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CLASSICAL ORTHOGONAL POLYNOMIALSAS MOMENTS

To Gian-Carlo Rota, a true friend, and an inspiration

MOURAD E. H. ISMAIL AND DENNIS STANTON

ABSTRACT. We show that the Meixner, Pollaczek, Meixner-Pollaczek, the con-
tinuous g-ultraspherical polynomials and Al-Salam-Chihara polynomials, in certain
normalization, are moments of probability measures. We use this fact to derive bilinear
and multilinear generating functions for some of these polynomials. We also comment
on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials.

1. Introduction. The umbral calculus of the last century was an attempt to treat
polynomials as if they were monomials. For a given sequence of polynomials {pn(X)}
this means that one can take an identity involving {x" : n=0,1,2,...} then replace X
by pn(X) provided that we develop a calculus to interpret the resulting identity. In the
1970's Rota popularized the umbral calculus by putting it on solid foundations and by
showing its significance in combinatorics and special functions, [26], [19].

In this paper we consider linear functionals L, whose n-th moments are orthogonal
polynomials, and which have the integral representation

(L.1) (Lalf)= [ f(ddu(xa).
for some measure du(x; a) that depends upon a parameter a. Thus
(La [ X") = pn(@).

In particular, we give explicit measures du(x; @) whose moments are various classes of
classical orthogonal polynomials. A summary of such polynomialsisgivenin Section 6.
Other authors also used representations of polynomialsas moments. Karlin [20] used this
in his research on total positivity. Rahman and Verma[25] observed that the continuous
g-ultraspherical polynomials are multiples of the moments of a probability measure. We
generalizetheir result to the Al-Salam-Chihara polynomialsin Theorem 3.1.

Theintegral representation (1.1) for L, can allow for simple evaluations of generating
functions. For example, if

(12) G = - ra(b)"
n=0
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is the generating function for any set of polynomials rn(b), then

13 [ s dutaa) = 3 @)

We will use (1.3) extensively to find bilinear generating functions, when p, = ry,. (This
is called the Poisson kernel if p, is orthonormal.) However (1.3) can used for any set
of polynomials rn(b), once the measure du(x; @) is known. For example, it is easy to
give an integral representation for abilinear generating function for g-ultraspherical and
p-ultraspherical polynomials.

In [18] we used the fact that the moments of the measure of the Al-Salam-Carlitz
polynomials [1] are the continuous g-Hermite polynomialsto derive bilinear and multi-
linear generating functions for the continuous g-Hermite polynomials. In Section 4 we
similarly use the results of Section 3 on Al-Salam-Chihara polynomialsto give adirect
evaluation and an extension of the Poisson kernel of the Al-Salam-Chihara polynomials.
We also derive avery general multilinear generating function for the Al-Salam-Chihara
polynomials. This extends our earlier results [18] on continuous g-Hermite polynomi-
als because the Al-Salam-Chihara polynomials are a two parameter extension of the
continuous g-Hermite polynomials.

In Section 5 we point out that the continuous g-ultraspherical polynomials are Al-
Salam-Chihara polynomials. We then combine this fact with our multilinear generating
functions of Section 4 to establish multilinear generating functions for the continuous
g-ultraspherical polynomials. In particular we show how the results of [16] and [6]
imply an earlier result of Gasper and Rahman [13]. In Section 5 we give a new in-
tegral representation for the continuous g-ultraspherical polynomials as moments. This
integral representation isthen used to derive abilinear generating function for the contin-
uous g-ultraspherical polynomials. As a byproduct we obtain a transformation formula
(Theorem 5.5) expressing a sum of two 4¢3’s as a combination of different 4¢3's. This
transformation is of independent interest.

In Section 2 we consider the functional

_(l-o 3" r@@a+b+2)

(14)  (Mapc|f):= F@ Db D) /c 1(1 — X)3(x — ¢)°f () dx.

It turns out that the moments of My, are essentially the Meixner polynomials. We also
obtain generating function results for the Meixner-Pollaczek and Pollaczek polynomials
in Section 2.

In Section 3 we prove (see Theorem 3.1) that the moments of the functional for the
big g-Jacobi polynomials are Al-Salam-Chihara polynomials. In this case the functional
Lab.c isdefined by

(1.5) (Lane | f)= [~ f0dutxa.b.o).

The measure u(x; a, b, c) is
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(ag.bg, cg,abg/c; Q) (X/a.X/C; Q)0

(1.6) nixa.b.c) = ag(q. c/a.aq/c, abe?; Q) (X, bX/C; 0o

X Y [ag™ eqga (X) — cq™ eggra (X)].
n=0

where ¢,(X) isaunit mass at x = u. We follow the notation in [12].

The measure p in (1.6) is normalized so that its total mass equals one.

After this work was completed Ismail, Rahman and Suslov [17] found other proofs
of the resultsin Section 4 and showed that it leads to a new and very promising theory
of double series by transforming them to sums of two single series. The proofs in [17]
are more technical than the ones given here.

The notion of the g-integral is useful in understanding and motivating identities
involving g-series. The g-integral is defined by

(17) [0 dgu =21~ @) > oM (aa™)
' m=0

(1.8) /abf(u) dgu 1= /Obf(u)dqu— [t dgu.

It is clear that integration with respect to p of (1.6) amounts to g-integration. In fact
our representation of the Al-Salam-Chihara polynomials as moments provides a new
g-integral representation for the Al-Salam-Chihara polynomials. This g-integral repre-
sentation has proved to be very useful here and elsewhere[17].

2. Orthogonal moment functionals. In this section we give functionals whose
moments are the Hermite, Laguerre, and various Meixner families of polynomials. We
also use (1.1) to derive new generating functions. We explain how these polynomiasare
related to the umbral product of Roman and Rota [26].

We now consider functionalswhose moments are orthogonal polynomials. A theorem
of Boas [9, p. 74] asserts that given any sequence of real numbers {an,} there exists a
signed measure « with finite moments such that

an = /O X da(x).

