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EVERY HAUSDORFF COMPACTIFICATION OF A 
LOCALLY COMPACT SEPARABLE SPACE IS A 

GA COMPACTIFICATION 

J. VAN MILL 

1. I n t r o d u c t i o n . In [4], De Groot and Aarts constructed Hausdorff com-
pactifications of topological spaces to obtain a new intrinsic characterization 
of complete regularity. These compactifications were called GA compactifica-
tions in [5] and [7]. A characterization of complete regularity was earlier given 
by Fr ink [3], by means of Wallman compactifications, a method which led to 
the intriguing problem of whether every Hausdorff compactification is a 
Wal lman compactification. An analogous question was posed by A. B. Paalman 
de Miranda ; can every Hausdorff compactification of a Tychonoff space be 
obtained as a G A compactification? We will give a partial answer to this 
question, suggesting t ha t the answer will be yes. This paper is organized as 
follows: in the second section we will recall the définition of G A compactifica­
tions and we will characterize the class of GA compactifications of a given 
topological space. Using an analogous characterization of Wallman compacti­
fications, given by Steiner [11], it then follows t ha t every Wallman compac­
tification is a G A compactification. In the third section we will show tha t every 
Hausdorff compactification of a locally compact separable space is a GA 
compactification. In fact we have a more general result from which this is a 
corollary. 

2. GA compact i f i ca t ions . Let X be a topological space and let f be a 
subbase for the closed subsets of X. Then f is defined to be a 

(i) Ti-subbase if for each x £ X and 5 G f such tha t x d S there exists a 
T e f with x e T and S H T = 0 ; 

(ii) weakly normal subbase if for each S, T £ f with S (^ T = 0 there exists 
a finite cover ^ of X by elements of f such tha t each element of °tt 
meets a t most one of 5 and T; 

(iii) normal subbase if for each So, T0 £ f with S0 P\ TQ = 0 there exist Si, 
7 \ 6 r with Si U Tx = X and Si H T0 = 0 = S0 H ZY 

Note t ha t a normal subbase is a weakly normal subbase. 
A subsystem °tt C f is called a linked system if every two of its members 

meet. A maximal linked system is a linked system not properly contained in 
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another linked system. By Zorn's lemma, every linked system is contained in 
a t least one maximal linked system. Define 

Xf(X) = \°i/ C f|^ is a maximal linked system}. 

If A C X then define A + = [°ti G X r ( Z ) | 3 I ( * : I C i | . T h e set 
Xf (X) can be topologized by taking f+ = {S+\S G f} as a closed subbase. Wi th 
this subbase Xf (X) is called /Ae superextension of X relative to f. Superextensions 
have been studied in [6; 9 and 12]. I t is easy to see t h a t every superextension 
is compact (in fact, \ç(X) is supercompact, i.e. it admi ts an open subbase °ll 
such tha t each covering of Xf (X) by elements of tyl contains a subcover of two 
elements of ^ ) . T h e subbase f+ has the proper ty t ha t each linked subsystem 
of tfi C X+ has a nonempty intersection, as can easily be seen. A closed subbase 
with this proper ty is called binary. If f is a TVsubbase, then X can be embedded 
in \ç(X) by the natural embedding i defined by i(x) = {S £ f|x £ 5 } . We 
will always identify X and i{X). T h e G 4̂ compactification Pç(X) relative to f 
now is the closure of X in X$-(X). As a mat te r of fact De Groot and Aarts 
obtained Pç(X) in another way; however in [6] it was shown tha t the compacti­
fication fiç(X) as defined above is equivalent to the compactification they 
defined in [4]. 

LEMMA 2.1 : Let f be a closed Ti-subbase for the topological space X. Then the 
following properties are equivalent: 

(i) fc(X) is Hausdorff. 
(ii) f is weakly normal. 

(iii) {S+ P\ /3f ( X ) | S G f} ^ weakly normal. 

Proof, (i) => (ii). Assume tha t $$(X) is Hausdorff and take S0, Si £ f such 
t ha t So H Si = 0. As So H Si = 0 it follows t h a t (S0+ H ft 0 0 ) H 
( S i + P i ft(X)) = 0 and hence there exist open UQ, U\ C ftPO such t ha t 
St C £/,(i = 0, 1) and U0 rMJi = 0. Then fc(X)\Ut is closed in ftpO and 
as Pç(X) is closed in Xf (X) it is closed in \ç(X) too (i = 0, 1). As f+ is a closed 
subbase for the compact space Xf(X), there exist Ttj £ f and Tt/ G f 
(i, j e {1, 2, . . . , «}) such t h a t 

(i) ft(z)\t/0 c u n r„+
; /5r(x)\t/1 c u n z\/+. 

