at
the University of California, Berkeley. Twenty-three participants
(15 males and 8 females) with varying levels of design experience,
ranging from less than 1 year to 9 years, volunteered for the study.
Participants were offered $10 compensation for their participation
in the 30-minute study. Due to data collection errors, data from
two participants were excluded from the analysis. All participants

p
@A) B)

Fig. 3. Interactions with selected part in Figure 2 - (a) adding part to the workspace; (b) viewing part in context by seeing related parts with text labels in the same

object assembly; and (c) adding part to a gallery of saved 3D parts.
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completed the study while connected virtually with the experi-
menter over a Zoom meeting, where all participants consented
to sharing their screens for the duration of the task. Any issues
completing the task or clarifications needed could thus be
addressed in real time.

The study objective presented to participants was to use the plat-
form to search for, and save, 3D parts that inspired solutions to
the following design challenge: “design a multi-compartment dis-
posal unit for household waste”. Participants were told that parts
inspiring solutions to the design challenge could include those
they might want to directly incorporate into potential solutions.
The design challenge presented to participants was developed to
fit the context of the search platform, which is populated with
parts related to household objects. Pilot testing revealed that
this design prompt engaged several object categories in the
PartNet dataset, including some that are highly relevant to the
task (e.g., trash can, storage furniture).

The study was divided into three subtasks (A, B, C), as summa-
rized in Figure 4, where each task involved the use of a different
search type (keyword, part, workspace), but worked toward the
same design challenge. The study objective and task instructions
were embedded in a Qualtrics survey link sent to participants at
the start of the experiment. For each subtask, participants read
the associated training and instructions, and then completed the
task in an external link. At the end of the experiment, participants
responded to a series of open-ended and multiple-choice ques-
tions about their experience using the search platform. Table 1
additionally summarizes the search types, inputs, and require-
ments of each subtask of the study.

Task A: In Task A, all participants were instructed to first
search by keyword beginning with the term “container”
(Fig. 2a). They were instructed to make four additional keyword
searches (min.) and to save min. three parts to their galleries.

Task B: Participants then continued with their progress from
Task A in Task B by conducting a part search with a part saved
to their gallery during Task A. As before, the instructions were
to conduct min. four additional part searches and save min.
three more parts. Participants were also instructed to not make
any additional keyword searches.

Elisa Kwon et al.

Table 1. Overview of search types and inputs specified for each subtask of the
cognitive study

Subtask Search type Initial search input

A Keyword “Container”

B Part Any previous keyword search result

C Workspace Workspace consisting of parts retrieved in

Subtasks A and B

Task C: Finally, in Task C, participants conducted workspace
searches and made their first search consisting of parts either pre-
viously added to the workspace, or newly added from parts saved
during Tasks A and B. A min. of four additional workspace
searches were made and a min. of three parts were saved, without
making any new keyword or part searches.

This study design, while constrained, ensured that participants
used each search modality for a comparable portion of the design
study, enabling an investigation into the use of the search plat-
form’s modalities and features. Without prescribing these con-
straints, for example, a minimum number of searches, sufficient
interaction with each search modality and feature may not have
been observed, given participants’ lack of familiarity with the
novel search inputs introduced.

The motivation for the ordering and division of tasks was to
easily teach participants how to engage with the search platform.
The order was selected since parts need to be discovered initially
through keyword search to subsequently conduct part and work-
space searches. Tasks were ordered to first use the most intuitive
search mode (keyword) and to last introduce the least familiar and
most difficult mode (workspace). Pilot testing revealed that learn-
ing about each search type at study onset overloaded participants
with too much information to effectively engage with each search
type, therefore each search type was introduced and used in sepa-
rate tasks.

After completing the study, participants were asked to provide
open-ended descriptions of any strategies used when conducting
each type of search. Participants also evaluated the intuitiveness
and usefulness of different features in the platform on five-point
Likert scales. These features included searching for new parts
and gaining more information about parts. Finally, participants
self-evaluated the broadness of their exploration of the part repo-
sitory and of their final gallery of saved parts on five-point Likert
scales.

e Conduct min.5
keyword searches

| ® Save min. 3 parts

¢ Conduct min. 5 part
searches
e Save min. 3 parts

L]

: - Training on
Overview of Training on <o
G part search, Training on
study objective & > keyword search, part e
i - = appearance similarity, workspace search
design challenge interactions . § iy
functional similarity
v v v
Subtask A Subtask A Subtask C
instructions: instructions: instructions:

Conduct min. 5
workspace searches
Save min. 3 parts

Y

'

Y

Complete subtask A

Complete subtask B

Complete subtask C

Post-task
survey

Fig. 4. Overview of flow between subtasks: training on search types and features in the interface preceded presentation of instructions and completion of each

subtask.
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The two main outcomes of this work are next presented. The first
significant outcome is the development and illustration of the
search platform defined in the section “Platform development”.
A quantitative illustration of the retrieval behavior with reference
to the related definitions of similarities used in the neural net-
works underlying the search platform are described. The second
outcome consists of the insights gained into search behavior
when using this platform during a cognitive study. The study’s
findings were examined from both the perspectives of what par-
ticipants discovered and how participants searched for inspira-
tional stimuli through the use of different search modalities.