Thus any sequence of orthogonal polynomials is a sequence of moments for a certain

functional.
Let L, and My, be functionals so that {ry(a)} and {sn(b)},
(21) @) = (La|x"), su(b):=(Mp|X").

are orthogonal polynomials. Roman and Rota [26] defined the product of two linear
functionals L and M acting on polynomials of binomial type by

@2 (LM o) = 35 (1) (L o) M o)

n
k=0
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If (L) =2, f(x)dA(X) and (M | f) = /> f(y) du(y) then the product (2.2) becomes

(23) (LM ()= [7 [ foc+y) A du(y).

The problem is to characterize the pairs {rn(a)} and {s\(b)} so that {(L.M, | x")}
is a sequence of orthogonal polynomialsin a for infinitely many b’s or vice versa. Al-
Salam and Chihara [2] solved an equivalent problem and their results show that such
ry's and s,’s have to be among the Hermite, Laguerre, Charlier, Meixner, Meixner-
Pollaczek or the Al-Salam-Chihara polynomials. For the rest of this section we consider
the first five cases. We give the functionals for the Hermite and Laguerre polynomials,
show that the Charlier, Meixner and Meixner-Pollaczek polynomials are moments of a
gamma distribution on [a, 0o), a beta distribution on [c, 1] and a beta distribution on
[c!/2, ¢~1/2]. The Al-Salam-Chihara polynomials are moments of the measure of the big
g-Jacobi polynomials, as we shall seein Section 3.

HERMITE AND LAGUERRE POLYNOMIALS. It isclear that

1 o a2 _ 1 > n
ﬁ/_we TIYY = s [.ev@+yrdy

[n/2] / n ok [n/2] n! g2
> \2k>a /2= 2 smam a1
Therefore 1
@4 o= [y = @)

Thus the Hermite polynomials are moments. In fact it is this property that Slepian [27]
used to prove the Kibble-Slepian formula. For example, the Poisson kernel follows from

S HXH W) n _ 1 o & wox2 Ha(®)(tu)"
2~y t‘ﬁ./foon;oe( T

1 S 2 22
- —(u—x) e2uyt—t v
— e u,
J ./_oo

after completing squaresin the argument of the exponential.
The Laguerre polynomials {n! L%(x)} are moments of an explicit functional

(25)  nLYx) = x/2 /O T ecuym/2) (2 /x0)du, n=0,1....;a > 1,
[29, (5.4.1)]. The Hille-Hardy formula[29, (5.1.15)]
(2.6)

o n! t"

n2:;,r(05+n+1) 1t 1-t
follows from (2.5) and the generating function [29, (5.1.16)]

LAILR(Y) = (1 -t exp

t(x+ y)}(xyt)a/zla<2«/m)_

o0 tn

2.7) >

2 m'—ﬁ(x) = € (xt)"/2Ja(2v/x))
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through the use of Weber’s second exponential integral [30, (13.31.1)]
%0 1 a2 +b? ab
(2.8) ./0 exp(—p-t9) J, (at) J,(bt)t dt o2 exp( pr )I,,( sz).

The Hille-Hardy formulais the Poisson kernel for Laguerre polynomials.

The Laguerre polynomials {n! L%(x)} for x < 0 are moments of positive measures
for al n. To seethisreplace x in (2.5) by —x then replace J,, by |,. Theresulting integral
convergessince [30, (7.23.3)]

lo(X) A (2mX)Y%€,  x— +00.
THE MEIXNER POLYNOMIALS. Consider the functional Ma g c whose moments are

_(1-0 " r(A+B+2)

(29) Hn FA+Dr(B+1)

/C l(1 — x)A(x — ¢)Bx"dx.

The Euler integral representation [10, (2.1.10)] implies that

(2.10) fin = CF1(—n,B+1L;A+B+2;1—1/c).
Setting
(2.11) B=—a—-1 A=p+a-—1,

and using the explicit formulafor Meixner polynomials[11, (10.24.9)], we have proven
the following theorem.

THEOREM 2.1. If Rea < 0 and Rea+ 3 > 0, the n-th moment of the functional
Mgia—1-a-1c iSthe Meixner polynomial, yn = c"ma(a; 3, )/ (B)n.

Thereferee pointed out that Theorem 2.1 isin Karlin's interesting paper [20]. Karlin
[20] also noted the results for Laguerre, ultraspherical, Charlier, and Meixner poly-
nomials. Karlin used the fact that the orthogonal polynomials under consideration are
moments and applied this fact to obtain total positivity results for kernels generated by
polynomials orthogonal on a half line. We thank the referee for this information, ac-
knowledgeKarlin's priority, apologizefor the oversight, and highly recommend reading
Karlin's paper to the reader.

If we put more restrictions on a, ¢, and 3, then the functional in Theorem 2.1 is
positive definite. This forces certain determinants to be positive [9, p. 14], and leads to
another result of Karlin's, namely that if c < 1, — < a < 0, andn > 0, then

det{m.(a 3,6)c /(B)isj : 0 <j.k <n} > 0.

The Meixner polynomials have the generating function [11, (10.24.13)]

(2.12) i;—:m(x; B,0=1—-t)"*1—t/o), [t| <min(L |c|),
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and satisfy the orthogonality relation [11, (10.24.11)]
(2.13)
>

k=0

Ck(ﬂ)k

ma(K; 6, M (k; 3,¢) = n1(B)nC "L — ©) P6nj. >0, 0<c< 1.

We shall assume0 < ¢ < 1.
From (2.12) and Darboux’s asymptotic method [29] we see that

c T (—x+n)

(2.14) M(X; 8. €) & A=/ (—x)’

X#0,1,..., n— oo,

while

215  myx g0~ LOTXED

FrB+x
In (2.12) wereplace x by y and t by tu then apply Ls,4x—1.—x—1.¢, t0 the variable u. When
X#0,1,...thisgives

(1-1/c), x=0,1,..., n—oo0.

(2.16)
nZ;) (ﬂl)n T (X, B1. C1)mi(y; B, €)

(1 — Cl)l le(/61) x+31—1 —x—1 —B-y y
= TR / (1—u) U—c) ™ @ —tuy " Y@ —tu/c)du.
Interchanging integration and summation can be justified from (2.14) and (2.15).

