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Fixed point theorems

for nonexpansive mappings

in a locally convex space

P. Srivastava and S.C. Srivastava

Several fixed point theorems for nonexpansive self mappings in

metric spaces and in uniform spaces are known. In this context

the concept of orbital diameters in a metric space was introduced

by Bel luce and Kirk. The concept of normal structure was

utilized earlier by BrodskiT and Mi I'man. In the present paper,

both these concepts have been extended to obtain definitions of

B-orbital diameter and B-normal structure in a uniform space

having 6 as base for the uniformity. The closed symmetric

neighbourhoods of zero in a locally convex space determine a base

3 of a compatible uniformity. For 3-nonexpansive self mappings

of a locally convex space, fixed point theorems have been

obtained using the concepts of 6-orbital diameter and 6-normal

structure. These theorems generalise certain theorems of Be I luce

and Kirk.

1. Introduction

While studying fixed point theorems for nonexpansive mappings of a

metric space into itself Bel luce and Kirk [/] introduced the concept of

limiting orbital diameters and with its help and also using separately the

concept of normal structure, obtained fixed point theorems for these

mappings in the case of a Banach space. Uniform spaces form a natural

extension of metric spaces and the concept of nonexpansiveness in this more
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general setting has been considered by several authors; namely, Brown and

Comfort [3], Kammerer and Kasriel [4], and Reinermann [5]. On the other

hand, locally convex topological vector spaces are extensions of normed

linear spaces. Every normed space is a locally convex topological vector

space, while the converse is not true. We further note that every

topological vector space is completely regular and therefore it is

unformisable. In case of a locally convex space, if we consider as local

base at zero, the family (3* of all closed, convex and symmetric

neighbourhoods of zero, this family gives rise to a family B of closed,

symmetric members of a uniformity (x , where B is a base for u. . The

uniform topology corresponding to u. coincides with the given topology.

Hence u is a natural uniformity for the given locally convex space.

In the present paper the concept of ^-orbital diameters and of

^-normal structure in a uniform space have been introduced. These concepts

are analogous to those of orbital diameters [/] and of normal structure [2]

in a metric space and a normed space.

Theorems U.I and 5.U give fixed point theorems for B-nonexpansive

mappings of a locally convex topological vector space into itself. These

generalise Theorems 2 and 3 of Bel luce and Kirk for a Banach space [7].

2. B-orbital diameter

DEFINITION 2 . 1 . A map. / : X •*• X i s called B-nonexpansive if for

any member V of B , [f(x), f(y)) € V whenever (x, y) i V .

B-nonexpansive was termed as 'contraction with respect to B ' by

Brown and Comfort [ 3 ] . For a l inear topological space Taylor [6] has used

the term 'B-nonexpansive' in a different sense. Kammerer and Kasriel [4]

have used the term 'weakly B-contractive' .

DEFINITION 2.2 . Suppose B is a family of closed symmetric members

of a uniformity. Let the map 6 : V -*• B u {A} , V c P*{X) , where

P*(X) = P(X) - {0} be defined by

(i) 6(A) = A if and only i f A i s a singleton, and

( i i ) &(A) i s the smallest member of B containing A x A , i f

A i s not a singleton.

The map exists i f and only i f for each A (€ V) which i s not a singleton,
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fit/ € 6 , where the intersection is taken over all U € B such that

A x A c U .

The map 6 is to be called the g-diametral map on V . 6(-4) , for

A € V , is to be called the B-diameter of A . It is clear that if

A c B , then &(A) c 6(S) . Thus 6 is nonincreasing with respect to

inclusion ordering.

EXAMPLE 2.3. In case of a metrisable uniformity a with metric d ,

B = {{(x, y) : d(x, y) < r} : r € F} and 0 = P*(x) , the diametral map

exists.

EXAMPLE 2.4. A discrete space which does not have a countable base

provides an example of a non-metrisable space with a diametral map.

DEFINITION 2.5 [/]. For any map f : X •* X , the orbit 0(x) at

x € X is defined by

OU) = [x, fix), f(x), ...} .

Suppose that the diametral map 6 on V exists where

V = {0{f(x)) : n = 0, 1, 2, ...} .

DEFINITION 2.6. Let / be a map on X to itself. / will be said

to have B-diminishing orbital diameter at x if 8[o{fn(x))) # 6(0(x))

for some n , whenever 6{0{x)) + A .

3. Lemmas

From now onwards, we assume that X is a locally convex topological

vector space. The family B* of closed, symmetric, and convex neighbour-

hoods of zero in X induces a base B for a uniformity u on X given

B = {U = {(x, y) : x-y € U*} : U* € B*} .

LEMMA 3.1. Suppose V and V are members of B • Then U o V[z]

is convex, for every z £ X .