Prior to studying how participants interacted with the examples
using the built system, it is important to understand the intrinsic
ability of the system and its networks in accomplishing the feature
that it is designed for, that is, providing users agency to control
similarity of the retrieved examples to their input queries. A few
quantitative measures are presented in this subsection based on
several definitions of similarity that can be computed automati-
cally based on existing datasets. This provides a partial, but objec-
tive, understanding of the system’s networks’ ability to retrieve
similar visual stimuli that allow us to understand the characteris-
tics of the models in relation to other definitions of similarity.
These similarity definitions are also directly relevant to the devel-
opment of the platform outlined in the section “Computationally
deriving similarity between 3D-model parts”. This subsection first
outlines the procedure taken to compute overall retrieval behavior
of the proposed networks quantitatively using any similarity def-
inition. Three definitions of relevance for the stimuli retrieval task
are then described and the measures specific to each of these defi-
nitions are then calculated and presented using the same proce-
dure. While these measures provide a comparative and
quantitative view of the model’s behavior, it is important to
note that these definitions of similarity are not ground-truths of
our task (which does not currently exist) and are intended to
serve as a reference to help readers better contextualize the behav-
ior of the models supporting our platform. As Jiang et al. note in
their review of data-driven design-by-analogy methods, there is a
lack of gold-standard benchmarking for tools supporting visual
and multi-modal analogies (Jiang et al., 2022).

A ranked-based measure common in retrieval system research is
used to measure the proposed networks’ retrieval performance
given a binary definition of similarity (i.e., given two examples,
this is the ground-truth label of whether the models are similar
or not). In the context of this work, each example is a 2D snap-
shot of a 3D model taken from a random angle. All 2D snapshots
of other models in the dataset were then embedded. Then, for
each embedding that corresponds to a snapshot, the most similar
other embeddings ranked using a common distance metric are
then queried. This process is analogous to the querying process
where the initial snapshot acts as the search query: For each
querying 3D model, we compute its nearest neighbors using
neural networks. Then, top-1 accuracy is the percentage of these
queries where a “similar” (as defined in the sections “Definition
and results of self-similarity" and "Definition and results of
concept-based similarity”) 3D model is ranked as the top nearest
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neighbor, and top-10 accuracy is the percentage of these queries
where a similar 3D model is ranked as one of the top-10 nearest
neighbors. For instance, top-1 accuracy refers to the percentage of
3D models that rank a similar model (according to the ground
truth) as the first most similar embedding (according to the pro-
posed networks). Top-10 accuracy was similarly reported in the
results by relaxing the embedding similarity rank to any of the
top-10 ranked similar embeddings. Note that the snapshots of
the query snapshots themselves were excluded (but not other
snapshots of the same 3D model) from the ranking procedure
as the same snapshots would produce identical embeddings in
the network, hence degenerating the measurements.

It is important to note that the accuracies were computed indi-
vidually on three splits of the dataset. The networks were trained
on 70% of the data and the rank-based accuracy measures were
computed on a held-out test set (20% of the data) and a validation
set (10% of the data). It is most important to consider the accura-
cies on the held-out test set, a set of 3D models that were unseen
to the networks and the authors prior to the computation of the
accuracies. These accuracies best reflect the generalization capabil-
ity of the networks to new, unseen data of 3D models.

The first and most direct measure of relevance is only considering
the model itself as relevant. As the networks were trained to
encode different snapshots of the same 3D model to be similar
(outlined in the section “Computationally deriving similarity
between 3D-model parts”), the network’s behavior could be more
intuitively considered by its ability to consider different snapshots
of an unseen 3D model (in the validation set) as similar.