After the changeof variableu = ¢; +(1—c;)vweidentify theintegral ontheright-hand
side of (2.16) asan Appell function F4, [10, (5.7.6)]. Theresult is[10, (5.8.5)]

(2.17) i} ( B:) 5 Mh(X; B1. C)Mu(y; 5. €)
_(1—tcy/cy (1 c)t (1—cyt
_(1—tcl)5+yF1( X Y64y —ct’ 1—clt)'

Although (2.17) was derived under the assumptions Rey < 0, Rey + 31 > 0 and
0 < ¢1 < 1thefirst two conditions can be relaxed by analytic continuation of the left-
hand side of (2.17) taking into account (2.14) and (2.15). The right-hand side of (2.17)
can be analytically continued through standard analytic continuation of the F; function
in[10,5.8]. Inthecase 8 = 31 theF1 in (2.17) reducesto a,F; multiplied by an algebraic
function, [10, (5.10.1)]. The result after replacing t by tcis

(2.18)
X (ceat)”
2o

= (1 te)’(1 — toy(L - tccﬂ’xfy*ﬁzFl( 5 %) '

My(X; 3, C1)M(Y; B ©)
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Observethat (2.18) issymmetricinthepairs(x, ¢1) and (y, ). Also notethat theright-hand
side of (2.18) is positive when x and y are nonnegative integers and c. ¢;, tc, tc; € (0, 1).
It isalso positive for x < 0,y < Oand c. ¢y, tc. tcg € (0, 1). In thelatter case we require
the argument of the ,F; to bein [0, 1). Formula(2.17) is due to Meixner [22].

If in addition to 3 = 3; we aso require ¢ = ¢; then (2.13) shows that (2.17) will be
the Poisson kernel for the Meixner polynomials, up to a constant factor.

THEOREM 2.2. The Meixner polynomials satisfy the connection relation

(2.19)
(1 t01/9 & o)

1—tc) &

1-—- 1-—
1(—X-, =Y. B+Y. 01 (c— gﬁt (l — gﬁt) Ma(X; B1. €1)

=t"(1 — c)rmu(y; 8. ©).

ProOOF. Thisfollowsfrom (2.13) and the bilinear generating function (2.17).

It is clear that the sum on the left-hand side of (2.19) represents integration with
respect to a discrete measure, hence (2.19) can be viewed as an integral equation. In
particular the case 3 = 31 and ¢ = ¢; providesan integral equation whose eigenfunctions
are Meixner polynomials. The integral equation (2.19) can be expressed as an integral
equation with a symmetric kernel when 3 = §; and ¢ = ¢;. The completeness of the
Meixner polynomials in the L, space weighted by their orthogonality measure shows
that the Meixner polynomials are the only eigenfunctions of the integral equation (2.19)
and one can identify the eigenvaluesfrom (2.19).

Theorem 2.1 has a curious implication. Assume that a sequence of polynomials
{pn(y)} are orthonormal with respect to a functional L whose moments are given in
Theorem 2.1, and let

(2.20) po) =1 pnly) = z; Cai¥-
2

Then

n
bk = L(Crypn()) = Cic D Cajitisi-
=0

which may be rewritten as

n )
(221) X (T) (—1Y2F1( — n.x—n+1;2 — 2n— b; d),F1(—k — j, —x; b; d)
j=0
_ KA (x — k+ L)(b + X)x
(b)ax(b + k — 1)
The Charlier polynomials {cn(x; @)} are alimiting case of the Meixner polynomials,
[11, (10.24.16)]

bnk.  0<k<n.

JLTO B7"ma(x; 8, a/3) = cn(X; ).

This means that generating functions for Charlier polynomials will follow as limiting
cases. It also follows by direct calculation that c,(—a — 1;a) is a multiple of the n-th
moment of the weight function (x — a)*€** on [a, oo). The details are omitted.
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THE MEIXNER-POLLACZEK POLYNOMIALS. They are defined as[11, (10.22.21)]

ﬂ no

(2.22) PM(X; ¢) == oF1(—n X +ix 2\, 1 — e 29),

They also called Pollaczek polynorri alsonaninfinite interval [11], [29] and the Meixner
polynomials of the second kind [9]. We shall follow the terminology in [7].

Itisclear from (2.12) and (2.22) that the M eixner-Pollaczek polynomialscan formally
be written as Meixner polynomials. In (2.17) set

(223) B=2\, B1=2\1. —X= A +if, —y=A+in. c=€, ¢ =N,
Thisis equivalent to considering the functional

(/7 — /) A B (A+B+2)

(L1t = FrA+1)rB+1)

1/2
L L, (€2 = X)A(x = cHAPF(x) dx.

After replacing t by t€©=%1 in (2.17) we get

o0

> on )nt"PM(é 61)Pq (- ¢)

(2.24) =(1- tei(‘ff>1*‘,’>))*>\*ill(1 _ tei(9f>1+‘f’))*)\+i’l
2|tsm¢1 —2itsing; )

XF1 (Mg i€ A +in, A — i, 20, s, it

Here again the case A = \; reducesthe F; to amultiple of a,F1 and we get

[ee]

np\ ’
nZ(;) (2>\)nt P (5 ¢1)P (77 ¢)
(2.25) =(1- té(9’>1—¢>))—)\—in(1 _ tei(qﬁ—q‘)l))—)\_if

X (1 — td@rycsin (/\ +Hig, A +in

—4tsing sin ¢,
(1 — télo—o)(1 — ter—0)) )

The orthogonality relation for the Meixner-Pollaczek polynomialsis

i 22-1
(25“’](,‘15) e_(ﬂ_zqg)x“—()\ +iX)|2 ( /\)n
7’[‘ n

5mn

(226) [ PA(x.)Phx.0)

Therefore (2.25) with ¢ = ¢, isthe Poisson kernel for the Meixner-Pollaczek polynomi-
als. The special case ¢ = ¢, of (2.24) is due to Rahman [24, (5.2)]. Rahman aso noted

(2.25).
THE POLLACZEK POLYNOMIALS. These polynomials are defined by [11, (10.21.10)]
(2.27) P)(cosf. a.b) := @ A)”ZFl( n, A +ih(6); 2x; 1 — e 2%),
where o+b ‘b
(2.29) h(g) := 2% D x=cosé.

sngf  J1—x
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They satisfy the orthogonality relation
(2.29) /0 " P (cosd, a. b)P) (cosb. a, b)e® ) (sin 0)2 | (A +ih(®)) \2
= ol-2\ r@x+n
nfA+a+n) ™"

Note that (2.22) and (2.27) indicate that x and ¢ in (2.22) are now replaced by h(6)
and # in (2.27). Thus (2.24) and (2.25) can be translated to generating functions for the
Pollaczek polynomials. In order to find the Poisson kernel for the Pollaczek polynomials
we haveto incorporate the term a+n+ X\ which amountsto taking alinear combinations
of the left-hand side of (2.25) and its derivative with respect to t.