(ii) û n r„+ n 5o+ = 0 = u n r„,+ n Si+. 
i= l ;=1 i=l ;=1 

Notice t h a t a finite intersection of finite unions of subbase elements also can 
be represented as a finite union of finite intersections of subbase elements. As 
f is binary, for each i £ {1, 2, . . . , n\ there exists a j 0 Ç {1, 2, . . . , w} such 
t h a t 7\ i 0+ H So+ = 0 and a j i £ {1, 2, . . . , n\ such t ha t 7 ^ + H Si+ - 0, and 
therefore we may assume t h a t there exist Tt £ f (i £ {1, 2, . . . , w}) and 
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77 G f (i 6 {1,2, . . . , n)) such that 

(i) ftpQWo c Û r+ ; j8r(x)Wi c u r/+. 
i=i i=i 

(ii) û r<+ n s0
+ = 0 = û 77+ n Si+. 

Then X C ft(*) C U*-i7\+ U U*-i77+ and consequently 

x = u"-i(r,+ n x) u u*-i(77+ n z) = u*«ir, u u*-i77. 
Moreover it is obvious that U*=i7\ H 50 = 0 = U*=i?Y P £1, which implies 
that f is weakly normal. 

(ii) => (i). See De Groot and Aarts [4, Lemma 9] or Verbeek [12, Theorem 
II. 2.3]. 

(ii) =» (iii). Choose 50
+ , S p G f+ such that 50+ Pi S p = 0. As 50 H Si = 0, 

there exist Tt £ Ç and 71/ ê f (i G {1,2, . . . , w ( ) such that 

(i) So n u r/ = 0 = Si n u r,. 
<=' j - i 

(ii) û r / u û r ( = x. 
It then follows that S0+ C\ U*=i77+ = 0 = 5i+ Pi U l - iTV and that 
X C & P O C U"- i77 U U"-i7\+; therefore 

h(X) = ui_i(r/+n /jr(x)) u i /Uidvn &(*))• 
(iii) => (ii). This can be proved in a similar way. 

THEOREM 2.2: A Hausdorff compactification aX of X is a G A compaciification 
if and only if aX possesses a weakly normal closed Ti-subbase 37~ such that for all 
To, Ti 6 3T with T0 P T1 ^ 0 we have T0 n T1 C\ X ^ 0. 

Proof. (=») This follows from Lemma 2.1 and from the trivial observation 
that if aX = fa(X), then {5+ H /3^(X)\S Ç f} is a closed TYsubbase for £ r(X). 

(<=) Suppose that aX possesses a weakly normal closed TYsubbase ^ such 
that for all TQ, Tl Ç J7" with r 0 P 7\ ^ 0 we have r 0 H Tx P X ^ 0. 
Define F\X = { T P X |T G ^ " } . We will show that aX = / W W -

(A) Let x f a l and define ^ ( x ) = {T P X\T e &~ and x G T}. We 
claim that % (x) is a maximal linked system (in 3T\X). That ^ ( x ) is a linked 
system is evident. Suppose that % (x) is not maximal linked. Then there 
exists a T G 3T such that ^ ( x ) \J {{T C\ X)) is linked and T P X g <%(x). 
Then x $ T and since J7" is a closed TYsubbase, there exists a T0 G ^ " such 
that x e To and T0 C\ T = 0. Then r 0 H X Ç <^(x) and ( r 0 H X) H 
(2" Pi X) = 0, which is a contradiction. 

Define a m a p / : aX —» X^i^pQ by/ (x) = ^ ( x ) . We show the following. 
(B) / is continuous. Choose T C\ X £ ^"]X. Then x 6 / - 1 ( ( m i ) + ) «=» 

f(x) e (Tnx)+^rr\x e /(*) = ^ (x) <=> x e T, which shows that / is 
continuous. 
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(C) / is one to one. Choose x, y £ aX such that x 7^ y. Then there exist 
To, Ti Ç 3~ such that x 6 T0 and ^ G Ti and r 0 H Tx = 0. Now 
r 0 n Z Ç °U(x) and TiC\Xe <%(y) and therefore, as ( r 0 H X) H 
( T ^ n X ) = 0 wehave / (x ) = <% (x) 5* <% iy) = f(y). 