With this definition of similarity (all snapshots corresponding
to the same 3D model in the respective sets are labeled as similar),
top-1 and top-10 accuracies are computed using procedures out-
lined in the section “Ranked-based accuracy computation”. For
training/validation/test sets, the top-1 accuracy of the appearance
network is 1.13%/3.53%/2.24% and the top-10 accuracy of this
network is 5.78%/17.0%/11.3%, where eight 2D snapshots from
each 3D model in the dataset are compared. For the functional
network, the top-1 accuracy is 2.93%/8.42%/5.73% and the
top-10 accuracy is 15.2%/32.0%/23.5%, with an additional relaxa-
tion of definition that all parts that belong to the same model are
considered similar. When assessing self-similarity, training set
accuracy is lower than validation and test set accuracies. The
larger size of the training set and thus the density of subspaces
of similar mechanical parts in the latent space of embeddings
can account for the lower training set performance. The retrieval
of similar parts that are not the same model, and thus not consid-
ered similar by this metric, is more likely in the training set. These
metrics are highly conservative estimates of the network’s actual
task performance as there are far more relevant screenshots of
3D models than those generated from the same models as the
input query (i.e., there are many types of chair legs in the dataset).
To illustrate such difficulty of our task, the accuracy of a naive
random sampler can be computed and compared to our task. A
random sampler would have achieved a top-1 accuracy of
0.000416%/0.00273%/0.00137%," which is three orders of magni-
tude lower than the network’s measures. This shows that the net-
works used by our platform demonstrate reasonable behavior and

"This also explains the difference of accuracies between the three sets because the naive
probabilities of retrieving the ground-truth 3D model, which reflects the task accuracies,
are different across sets from the beginning.
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leads to the development of other definitions of similarity descri-
bed in the remainder of this section.

Beyond the 3D models themselves, there are many other models
that can be considered similar semantically in the dataset. For
instance, there are many chair legs that could be similar. To
account for this relaxed definition of relevance, the text annota-
tions of 3D models available in the dataset used (PartNet) were
utilized to consider similarity. Two 3D models were considered
to be relevant if both consist of exactly the same text label.
These text labels represent larger clusters of 3D models in the
dataset. The procedure outlined in the section “Ranked-based
accuracy computation” is similarly used to compute top-1 and
top-k similarities using this definition of text-concept-based simi-
larity. For training/validation/test sets, the top-1 accuracy of the
appearance network is 25.6%/26.8%/26.8% and the top-10 accu-
racy is 66.1%/69.1%/68.1%. For the functional network, the
top-1 accuracy is 40.5%/39.9%/40.4% and the top-10 accuracy is
85.7%/85.7%/85.8%, with the further relaxation of definition
that all text annotations of other parts that belong to the same
model are considered similar.

Besides calculating semantic relevance using text labels, relevance
can similarly be computed by the physical forms of the models.
The physical similarity of two models is computed by the three-
dimensional intersection over union (IoU) of the models, such
that the models are super-positioned to find the overlapping vol-
ume, which is then divided by the sum of the total volume of the
models. To ensure the consistency of this measurement, six extra
random orientations (in addition to the default position of the
models) were taken between the models during super-positioning
and the maximum value of the seven orientations was taken as the
final ToU. Two models are considered as similar if the IoU
between them is within the top 5% out of all other pairs for a par-
ticular model. This criterion controls the difficulty of our retrieval
task such that a completely random retriever would get 5% top-1
accuracy in such a task.

The above process requires the models to be closed for the vol-
ume computation to be correct. Therefore, the convex hulls of
both models and the intersected volumes are further computed
to ensure correctness. These computational steps of convex hull,
IoU, and volume of models are done with Blender 2.8.2.
Moreover, since this process is computationally expensive (and
scales quadratically with the size of the candidates), 200 random
examples were sampled from the test set of the PartNet dataset
and then manually reviewed to be approximately convex before
being used as candidates of this experiment. The final top-1 accu-
racy for this similarity criteria on these candidates for the appear-
ance network is 65.9% and the top-10 accuracy is 95.5%. We did
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not report this measure for the functional network due to the high
number of parts required to relax this definition of physical form
relevance to include all parts belonging to the models containing
the sampled parts.

Overall, the ranked-based accuracy measures computed in this
subsection provide insights for the retrieval behavior of the neural
networks underlying the search platform used in the cognitive
study. Different perspectives of similarity are considered including
self, semantic (concept-based), and visual (physical form) similar-
ity that allows us to further understand this neural network-based
methods’ retrieval characteristics. These measures are summa-
rized in Table 2. The development and behavior of the platform
are further discussed in the section “Discussion of multi-modal
search platform development and behavior”.