3. Al-Salam-Chiharapolynomials. Thebigqg-Jacobi polynomialsare[12, (7.3.10),
p. 167] L

. N g ", abg™, x

(3.1) Pa(x a. b. C; ) = 52 o
Using (1.5) their orthogonality relation is[12, (7.3.12)],

(9. ba, abg/ c; q)n(—ac) "gn("-1/2
(abg. ag, cq; g)n(1 — abg?™*1) mn-

‘qq

<Lab.c | Pan> =

In this case we have

(a.ca aqe, abg’; @) _ (0.29/C0)@”  rag.abg/c | - i

2 i b oqabas -t~ Gaabac o\ s |¢97)
c™(cq/a. O; Qs c b

_c™(ca/a.q;9) b1 qq|qqn+1

a(cq, bg; 9)- cg/a
To simplify the right-hand side of (3.2) we appeal to the three term transformation
formulain [12, p. 64, (4.3.5)], namely

(3.3)

A.B (B.q/C.C/AAZ/q. & /AZ;0)x Ag/C.Bg/C
2l ‘qZ>+(C/0|~BQ/Qq/AAZ/CCq/AZ;q)oo 2 ?/C I 2)

_ (ABZ/C.C]/C;Q)OO C/A~CQ/ABZ
"~ (AZ/C.q/A Q) 2¢1< Cq/AZ ‘q Bq/C).

In (3.3) we choose A, B, Cand Z as

(3.4) A=aq, B=abg/c, C=ag/c, Z=qd"%
The result is the three term relation

(3.5)

261 aqg;‘i/ “lad)

abg/c.c/a. 1/c.ad™, g "/a;0)s ca. b .
,aba/c.c/al/cad™.q"/aq) or( %P9 g q)

(a/c,bg, 1/a, cq™,q"/c; g)w qc/a
_ (abg™2,c/a; 4)x 1/c.qg™1/ba
(cg™, 1/ 0) 2 q"/c o)

https://doi.org/10.4153/CJM-1997-024-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-024-9

GENERATING FUNCTIONS 529
This leads to the following more compact form of (3.5)
(3.6)
20 (3 abg/c ‘ n+1) a"(aq/c; Q)
ag/c ' (ag. ba/cq; 0)
+c”(l —c/a)(cq/a; 0) 2¢ cq bq
(1—a/c)(ba. ca; @) qc/a
a’(aq/c. c/a. abg™?; g)s 1/c.qg"'/ba
~ (abg/c.ag. 1/a. cq™; 0)x 2¢1< q"/c ’ o qb)'

Therefore (3.2) reducesto

} g. q“+1

_ (29)"(bg, cg. abq™2 ), (1/c.q 7" /ab
" (1/aco™. ab?; 0)s 2“51( q"/c ‘q.qb).

The g-analogue of the Euler transformation is (111.3) in [12, p. 241]
1/c.qg™1/ab (/a0 , rq".abg/c
@7z a"/c o) = (ba; Q) 2o a"/c a1/a).
Thisfurther simplifies i, to the form
(cg; @), (g "abg/c
NP
(3.8) pn = a'q @00 m( " /c \q- 1/a)-
The Al-Salam-Chihara polynomials, [5], [7], [8], are

. t.€f, ty e
Pn(X, t1, o) = 3¢2(q ' tlltz. 01 { q, OI)

_ (e q)ntle™ <q‘”,t2e“9 ‘ qe‘“’)
T (e \atel/y t

The second equality follows from a 3¢, transformation and the g-anal ogue of the Pfaff-
Kummer transformation [8]. In order to relate the ni’s to the Al-Salam-Chihara polyno-
mials we make the parameter identification

(3.9 a=t€/q, c=t6/q, b=te"/q.
Hence un = pn(cosé; ty. to).

THEOREM 3.1. Themomentsof the probability measure u(x; a, b, c) arethe Al-Salam-
Chiharapolynomials{pn(cosé; 1, t;) } wherea, b, candt;, t,. § arerelated through (3.9).

Itisimportant to observethat Theorem 3.1 isequival ent totheg-integral representation
(see[12, p. 19])
(3.20) pn(cosb; ty,t2)

_ (e’ e 1,6 t,e ;) /‘1ew (axe’ /t1. gxe ™" /t1; 0o
(1 - q)tlele(q e—2i0’ quiH; q)oo e (Xv tZX/tl; q)oo

n
X" dgX.
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Let us now integrate certain functions against the measure p(x; a, b, ¢) with respect
to which the big g-Jacobi polynomials are orthogonal. The simplest function is the
g-analogue of the binomial theorem

XD _ & A/ D, n
3.11 f(x) = = x)".
(1) O = e & @, Y
On one hand we have
L ( /U q)n n
abcf = Z 1"pr(cost; ty, to).
n=0 (0 On
On the other hand we can explicitly eval uate Lapcf. Thisimplies
(3.12)
2 (A /15 Qn n
—————pn(cosb;t,,t
r;) (q’ q)n pn( 1, 2)/J’
20 (AX; Q)0
= du(x;a.b, c
L G dutsab.0

_ (ag. bg, cg. abg /C; Qo [ (\ag. abg/c; 9)~ b (apq. ag.abq/c ‘ q q)
(c/a,abg/c, abe?; g) | (1ag. ag, aba/c; g)s Aag,aq/c
 ¢(eg.ca/a; ) quc. cg, ba }
a(uca. ca. bq;q)w3¢2( Acg, cq/a ‘ & q) '
We next combine the above 3¢,’s into a single 3¢, by applying the transformation [12,
(4.3.1), p. 63]

(313) 362 (

'q ABC)
_ (E/B.E/Ci0)x D/A B.C
~ (E.E/BC;Q) ° ¢’ crD, BCq/EI
(D/A, B.C,DE/BC; ), E/B.E/C,DE/ABC
+ : 3¢>2( | )
(D, E.BC/E, DE/ABC; Q) DE/BC, aE/BC