(D) / is the identity on X. Choose x £ X. Then f(x) = °ll (x) = 

{mx| r e J andxcr) =x. 
(E) f(aX) = Pf\x(X). The weak normality of Ĵ ~, together with the prop­

erty that for all TQ, Tx £ <T with T0 H Tx ^ 0 we have r 0 C\ Tl C\ X 9* 0, 
imply that 3T\X also is weakly normal and consequently $p\x(X) is Haus-
dorff (Lemma 2.1). Therefore j{aX) = &g-\x(X), since X is dense in aX. 

It now follows t h a t / is a homeomorphism, which on X is the identity. This 
completes the proof. 

Using an analogous characterization of Wallman compactifications, given 
by Steiner [11], we immediately obtain the following remarkable corollary: 

COROLLARY 2.3. If a Hausdorff compactification aX of X is a Wallman com-
pactification, then it is a GA compactification. 

Many compactifications are Wallman compactifications; therefore it follows 
that many compactifications are GA compactifications. 

In the following section we will use Theorem 2.2 to obtain our main result. 

3. Every Hausdorff compactification of a locally compact separable 
space is a GA compactification. 

THEOREM 3.1: Every Hausdorff compactification aX of a locally compact space 
X such that weight (aX) ^ 2No is a GA compactification. 

Proof. Let 38 be an open basis for aX with card (38) rg 2s°. Without loss of 
generality we may assume that 38 is closed under finite intersections and finite 
unions. Define 

<*f = {(daX(BQ),c\aX(B1))\Bi e 38(i = 0, 1) and 

cWCBo) r\ daX(B1) = 0}. 

For each pair (daX(Bo), daX(Bi)) £ ^ choose an / £ C(aX, I) such that 
f(daX(B0)) = 0 and f(daX(Bi)) = 1. Let &~ denote the set of mappings 
obtained in this way, and assume that Ĵ ~ is most economically well-ordered 
(denote the order by < ). Note that card (3^) S 2K °. By transfinite induction 
we will construct for each / Ç ^ a ô / G (0, 1) such that 

(*) c\aX(f-'[0, df)) H cU^-^0, df)) * 0 ) 
=> cU(/-1[o, 5,)) r\ cUte-^o, hg)) n x * 0-

f o r a l l g < / ( g € &). 
Let / G & and define Je = {f-l(p)\X\p G f(aX\X)\ U {{x}\x 6 X\. 

Then ^ i s an upper semicontinuous decomposition of aX such that the decom­
position space ctf(X) is a Hausdorff compactification of X with f(aX\X) as 
remainder. Let Pf denote the projection map. Then Pf is the identity on X. 
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Moreover define hf : af(X) —> J by hf =• / o P / _ 1 . Then A/ is continuous and 
the diagram 

« I >af{X) 

% 

commutes. Notice that hf restricted to af(X)\X is a homeomorphism (we will 
identify af(X)\X and hf(af(X)\X)). 

Let/o be the first element of &~ and define 5/ = \. Assume that all 8g have 
been constructed for all g < f(g £ ^) such that (*) is satisfied. 

(A) Let U be an open subset of af(X) and let 

A = {ô e (o, î)!*,-1^) nûn (af(x)\x) 
* hr^o, ô) n un (af(x)\x)\. 

(if B C af(X), then 5 denotes the closure of B in af(X)). Then 4̂ is a subset 
of f(aX\X) while moreover 4̂ is countable. Indeed, choose 5 £ I\f(aX\X). 
Then 

V t̂o, «) n £7n (tt/(x)\x) c Ar̂ o, ô]n On (af(x)\x) = 
V^o, 5) n ur\ (af{x)\x) cft/^BMjn i/n («,(*) VO. 

since / - 1 (<5) H (aX\X) = 0. 
To show that A is countable, assume that A were uncountable. Then as A 

is an uncountable subset of the real numbers it must contain a condensation 
point. What is more, it is obvious that there even exists a condensation point 
5o which is a limit point from below. Now, let 0 be an open neighborhood of <50 

in af(X). Then there exists a ôi £ O Pï A such that 5i < do and consequently 

*i e hf-
l[o, d0)non Ucon A,-1^, a0) n u. 