The developed platform, which uses the similarity relationships
described in the previous section, allows users to search for and
interact with retrieved parts. In this section, the results of a cog-
nitive study are presented, which demonstrate how participants
search for stimuli in the platform and the content of these
retrieved parts. In the cognitive study, participants searched for
3D-model parts using keyword searches in Task A, part searches
in Task B, and workspace searches in Task C. Throughout the
study, the following actions could be taken on any search result:
adding it to the workspace, viewing it in context, or saving it to
a gallery. This work considers how these interactions reveal the
ways different modalities of expressing search affect and support
the search process. The focus of the present study is on investigat-
ing the use of the described search platform to search for inspira-
tional stimuli, and not necessarily the impact of these stimuli on
design outcomes. Specific objectives of this study are to identify
differences in search modality by how participants (1) search
for new parts and (2) engage with the retrieved parts, as well as
(3) what participants discovered. These results extend upon find-
ings in prior work by Kwon et al. (2021).

To understand how different search modalities are used, the
search inputs defined by participants are first discussed. Specific
inputs that participants tend to modify across searches are impor-
tant to identify to support multi-modal search. Frequencies of
each search modality used, and slider movements made, are ana-
lyzed to examine how participants used the platform to search for
new parts. Differences between search types in the total number
of searches made were compared with a Chi-square test. The
number of searches made using each search type, including repea-
ted searches, significantly differs [y* (2, N=677) =9.8, p <0.01],
where the number of part searches (264) compared to keyword
(207) and workspace (206) searches is the highest. These

Table 2. Summary of rank-based accuracies for similarity measures of test set data describing retrieval behavior of neural networks

Appearance network

Functional network

Similarity measures Top-1 accuracy (%)

Top-10 accuracy (%)

Top-1 accuracy (%) Top-10 accuracy (%)

Self-similarity 2.24 11.3 5.73 235
Concept-based similarity 26.8 68.1 40.4 85.8
Physical-form similarity 65.9 95.5 N/A N/A
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implications of the differences in search frequency are further dis-
cussed in the section “Discussion of cognitive study results”.

Total search counts include all keyword searches, and both
new and modified part and workspace searches. New part
searches are defined as those where a unique part is used as the
search input. New workspace searches are made when the work-
space input contains a newly added part. Participants could also
make modified searches, where the same part or workspace
from a previous search is selected and adjustments are made
only to sliders specifying appearance and functional similarity.
The numbers of new and modified part searches made across par-
ticipants are summarized in Table 3. Also included are the num-
bers of modified part searches that increase (+) or decrease (—)
appearance and/or functional similarity from a previous search.

As shown in Table 3, more total number of searches are con-
ducted with the same part (131) than a different part (104) from
the previous search. However, when examining the proportion of
new and modified searches made by each participant, a repeated
measures ANOVA did not reveal a significant difference [F(1,20)]
=0.55, p=0.5). Modified search counts combined across partici-
pants vary significantly with respect to whether modifications are
made in functional similarity (37), appearance similarity (60), or
both (34) [)(2 (2, N=131)=9.3, p < 0.01]. The proportion of these
modified searches within participant does not differ across mod-
ification types [F(2,40)] = 0.03, p = 0.97). This result signifies that
while some participants may have conducted many appearance-
modified searches, this was not observed across all participants.
Of the 21 participants, only 4 conducted more than 5 appearance-
modified searches.

The same analysis performed for part searches was done to
identify how workspace searches were made, as summarized in
Table 4. The number of workspace searches made with modifica-
tions to functional (24), appearance (28), or both types of similarity
(24), did not significantly differ. Different from part searches, more
workspace searches are made with new search inputs (i.e., with an
added part to the workspace) than with the same workspace
configuration (105 vs. 76). A significant difference was observed
in the proportion of new and modified workspace searches made
by each participant, as revealed by a repeated measures ANOVA
test [F(1,20)] = 7.43, p < 0.05). These combined results demonstrate
how search inputs and desired similarity are differently defined
when engaging with part versus workspace searches.

The search platform, beyond supporting retrieval of parts, allows
participants to further engage with the shown parts. Participants

Table 3. Frequencies of new and modified part searches with changes in
functional and/or appearance similarity (+: increasing similarity, —: decreasing
similarity)

Search input Search counts

New search (different part from previous) 104
Modified search (same part Change in functional 37 (17+, 20—-)
as previous) similarity

Change in appearance 60 (30+, 30-)

similarity

Change in both similarity 34
types

Total modified searches 131
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Table 4. Frequencies of new and modified workspace searches with changes in
functional and/or appearance similarity (+: increasing similarity, —: decreasing
similarity)