With the parameter identification in (3.13) as

(3.14) D/A=abg/c, B=agq. C=aug, BC/E=a/c,
so that

(3.15) A=)c/b, B=ag, C=auq D=)ag E=audc,
we obtain

(3.16)

(Mag, ag/c; Q) abq/c. ag, aqu
(ag. pag, abg/c; q)oo3¢2< Aag.aq/c ‘q, q)
(Aqe,c/a; ) 1qc, cg. bg
@ —a/9)(ca. nac. b 3= ac.oa/a | %9
_ (c/a pcad?, Aag. ga/c; g)o 5 ()\c/b aq, :aq | 0q )
(uqc. cg, ag, pag. abq,/c; ) > 2\ Aag, aucq? '
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Thus we have established the generating function

A/ Dn o .
(3.17) nX::O—(q; D " Pn(cos; ty, to)

_ (bg, paca?, Aad; )~ Ac/b, ag. auq
~ (abe?. pac, pag; o) a0 \ag, aucep |aba)

_ (e 2, Mi€7;0) M/t 1167, uty €7 —io
(it ptie . i1 €7 0)ss 3¢2( A€, utf { o be )

Formula (3.17) is in Suslov’s unpublished notes [28] and we acknowledge his priority.
The special case A = tt, and . = t/t; leadsto the known generating function [2], [5], [8]

2 (tytz; g)nt"
(3.18) nX;) (g; g)nt]

(tt]_. ttg; C{)Qo

Pn(C0s0;t1, &) = Gt o -

viathe g-analogue of Gauss' theorem, [12, (11.8)].
It is worth mentioning that the special case A = uq =tqof (3.17) is

T (1 %) (tatp, the ¥ g)s

qtty /t2. €7, tt €’ _i0
X?’QSZ( qitye”, 2 ‘ o tz¢ )

00 —i0 $42.
(3.19) > pn(cost; ty, to)t" = (e, U7 Q)
n=0

Since py is the n-th moment of p(x; &, b, ¢) and p has compact support, then

- 7, = /°° du(u; a. b, c)

(3.20) > |

z ¢ supp{p}.

This gives a direct evaluation of the Stieltjes function (the right-hand side of (3.20)) for
the big g-Jacobi polynomials. Theresultis

o du(u;a.b.c) _ (e .1 /7 0o
@2 T e heub ue 2 a
qtl/tzz._ tlei", tleia/z _ip
X3¢2( que’/z¢/z ‘q,tz )

The relationship (3.21) isin [14] but the present proof is much more elementary.
The Al-Salam-Carlitz polynomials {V7(x; q) } have the generating function

W, Qoo _ & (—W)"

- n(n—l)/ZVa X 0).
(W. aW; Qoo 10 @ Qn n(69)

(3.22)

Clearly we can identify the right-hand sides of (3.22) and (3.18) by choosingt, = 0 and
adjusting the remaining parameters. The V{'s are also moments and their multilinear
generating functions will follow as special cases of this work.
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4. Poisson kernel and multilinear generating functions. In this section we use
the results of Section 3 to find the Poisson kernel and multilinear generating functions
for the Al-Salam-Chihara polynomials.

We evaluate the action of Lape 0n X¢(AX; @) / (1X; 0)s in two different ways and
generalize (3.17). The calculations are similar and the result is

(4.1)
2 A/ On
% (9 n
_ (ag.bg. cq. abg/ ¢, G) [a"q"(Aaq-, aba/Ci A0 (auq, ag,abg/c | q qk+l)
(c/a.abq/c. abe?; q) | (1ag. ag, abg/c;q) ° -\ Aad,aq/c '
Igf(Acg, €q/a; Q) , (OuC.CO DY | g
- : o2 ¥ a.d)).
a(ucq, cqg, ba; 9)eo cg.cq/a
Recall that the relation between a, b, ¢ and ty, t,, €’ is asin (3.9). We cannot simplify

the above combination because we do not have a suitable analogue of (3.16).
We now come to the Poisson kernel of the Al-Salam-Chihara polynomials. Set

Prek(COSH; ta. to) "

(4.2) a=s6’/q f=se’/q Y=se/q
THEOREM 4.1. TheAl-Salam-Chihara polynomialshavethe bilinear generating func-
tion

. (tito;
(4.3) > ( 12 q): t"pn(cosb; t1, t2)pn(COS b; S1. 2)
n=0 (q’ Q)ntj_

(5167, 5671, tty 5167, thr51€7; 0)
" (5152, €29, 15,60%), 15, 60-7; ).,
o
Qe??, tt1S,€7, ttprs,€?
L (5167, 567 thsie ™. thsie™'; )
(5150, €29, 15,60—9), tse-160+0); @),
ge 9.ty 167, thos67'7

o, q)-

PROOF. In(3.18) replacet by txandapply L, ., to both sidesof theresulting equality.
Theresultis

2 (t1to;
a3 U2 Dnns osh: by t)pn(cos s s1. )
=0 (G Ont]

_ (516777, 5671, 115,67, ttr51€; O)o
(512, €729, 51 €(0+9), t5,6(0-0); ).,
5169, 5,69, 15,0+, ts,6@—0)
X4¢3< (2i i i i | i )
qe??, tty 56, ttrs, €
e %1€, 5€°, thsie, thsie ' Q)
(1 — e 29)(s1%. 9?7, t51€07), ts16710+); )
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Sle_w). Sze_w). tsle—i(9+(j)). tslei(t‘)—q‘))

X403 ( ge 29, thse717, ttys 8¢ G q) '
After some simplification thisimplies (4.3) and the proof is complete.

In this generality the 4¢3’sin (4.3) can not be combined into a single basic hypergeo-
metric function becausethey are not necessarily balanced. Recall that a,.1¢r isbalanced
if the product of the numerator parameterstimes q equalsthe product of the denominator
parameters. On the other hand it is easy to see that the 4¢3's are balanced if and only if
S1$ = tito.