Therefore, it follows that <50 £ A^fO, ô0) H C/ n (af(X)\X), which is a 
contradiction. 

(B) There exists a 50 £ (0, 1) such that 

g-l[o,ôg)nxn Ari[o,50) n Mx)\x) 
= g-m 5,) n A.-̂ O, 50) n x n (af(x)\x) 

for all g < / (g £ J r ) . As card {g £ J ^ g < /} < 2*°, since the well-ordering 
is most economical, and as X (being locally compact) is open in af(X), we 
conclude from (A) that 

card ( u \à £ (0, l ^ g ^ O , «,) H X n A^tO, 5) H ( a ; ( I ) \ Z ) 

^g~1[o,ô,)nA/-
1[o,ô)nxn M ^ ) \ * ) } ) < x0-2

Ko = 2x\ 
and therefore such a choice for 50 is possible. 
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(C) Define Sf = ô0. We claim t h a t (*) is satisfied. Take g G ^ such t h a t 
g <f and assume tha t c U C f - ^ O , 8f)) P\ dUCg-^O, ôg)) j * 0. Then 
Pf(c\ax(t

l[0, ôf))) H Pfidaxig-^O, dg))) 7* 0 and consequently 

PftKo, sf) n g-m « n i ^ 0, 
since it is easily seen t ha t P / c l ^ t / ) ) = U C\ X for each open UQcxX. 

Therefore 

Ar̂ o, 5,) n g-i[o, o n z ^ 0. 
Now assume tha t 

ft/-1^, df) n g-̂ o, y n i n z = 0. 
I t then follows t ha t 

= Ar^o,of)ng-^o,onzn MX)\x) *0, (B) 
which implies t ha t A/^fO, 5/) H g_ 1[0, 5 )̂ P\ X ^ 0, which is a contradict ion. 
Therefore hf-

l[0, ôf) H g-^O, S j n i n X ^ 0. Now choose 

x eFÎH)ng-m6 g)nxnX\ 
then x G daX(f-l[0, bf)) C\ d ^ f e " 1 ^ , 5,)). T h u s (*) holds indeed for 8f; this 
completes the construction of the 8f(f £ J^~). 

(D) Define s/ = { c W C / - 1 ^ , df))\f £ J H - I t is easy to see t h a t stf is a 
closed base for « J . Moreover it is clear t h a t for all A0, A\ Ç ^ with 
i o H i i ^ 0 it follows t h a t A^C\ AXC\X ^ 0; hence, by Theorem 2.2, it 
suffices to show tha t srf is weakly normal and T\ to prove the theorem. 

Take AQ, Ax £ ^ such t h a t Ao C\ Ax = 0. Then , using the fact t h a t aX is 
compact Hausdorff, there exist closed sets G0 and Gi such t h a t A0 C\ G\ — 
0 = Go r\ A i and GQ^J Gi = aX. Now, since Se is closed under finite inter­
sections and finite unions there exist BQ, Bi £ SS such t h a t A0 C ^ o C c l a X ( ^ 0 ) 
and Gi C 5 i C cW(JSi) and cl a X(^o) H c l a X (£ 0 ) = 0. Now choose , 4 / G s/ 
such tha t c l a x(^ i ) C Ai and ^4 / Pi c l a X (^o) = 0. In the same way we can 
find an A0' G j / such t ha t G0 C -4 o' and 4 ( / H Ai = 0. Therefore A C\ Ai = 
0 = , 4 ' P , 4 i and AQ VJ A\ = OLX\ Therefore J3^ is a normal closed base. T h a t 
s/ is also T\ can be proved in the same way. 

COROLLARY 3.2. Every Hausdorff compactification of a locally compact separ­
able space is a G A compactification. 

Proof. Let aX be a Hausdorff compactification of a locally compact separable 
space X. Then aX is also separable and consequently weight (aX) ^ 2 s ° 
(Juhâsz [8]). 

Remark. In the proof of Theorem 3.1 we, in fact, implicitly made use of a 
concept called strongly Ni compact, which is a very useful concept in compact i -
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fication theory. It was introduced in the theory of Wallman compactifications 
by E. S. Berney [2]. Parts (A) and (B) of the proof of 3.1 are modifications of 
a technique also due to Berney [2], 
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