Search input Search counts

New search (new part added to workspace) 105
Modified search (no new parts Change in functional 24 (14+, 10-)
added to workspace) similarity
Change in appearance 28 (19+, 9-)
similarity
Change in both 24
similarity types
Total modified 76

searches

can engage with a part through the interactions enabled in the
platform, as outlined in the section “Interactions with parts
retrieved from search”, for example, by viewing it in context (to
gain contextual information), adding it to the workspace (to see
and manipulate its 3D representation), or saving it to their gallery.
The number of times each interaction was made was counted to
determine how results from each search type are engaged with
differently. Frequencies of interactions with search results were
compared across search modalities to assess differences in how
participants engage with results retrieved from each search
modality. There is a significant difference between search modal-
ities in both the total number of search results that users engaged
with [¢* (2, N=106) = 18.6, p < 0.001] and did not engage with
[;(2 (2, N=581) =23.0, p <0.001], as shown in Figure 5. This result
suggests that, despite being instructed to conduct the same number
of searches using each search modality, participants interacted dif-
ferently with each search modality and the parts retrieved.

The differences in frequency between the expected and
observed values for each set of results are plotted in Figure 5.
The expected value is the total number of parts engaged with
(106) or not (581), divided by 3 (the number of tasks). This
value represents the number of parts expected to be engaged
with or not in each task if no task differences exist. Parts that
are engaged with include those viewed in context, added to the
workspace, or saved to the gallery. Parts not engaged with are
those retrieved from search and seen by the participant, with
no further interaction made. The highest proportion of parts
that were further engaged with were retrieved by keyword search,
while results not engaged with were mostly those retrieved by part
search. On average, participants spend 343 s, 195 s, and 451 s in
subtasks A, B, and C, respectively. These results suggest that
increased part engagement of keyword search results does not
occur due to increased time spent at the beginning of the study.
Reduced time spent on subtask B, despite high frequency of
part searches, further demonstrates participants’ lack of engage-
ment with these search results.

To more closely consider how users engage with search results,
the number of parts in each task that are viewed in context or
added to the workspace are compared. The number of parts
viewed in context significantly differs between tasks [ (2, N =
104) = 13.3, p <0.01]. Displayed in Figure 6, results from keyword
search are more frequently viewed in context than expected, and
fewer results from workspace search are viewed than expected. As
in Figure 5, expected values in Figure 6 refer to the total numbers
of parts viewed in context (104) or added to the gallery (101),
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Fig. 5. Differences between observed and expected val-
ues of parts engaged with and not engaged with, shown
by search type.
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Fig. 6. Differences between the observed and expected
values of parts viewed in context and added to the
workspace, shown by search type.

divided evenly between tasks. Numbers of parts added to the
workspace do not differ significantly between tasks. Combined,
these results suggest that keyword search encourages increased
engagement with individual results, while part-based search
does not. A more detailed analysis of these results can be found
in the section “Discussion of cognitive study results”.

Coverage of design stimuli space by retrieved parts

Regarding participants’ interactions with the interface, the role of
search modality in the overall discovery of inspirational stimuli is
investigated using a measure of coverage of the design stimuli
space. By deriving a measure of coverage, the relative diversity
of parts within the appearance and function-based embedding
spaces discovered using each search modality can be compared.
The parts retrieved by all participants throughout the study are
first shown based on their representation within the appearance-
based neural network in Figure 7. Parts are color coded based on
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the search type used when they were retrieved. The visualization
represents the parts reduced from the 128-dimensional
appearance-based neural network to a two-dimensional space
using principal component analysis (PCA). The reduced space
accounts for 72.8% of the total variance of the original space.
As highlighted, examples of closely and distantly related parts
in appearance are shown in the 2D projection of the embedding
space. The pair of closely related parts displayed are also nearest
neighbors in terms of Euclidean distance in the full
128-dimensional appearance embedding space.

It is important to note that “closeness” between parts in the
full 128-dimensional embedding space may appear differently
visually when projected into 2D. These differences provide insight
into features learned by the neural network, which may be diffi-
cult to discern visually. As a representative example of this con-
cept, Figure 8 displays a series of parts that are “close” to a
reference part (in this case, a trash can lid). In Figure 8, parts
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labeled 1-4 are the top 4 nearest neighbors in Euclidean distance
in the full embedding space to the reference trash can lid, while
Part * appears close in distance in the reduced embedding
space. As shown, parts with high appearance similarity, as deter-
mined by the appearance-based neural network, may not have the
same relative distance in the 2D projection of the embedding
space. In this example, Part *, though not a nearest neighbor in
the full embedding space, does appear to share high visual simi-
larity to the trash can lid, by human inspection. This discrepancy
between human and model evaluation of appearance-based simi-
larity can be explored in future work.