THEOREM 4.2. If 515, = t1t, then
(4.5)

>, (tatz; Qn
n;o (G; Ont]

_ (1187, trs €9, ts15€". ts2€”; 0)o
(tt11o5,€0+9), t5,6(0—9), t5,6(0+0), t56(9=0); g)

" ¢ (§t$é(9+q’)/q,_81 /—thQQi(9+¢)/2, _sl /—qtszei(0+qc)/'2,t2ei0qt.lei9_Sleiq")qSQeiq‘)ftsiei(omﬁ)
8T si\tsy/qe?9)/2, sy fts; [ Q)2 tty 5169, tho5, 67 tsy SpE. S2tE, 515,

{ 9 tsle—i(9+¢>) '
ProOOF. Formula(2.10.10)in[12, p. 42] is
(4.6)

t"pn(cosb; t1, t2)pn(COS §; 51, S2)

A.qvA, —qv/A.B.C.D,E.F A2?
8¢7<\/ﬂ. — /A Aq/B.Aq/C.Aq/D. Aq/E. Aq/F "*m)
_ (Ag.Aq/DE. Aq/DF. Aq/EF; Q). Aq/BC.D.E.F
~ (Ag/D, Aq/E. Aq/F. Aq/DEF; g; 0) 4%(Aq/ B.Ag/C.DEF/A | 4 q)
. (Ad. Aq/BC, D. E. F, A%g? /BDEF, A’g? / CDEF; 0)
(Agq/B.Aq/C.Aq/D.Aq/E. Aq/F. A%0? /BCDEF, DEF / Ag; 0)s
X4¢3(Aq/DE,Aq/Df.Aq/EF,AZqZ/BCDEF | )
A2q? | BDEF. A2q? / CDEF. Aq? / DEF

Choose
A=stsd™) /g, B=t,6%, C=1,€’, D =5€", E=5€", F =tse??

in (4.6) to replace the combination of 4¢3'sin (4.3) by an g¢7 taking into account that
tit, = 515, Theresult is (4.5) and the proof is complete.

Theorem 4.2, in its present form, was proved independently in [6] and [16]. When
t; = sp and t; = s, the generating function (4.5) becomes the Poisson kernel for the
Al-Salam-Chihara polynomials since their orthogonality relation is

(eZiF). efZiH; q)oo do
(tlei", tle*i", tze”’. tze*“’; Q)oo
__ 2n(g:antf"

- (q~ tita; q)oc(tltZ; c1)n m

@7 [ pu(costty, t)pn(cost; b t)
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One can generalize Theorem 4.1 by multiplying (3.18) by XX, replace x by xt then act
with Lap.c. Thisleadsto our next result.

THEOREM 4.3. We have

. (t1ty;
(4.8) > %tnpn(ws& t1, 2)Pr+k(COSP; S1, S)
n=0 a; Q)n 1
= (s16) (s:67", Sg_(f*”. t_tlsle'q“. ttg_sle'g*; 0)oo
(5152, €722, 15,60+9) 15,600 ).,
$1€?, 57, 15+, ts, 00 Kl
X“%( 92, t 167, ttps; € ‘q'q )
L (5167, 67, tt 516717, ttrs1€7'7; g)o
(5152, . 15,800, t5;6 10700 ).
e ¢, 5671, tse710+9), t5,g0—9)
7 ot oe - a.d?).

X4¢3( ge 29, tty 58717, ttps e
Note that (4.5) and (4.8) will look more symmetric if wereplacet by t/s;.
Our next result isamultilinear generating function for the Al-Salam-Chihara polyno-
mials and was motivated by our earlier result in [18] for continuous g-Hermite polyno-
mials.

+(s167'7)

THEOREM 4.4. If aq := t,€”, bq = t,e, cq := t;e" then the Al-Salam-Chihara
polynomials have the multilinear generating function
o m o (ag-13y; Q)
ny ] ] | . : ’
(4.?1V§mzoj:Hl{AJ (@ 9 @0)" P, (COS6;., @) 1. ) } Py +..+n, (COSH, 11, 1)
__(bg.cqi e { (ag\jag-1. ag\jag; 9o }
(c/a. aba?; 0)w =1 | (ag)€%. aghie™; 0
ag, abg/c.agh€%, agh e, agAme’m, aghme 0

szz(bz”“l( ag/c. agh1a, agA1dy. . . . . 80Amazm- 1, A0AmAam

(ag. abg/c; g)w { (caNjag—1. c\jag; O }

(a/c. aba?; ) j=1| (carj€f, carie™; g)x

ba, ca. cgr1€%, cghre7, . .., cgAme’m. cgAmeifm
cq/a, cgriar. cgh1@y. . . . . CO0Am@2m—1, CGAmazm

¢.q)

g q)-

X 2m+2¢2m+1<

PrROOF. Rewrite (3.18) in the form

(4.10)
(Bg-1AX A AX Q) _ X (Bg-187; )y N
@ A xe 0y (0 a0 Bt B4
Multiply (4.10) for j = 1,2, ..., mthen apply Lapc. Theresult is (4.9).

Note that we may replace x in (4.10) by x& then apply Lap.c. The result will replace

Pry+.-+n, (COSH, t1, t2)
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by
Peyny +-+enny, (COSH, 11, 12).

The ¢ functionswill get more involved and become g-analogues of the Wright functions
but we do not really gain anything with this degree of generality. Another variation is
to make g in (4.10) depend on j, that is replace g by g;. This leads to multibasic series
identities. Yet another variation is to multiply by x¢ before acting with L, .. Here again
there is nothing conceptually new.

Finally we mention a similar case when the number of a’s is odd. In this case we
multiply (4.10) forj = 1,2, ..., m, multiply the result by

(@2m+1 Am+1X; @)oo RS (@2me1; Dy
(Ame1X; Q)0 =0 (O Dy

e

then apply Lap.c.

5. Continuous g-ultraspherical polynomials. The continuous g-ultraspherical
polynomials {Cn(x; 3|q)} have the generating function [12, (7.4.1)]

(t0e”. t5e " Q)

(5.1) ngocn(cose;ﬁlwt": (te’. te 1, 0)n

Their orthogonality relation is[12, (7.4.15)]

(e2i9’ e—2i9; q)oo
(16e2i(fq 5€2i9; q)oo
_ 27(3, 5% Q) (8% AL —B) ¢
(@67 Do (G DL —Bg) ™™

(52) [ Cm(cost; 3 | q)Culcost; 3 | o)

Comparing (3.18) and (5.1) wefind

(8% On

(@; On ﬁineiing pn(COSG;ﬂeia_’ﬁefia)‘

(5.3) Ch(cost; 3 | g) =

This meansthat we can translate every generating function in Section 3 and Section 4 to
agenerating function for the C,’s. For example (3.19) becomes

=, (9 . n__ (87 Bt€’; g
G4 L (g, st 0= T e g
i0 i0 j0 _
xat( qtéqﬁgé.ﬁ gféé “ Jase).

Another exampleis (4.3) with

t = ﬁe"g L= Be_"’. S = Ble”’. S = ﬁle_iq’,
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whichyields

(55) 528D ¢ cos0: 6 | Q)Calcossi By | Q"
n=0(ﬂ ’ q)n

_ (Bu. B0, 136, 1560 ); ).,
= (ﬁ% e_2i¢>_ tei (9+q>)_ tei(q;_()); q)oo
3167, By, te?*0) e (0=9)
><4¢>3< qe??. Btel®+)_ 3te o) | a. q)
, (81 31677.1960-9. t3e" 0+, ).,
(ﬁ%. e2i¢. 1:ei(‘£}*9"’)~ te*i(0+(;‘;); q)oo
ﬁle*%, B1, te(6—¢)_tg=it+¢)
X4¢3< ge2¢, Bte=9), te10+9)
When 1 = 3 the 4¢3’sin (5.5) combineinto an g¢7 and the result is

(5.6)
> (b cy(eost: | A (cossi 1|
n=l ’ n

_ (wé(awx tﬂei(¢’—9), tﬁei(@—v‘“), tﬁei(@’w‘)); Do

B (t32eB+9), te(0—9), td(0+9), td(¢—0); ),

e+ /q, B./ate /2, — 3, /qte@+)/2, 3, 3629, 362 3. e #+9)
><8¢7 6 /t/qej(9+q‘))/2’ _ﬁ /t/qei(0+q‘))/2. ﬁtei(0+¢’). Btej(q‘)—ﬂ). ﬂtei(t‘)—qb). ﬁté(‘9+¢’), 62
‘ q tefi(0+q>))‘

Q. Q)-

The kernel (5.6) was evaluated by Gasper and Rahman in [13]. Their form of the right-
hand side is different but one can transform our answer to theirs by using the two term
transformation (2.10.1) in [12] connecting two very well-poised g¢7's with the choices

a= ﬁz'[ei(@ﬂfﬁ)q b=e= 8. c= ﬁeZif)q d= ﬁezw). f= té(9+¢))'

Note that (5.5) is a special case of (4.5) because (4.5) has three free parameters among
t1, tz, 51, S but (5.5) has only one free parameter, the parameter 3.

We now introduce another measure whose moments are the continuous g-ultraspher-
ical polynomials.

THEOREM 5.1. Let
. _(B.8U%0) 2 (A/8.9U2/B; D0 on
S O = T & @R,
(B8 6) & (/B qu?/ 53 O)n

2n
@F s 2 @quig, |
Then I )
00 u'(Ou “;0)n -
68 [yamse=Ses (1000 laa)
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PROCF. It isclear that the left-hand side of (5.8) is

9 @D (Q/ﬂ /g .5

GuUZos
o B:BY; D)oo Q/ﬁ q ‘2/6
(9. V% 0)0o ¢1( |qﬁq
In (3.3) we make the choices
(5.10) A=q/3, B=qu?/8. C=qw®, Z=q"8%

and the expressionin (5.9) simplifies to the right-hand side of (5.8).

COROLLARY 5.2. We have
(5.11) |y duly: .€") = Ca(cost; | o).

PrOOF. Denote the right-hand side of (5.8) by rn(6). Then

n— (Bu”2; Q)n nn (@ . BU; Ok q n—k
Zrn(e)t nzog (g An ut ("2 /3, O; Ak (5) :

Therefore

no_ ﬂuz Q- kuk n(ﬂu_er)k Nk
Zr”(e)t %; (o D ((eHs) tu

_ [ BUZ Ok o] [ (BUZ QU™ |
- g (a; Ok UIHngo (% Pn t}'

Using the g-binomial theorem (3.11) we get

(Btu=, Btu; )

> n —
nZ::Orn(e)t T (tutulg)

and the corollary follows from (5.1).

We note that (7.4.2) and (7.4.4) in [12] show that the expression (5.9) equals
Cn(cos; 3 | q) which aso equals the right-hand side of (5.8) with u = €°. The proof
given here makes this work as self-contained as possible.

Let

(5.12) Luof) = [ 1) dv(y; 6. €").

Our next result is a bilinear generating function for the continuous g-ultraspherical
polynomials. It followsfrom (5.1) whenwereplace 3, 6 andt by 1, ¢ and yt, respectively,
then apply L 4.
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THEOREM 5.3. The continuous g-ultraspherical polynomials satisfy

(5.13) i) Ca(c0S6; 3 | G)Ca(cos; B | O

_ (002 30, e,
= (q, efzie_ té("*v‘”. tei(‘/*‘rb); q)oo
a/ 8, qe?? / 3. td @+ te¢=2) ,
><4¢3< éezie_ 61'[/6(“@). Byte0=0) ‘ )
+(ﬁ, BeZié), ﬁltei(““*"). 51tefi(o+¢); @)oo
(q et td(¢—0). tefi(0+q>); q)oo
q/5.qe 2/ 3,109, tg7i0+9)
><4¢3( qe 27, Bute0=), B,tei(0+0)

q. 62).

THEOREM 5.4. The continuous g-ultraspherical polynomials have the bilinear gen-
erating function

(5.14) icmk(cosa; B ] q)Cn(cose; 81 | g)t”

— ok (3. 86727, B1td ™), g1td@=9); g),
- (q. e 27, td@*0)_td@=9); ),
a/3.qe*? / B, te?*9) te?=) 2 K
X4¢3< qe?", 81t @) 3t ' .09 )
+ —ikd (ﬁ* Bezmﬁ ﬁlté (9579), Blteii(m-(f)); q)oo
e (. ezieétoé(q>70)j(te7;)(e+gb) a(C;)oo)
q/8.9e™" /3. te"™", te"e
X4¢3< ée—zio’ Blt/ei(qb—f))! Bater i+

a.7%d).