As Figure 7 helps to visualize, the parts discovered by partici-
pants during the study appear to vary in their overall coverage of
the two embedding spaces by the search modality (keyword vs.
part vs. workspace) used to search for them. Quantitatively, this
result can be demonstrated by comparing the total variation of
each set of parts in the original embedding spaces (represented
as each set of colored points in the 2D visualizations). In the
approach taken, three 128 x 128 covariance-variance matrices
are first computed for the keyword, part, and workspace search
results based on their definitions within the 128-dimensional
appearance-based neural network. Diagonal elements of each
matrix represent variances in each dimension of the embedding
space. A significant Levene’s test determined that the variances
across the diagonal elements of the three matrices were not
equal (F=20.9, p <0.001), signifying a difference between search
types in the coverage by parts of the appearance embedding space.
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Fig. 7. 2D visualization of the 128-dimensional
appearance-based neural network: parts retrieved dur-
ing the study using each search modality are repre-
sented based on their appearance embeddings.
Closely related (yellow, chair seat) and distantly related
(green, lamp shade) examples in appearance to the ref-
erence part (black, tabletop) are shown.

Similarly, the parts retrieved in the study are also represented
based on their embeddings in the function-based neural network,
shown in Figure 9. The 2D visualization, reduced from the
64-dimensional functional embedding space using PCA, accounts
for 89.7% of total variance. Figure 9 displays a cabinet door and its
closest neighboring part by Euclidean distance in the full func-
tional embedding space, a sink drawer face. Also shown is a set
of chair legs, distantly related in function to the cabinet doors.
These parts exemplify how functional relationships are repre-
sented in the neural network, as detailed in the section
“Computationally deriving similarity between 3D-model parts”.
As intended in the design of the functional network, two types
of doors that are used in different contexts are functionally similar
based on their shared relation to box structures. A difference was
found between how parts retrieved using each search type covered
the functional embedding space (F=6.77, p <0.01).

In addition to comparing the variances across diagonal ele-
ments of each covariance-variance matrix using Levene’s tests,
a more intuitive representation of this measure is the trace of
the matrix, that is, sum of the diagonal elements. The trace equals
the sum of variances of each dimension of the original neural net-
works and represents total variation in the respective embedding
spaces. Total variation provides a metric for comparing how parts
accessed by each search type differently cover the search space.
Table 5 summarizes the differences between parts retrieved
using each search modality, with respect to the total variation
and highest variance of a single variable in both embedding
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Fig. 8. Expanded view of a cluster of parts in the
2D visualization of the appearance-based neural
network. Parts 1-4 are the top 4 nearest neigh-
bors in Euclidean distance to a trash can lid in
the full 128-dimensional embedding space. Part
* is close based on visual inspection to the trash

can lid in the 2D projection.

Fig. 9. 2D visualization of the 64-dimensional function-
based neural network: parts retrieved during the study
using each search modality are represented based on
their functional embeddings. Closely related (yellow,
sink drawer face) and distantly related (green, chair
legs) examples in function to the reference part (black,
cabinet door) are shown.
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Table 5. Total variation and highest variance of a single variable in appearance
(128-dimensional) and functional (64-dimensional) embedding spaces by
search type

Appearance embedding

space Functional embedding space
Search Total Highest Total Highest
type variation variance variation variance
Keyword 6.0x1073 1.4x107* 7.8x107* 7.9%x107°
Part 7.2x107° 1.4x107* 7.8x107* 72x107°
Workspace ~ 3.6x1073 52x107° 39%x107* 3.1x107°

spaces. The highest variance demonstrates the relative contribu-
tion of individual variables to the total variation. Based on
these values, the use of workspace searches appears to lead to
the retrieval of parts with the lowest overall coverage of both
spaces. Since the dimensions of the appearance and functional
embedding spaces differ, variances should be compared within
(by search type) and not across (appearance vs. functional) the
respective embedding spaces. Total variation is expected to be
lower in the functional embedding space, since there are 64
parameters, compared to 128 in the appearance embedding
space. At a high level, these results suggest that the search mod-
ality used impacted the breadth and diversity of inspirational
stimuli discovered.

In the present work, a multi-modal search platform was developed
and used to study how designers search for inspirational stimuli. A
cognitive study was conducted to investigate the impact of search-
ing with different modalities to retrieve inspirational stimuli in the
form of 3D-model parts. Findings related to the design of the
search platform and results of the cognitive study are further dis-
cussed in this section with added insight from qualitative results.

The design, development, and behavior of a multi-modal search
platform are presented in this work. Deep-neural networks were
trained to model relationships between 3D-model parts from
the PartNet dataset. By selecting a large dataset of 3D-model
parts as inspirational stimuli, data-driven, deep-learning-based
methods could be leveraged. 3D-model parts specifically contain
rich information and allowed semantic, visual, and function-
based similarities to be derived between stimuli. These computa-
tional methods were then also effectively used to develop a plat-
form to retrieve examples based on these features. Therefore,
beyond deriving multiple types of similarity, this work presents
a platform that additionally provides the flexibility to search
based on these characteristics of design stimuli. Various similarity
definitions were considered to help us understand the retrieval
behavior of the neural networks using a ranked-based measure,
as introduced in the section “Quantitative retrieval behavior of
neural networks”. The lowest accuracy measures were observed
when relevance was defined in terms of self-similarity (i.e., the
model retrieves the same part as the input). However, in the con-
text of this platform’s use, self-similarity is a highly conservative
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estimation given the difficulty of this task, as noted in the section
“Definition and results of self-similarity”. Alternative metrics are
therefore explored, including a concept-based (i.e., semantic) def-
inition of similarity and similarity of physical form. At the con-
cept level, the platform’s appearance network reached a top-10
test set accuracy of ~68% for identifying text labels of the corre-
sponding 3D model. By comparison, Zhang and Jin’s deep-learn-
ing approach achieved up to ~82% accuracy when labeling
clusters of 2D sketches with one of five categories (e.g., “canoe”
vs. “car”) (2020). Different from the present work, 2D images,
and not 3D models, were used in this study. Limited instances
of 3D-part-based retrieval, as it has been implemented in this
work, exist in prior research to compare retrieval behavior in
the context of physical-form-based similarity. In the application
of the platform in the cognitive study, the task was designed
such that the specific stimuli retrieved was less relevant than
how search intent was expressed. Moreover, we would like to
highlight that these definitions of similarity, while simplistic
and intuitive, only provide very limited perspectives on the ability
of the models in supporting design ideation. However, future
work can explore further direct validation metrics and an evalu-
ation of the accuracy of the retrieved examples from the user’s
perspective when performing our targeted task.

This platform was used to complete a search task during a cog-
nitive study, which was administered such that participants used
the three available search modalities during three distinct sub-
tasks. Participants were instructed to search for parts using key-
word, part, and workspace searches, in Tasks A, B, and C,
respectively. The overall goal of the task was to save parts that
served as inspirational for designing a multi-compartment dispo-
sal unit. A limitation of this study design is that the effects of
learning with each task and the stage of the design process during
each task may have influenced how search modalities were used.
However, for the aims of this work, understanding how each
search modality was used and interacted with was prioritized
over capturing how designers may have naturally used them to
achieve specific design outcomes. Each search modality was asso-
ciated with distinct search behaviors and interactions with
retrieved parts.

Affected outcomes include search frequency and how search
inputs were specified. Most searches occurred in Task B, by
part search. Prior work has shown that, when presented with ran-
dom examples, high click frequency on examples occurred to
examine them until something desirable was found (Lee et al.,
2010). Increased searches made with new part selections or simi-
larity slider positions may indicate this exploration for desirable
stimuli. When conducting workspace searches in Task C, more
searches made were new and introduced a new part to the work-
space input, than modified with adjusted similarity sliders from
the previous search. The same result was not observed with part
searches. One explanation for this finding is that the ability to
make incremental modifications to the main search input by add-
ing parts to the workspace may encourage more new searches. An
analogous incremental manipulation to visual features of the
search input in part searches is absent. Observed differences in
these inputs suggest that users value the ability to conduct
searches that vary individual parameters one at a time.

When interacting with the retrieved parts, most parts viewed
in context were those retrieved from keyword searches. One
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participant explicitly described their use of this function when
commenting on their keyword search strategy: “I was inspired
by some of the parts in the ’view in context’ like the ’lid”.
While participants could make part and workspace searches
using a previously retrieved part, text-labeled images of parts
from the view in context function may inspire subsequent key-
word search inputs. Stimuli combining semantic elements and
images were also found by Han et al. to help designers generate
creative ideas (2018). However, the provided stimuli may not
directly inspire new ideas, but help divert designers onto a new
train of thought to enable new ideas (Howard et al., 2011). A sim-
ilar process involving indirect stimulation was also observed by
Chen et al. during the use of a mind-mapping tool, where
retrieved results prompted further querying (2022).

The final outcome of the cognitive study relates to what partic-
ipants searched for and discovered. The lowest coverage of the
search space occurred when searching by workspace, as assessed
using metrics of variance within the appearance and functional
embedding spaces. Increased breadth of coverage may occur
when defining new keyword and part searches through inspira-
tion by external concepts. For instance, parts discovered when uti-
lizing view in context may inspire a new keyword search based on
a shown text-labeled part or a part search for functionally similar
parts. He et al. observed that concept-space exploration using
external information was common during interaction with a
concept-space visualization tool (2019). Future work may investi-
gate these cognitive processes and motivations for conducting
through think aloud protocols or in-depth post-task interviews.