PrOOF. Multiply (5.1) by y then apply the procedure that led to (5.13).

It is clear that the left-hand side of (5.13) is symmetric if the ordered pairs (6, 3) and
(¢, B1) are interchanged. Imposing this symmetry on the right-hand side of (5.13) leads
to the surprising transformation formula which is of independent interest. We shall state
this as a theorem.

THEOREM 5.5. The following combination of 4¢3's is invariant under the exchange

(6. 5) — (9. 51)

(5.15)
(8. Be 20, p1td @) 31t q),  rq/B.qe?? / . te0*), td =) )
(q. e 20, 18+ td@—9); )., ( qe2i9. ﬁltei(”+‘/”). ﬁltei(‘/*ﬁb) 9.8 )
(8.5, 511, pite 1)),
(g, €29, te(0=0) te-1(+9); q)
q B~ q672i6’ ﬁ té(qkff)). tefi(9+(/“))
><4¢3( {qe_zm, ﬂlt/ei(q‘)—e)‘ Biteri+o)

g 62)-
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We conclude this section by stating amultilinear generating function for the continu-
ous g-ultraspherical polynomials.

THEOREM 5.6. We have
(5. 16)
Z H{tn’Cn (cosb;; Bj | 0)}Cny+-.+ny(COSH; 3 | Q)

_ 6 59_2'9; ) { (56N, 46,60, 0) }
(q’ e—2i9; q)oo i1 (tj al0+6;) t-ei(@—ﬂj). q)

B.q€%" /3, ) @t . @O0t O—0)
><2m+2¢2m+1( ez.e 128,040 _t, 3, 0-0)_ . o Brn@ )t By 0=
+(5~ Be?; Q) M {(tjﬂje'((’l 0. 48e |(9+GJ)’q)oo}

(@ €% 0)n j=1l (4G, e7H); )
q/8.9672% /3, 0, e 040 1, dn?), t @i+
X om22mi1 2i0 i(0:1-6) i(0+62) (On—0) i(0+6r)
ge " t181€ St Be7)  tmBm€ s tmBme™

o.7)

d, 62)-
Proor. In (5.1) replace § and t by 6, and t;; respectively,j = 1,..., ., m, multiply the
results and apply L. We obtain (5.16).

6. Remarksand summary. The g-analogueof (2.2) is

61 (LM [ pr)q= Y- (L pa(M | Pl

where {pn(x)} is any Eulerian family of polynomials, [3], [15]. When L and M have
the representations

(62) L= [ f9ar0). MI [ @) du(y).
then
(6.3) (LM [f)q= [~ [ £65) AR duy).

The product functional (6.3) was used in the previous sections when we repeatedly
applied certain functionals with different parameters.

It isclear that the products of functionalsin (2.3) and (6.3) correspondto convolutions
of measures and as such they are very natural. It is also clear that the products (2.3) and
(6.3) correspond to additive and multiplicative algebraic structures. It was observed in
[23] that in many orthogonal polynomial systems what is designated as a variable may
not bethe “natural” variable. So we denote the natural variable by sand the polynomials
variable by x and write x = x(s). A mapping s — X(s) from the complex planeinto itself
definesagrid or alattice on a subset S of the complex s plane on which the mapping is
one-to-one. The functional products (2.3) and (6.3) correspond to the linear gridx(s) = s
and the g-linear grid x(s) = ¢, respectively. These are the simplest grids. The grid
used is also related to a comultiplication of a bialgebra. The linear grid corresponds to
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X — X® 1+ 1® x while the g-linear grid correspondsto x — X ® x. It will be useful
to find the comultiplication associated with the quadratic grid x(s) = s* + cs and the
g-quadratic grid x(s) = (g° + g~°)/2. The former will give an umbral calculus for the
Wilson polynomials and Wilson divided difference operators while the latter will give
an umbral calculus for the Askey-Wilson polynomials and the corresponding divided
difference operators.

It isworth noting that Slepian [27] essentially used the Rodriguesformulafor Hermite
polynomials and the fact that the Fourier transform of a Gaussian is another Gaussian to
derive the multilinear generating function known as the Kibble-Slepian formula, [21],
[27]. In the case of Laguerre polynomials, formula (2.5) also follows from

(6.4) XX = /0 ” e Uxu)*/23,2 /X0 du. o > —1,

by successive differentiation, [30, (3.2.5)] and the Rodrigues formula for the Laguerre
polynomials.

We conclude with the list of classical orthogonal polynomials given in this paper
which are moments. For each polynomial we give the (non-normalized) measure du(X),
the monic orthogonal polynomials p,(x) for the measure, and the coefficients o, and gp,
in the three term recurrence relation

(6.5) Pr+1(X) = (X — an)Pn(X) — BnPn-1(X).
for pn(X), [9, p. 215].
Hermite polynomials: i, = Ha(ia) /i", du(x; @) = e ®/23” dx on (—o0, 00),

Pn(X) = Hn(X/2+4d), an=—2a (y=2n.

Laguerre polynomials: i = n! L%(—b), du(x; b, a) = b~*/2eP*x/2| ,(21/xb) dx on
(0, 00). Here pn(x), an, and 3, are unknown.
Laguerre polynomials: un = n! LE(ib) /(o + 1)n,

_ ib2 — @)
=T @+2n—2)(a+2n)
and o2 )
+n—
B nb(ox + n— 2)

T (@20 _3patn_2)
pn(X) and du(x) are givenin [31].

Meixner polynomials: yin = c"my(a, 3, €) /(B)n, duu(X) = (1 —x)**a1(x— )@ tdx on
[c, 1],

Pn(X) = Mp(ﬁ+a—1.—a_1) (ﬂ

B+n—1), " l1-c
(c—1((B—2a—2n3—2n(n—1))
n=C+
(6 +2n—2)(3 +2n)

) (Jacobi polynomials),
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and

_c=D@E+n—2)n—1—a)(B+a+n—1)

- (B+2n—3)3(6+2n—2) '
Al-Salam-Chihara polynomials: pn = pn(cost; 1, t2), du(X) is given by (1.6) where

(3.9) holds, pn(X) = Pn(x; a, b, ¢; g)(ag. cq; q)n / (@bg™™*; 9)n (big g-Jacobi polynomials),

for o, and 3, see[12, Example 7.10, p. 186].
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