The insights gained from the cognitive study aim to advance the
understanding of how designers search for inspirational stimuli,
and how search modalities can differently support these cognitive
processes. Distinct interactions within the platform, as discussed
above, may reflect the different cognitive processes underlying
search.

As introduced in the section “Cognitive processes underlying
search for inspiration”, search behavior can be broadly divided
into active versus passive strategies, which support situations in
which a specific goal exists versus where random encounters
with inspirational stimuli occur. In general, participants can be
assumed to be engaged in active search processes when defining
a search query (i.e., there is intention underlying search). Other
interactions within the platform can also afford the ability to
engage in search processes to passively inspire their next search.
As mentioned, passive search can be supported by information
gained by viewing parts in context. Previous work suggests that
participants want to be struck by inspiration and to search more
randomly (Herring et al., 2009; Goncalves et al., 2016). Increased
engagement with parts may therefore be a strategy to randomly
encounter inspiration and inspire subsequent searches. Parts
retrieved from keyword searches were the most engaged with, spe-
cifically by being viewed in context, which may indicate that
sources of inspiration not explicitly searched for may be especially
helpful when searching with a directly articulated input, such as by
text. Introducing additional means for passive search through ran-
dom discovery of inspirational stimuli may formally achieve what
participants found useful about viewing parts in context.
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The platform enables part and workspace searches to specify the
levels of appearance and function-based similarity of results to the
input. While adjustment of sliders provides a method to specify
desired search results, qualitative responses link the use of sliders
to, counterintuitively, more exploratory behavior. When asked to
“describe any strategies [used] when conducting part searches”,
one participant noted the use of sliders as supporting search
when a distinct goal was missing: “I would try both combinations
of functionality and appearance because I didn’t really know what
I was looking for and I wanted to see all my options”. The use of
similarity sliders is also mentioned as a way to explore limits of
the design stimuli space, in one participant’s part search strategy:
“I mainly used this as a way to look at possible new ideas I had
not considered before by moving the functionality slider to max
and the appearance slider to the lowest setting” and another par-
ticipant’s use of workspace searches: “I was trying several factors
that could play with changing the appearance and functionality
levels while adjusting it from the opposite to all being very sim-
ilar”. Previous work on searching with inputs specifying desired
similarity and variety of results has also shown that these param-
eters are helpful for finding relevant examples (Lee et al, 2010).
These responses support the use of providing mechanisms to con-
duct searches by adjusting parameters that assist with wider
exploration. Search can be specified based on desired diversity
or variety of stimuli, for example.

These contributions of our work encourage the further devel-
opment of multi-modal search systems, as well as research on cog-
nitive processes relevant to the search for inspirational examples
to support design. Improved understanding is needed regarding
when different approaches to search are more useful (e.g., direct
and active vs. exploratory and passive), and how to identify and
promote these processes through interactions with features of
search interfaces.

The work presented in this paper provides insight into how search
modality affects the processes designers use to search for and
retrieve inspirational stimuli to support design ideation. We
describe the development of a new multi-modal search platform
and the results of a cognitive study investigating the role of mod-
ality in search. The first main outcome of this work is the design,
development, and illustration of behavior of a multi-modal search
platform. A deep-learning approach was leveraged to construct
deep-neural networks based on semantic, visual, and functional
relationships between design stimuli from a large dataset of
3D-model parts. The platform affords inputs based on text,
3D-model parts, and assemblies of 3D-model parts to search
for additional parts. A variety of similarity metrics were used to
quantitatively understand the platform’s retrieval behavior using
rank-based accuracy measures. Secondly, the results of the cog-
nitive study conducted using the search platform were presented.
When engaging with the platform to search for parts to inspire a
solution to a given design challenge, differences between the three
modalities were observed in terms of frequency of search, how
search inputs were defined, interactions with retrieved results,
and the resulting coverage of the search space. Behaviors such
as increased search frequency and modified adjustments to search
inputs are proposed to indicate random exploratory behavior,
which can be enhanced in future creativity-support tools. Other
interactions leading to random external stimuli discovery that
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inspired new search inputs can be more formally implemented to
assist designers during different stages of the search process.
Overall, the results of this study contribute to recent work on
new search modalities to retrieve inspirational stimuli to enhance
design ideation. This study supports the need for further research
on both the search process itself, as well as on how modality
affects and aids how designers search.

The data that support the findings of this study are avail-
able from PartNet (https:/partnet.cs.stanford.edu). Restrictions apply to the
availability of these data, which were used under licence for this study.
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