Proof. Let y^ y2 t. U o V[z] , then [z, yj € U o V and

(s> y^\ € u ° v • [z, 2/-J € U o V implies that there is an x € X such

that [z, xx) € U and (a^, y±) i V . Similarly, there is an x i X
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such that {z, x^ € U and (x^ y^ i V . (3, x^) € U implies that

z-x € U* and z-x € U* , where V* € 8* , as specified above. Similarly

x -y. € V* and x
?~2/p € ^* • T a k e A, y 2 0 such that A + u = 1 . Then

Az-Ax1 € AW* , \iz-vx2 € yi/* and so (A+u)a - (Ax1+uxg) € {\+p)U* = U* .

Thus (s , Ax^̂ +ua;̂  € i/ and (Xx^vx^ Xy^vy^j € F . Hence

(s , Ai/1+uj/2) € U o 7 and Ai/1 + yj/g 6 V o V[z] .

LEMMA 3.2. J / V (. 8 , *?zen tf[z] = fi V o y[ 3 ] . Consequently

i/[s] -is closed for every z € X .

Proof. I t i s c lear tha t U[z] c fl V o U[z] . Conversely, l e t

x € fi V o U[z] ; that is to say that x 6 V o Ujz] for every V €

Hence, for every V € 3 , there is a j / € V ° U[z] such that y f
Thus ( s , t/) € 7 o U and (x, j/) € V , where V i s symmetric. Therefore

( s , x ) £ fl F ° y ° F = £ / , because U i s closed. This shows that
K€3

x € U[z] , and the lemma i s proved.

4. A fixed point theorem

THEOREM 4.1. Let K be a closed, convex subset of a locally convex
space X and let M be a weakly compact subset of X . If f is a
8-nonexpansive mapping of K into K such that

(i) for each x € K , clco(o(x)) n M ± 0 , and

(ii) f has ^-diminishing orbital diameter at each x € K ,

then there is a point x € K such that f(x) = x .

Proof. If {K } is a descending chain of closed, convex (hence

weakly closed) subsets of K , each of which intersects M , then weak-
compactness of M implies that (fl K ) n M t- 0 . Thus we may use Zorn's

Lemma to obtain a subset K of K , which is minimal with respect to

being closed, convex, invariant under / , and having points in common with
M . L e t M = K n M .

Let x € ^ and suppose &{o(x)) t A . We shall show that this
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assumption leads to a contradiction.

By (ii) , there is an integer N such that

Let L = iz € K± : [z, /*(x)) € U^ for almost a l l n\ . 6(o(/"(x))) = £/ff

implies that o[j (x)) c L , and thus L t 0 . If y € £ , then for some

ff. , [y, j (x)) € £/„ whenever n 2 N . By B-nonexpansiveness of / ,

(/(;/), /"+1(x)) € y^ for n> N± . Thus f maps £ into itself. L is

also convex. For suppose z , 3 ? € L and take X, \i > 0 such that

A + u = 1 . We obtain an integer N^ such that \z , /"(x) € !/„ and

| 3 2 , / " (x) | € i/^ for n >: N2 . We have ^- /" (ar ) ] € y* and

U ^ / V ) ] € y* ; therefore Xz± - A/"(x) € Ay* and \iz± - u/"(ar) £ yy* .

Adding, we get As + \iz2 - j (x) € (A+p)y* = y* , on account of convexity

of U* , for n 5 Wp ; that i s , for almost a l l n . Hence

The closure I of I is also convex, as L is convex. Moreover, L
is invariant under / . Since / , being 3-nonexpansive, is continuous,
L is also invariant under / . By (i), L n M t 0 . By minimality of
Kx , I = Kx .

Let p i. K . Since p E i , for V € B , there i s a p ' ( i , such

that (p, p') i U . Moreover there exis ts ff_ such that (p1, /*(x)) € U

for w 5 ff . Thus, for n > N^ , (p, /"(a:)) <• U o U^ and therefore

/"(x) € y o y^tp] . By Lemma 3 .1 , U o y^tp] i s convex and consequently

closure y~~o~~y77pT is also convex. Hence for n > N ,

clco(0(jf"(x))) c y o uN[p] . By (i), for a l l n ,
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clco(o(/ (x))) r\M t 0 . Since M is weakly compact, there is a point

oo

t e n c lcof f l l /^x) ) ) n M . For every U € 3 , t £ U o U.Xp] . By
n=0 X *

Lemma 3.2, ^ [ p ] = n £/ ° y^[p] and t € U^P^ • S i nce th i s i s t rue for

p (• K , i t follows tha t t € fl i/H[p] . Therefore the set

5 = {a €if1 : JC l C J/^[3]}

is nonempty (t € 5) . We first show that 5 is closed. Let p 6 S .

Then for each U € 6 , there is a p' € 5 , such that (p, p') 6 U . Also

for every y (. K , (p', ! / ) € £ / . Then (p, y) € D £/ o £/ . By Lemma
1 ff y€g N

3.2, we obtain that y € ̂ [p] • Thus 5 is closed. 5 is clearly

convex. Next suppose for some z € 5 , f(z) $ S . Define

H = Uj.[f(z)] n K . By definition, H is a proper subset of ^ . Then

(z, x) € U and by g-nonexpansiveness of / , (/(s), /(^)J € U .

Because K is invariant under / , we have fix) € H ; that is to say

that H is invariant under / . By hypothesis (i), H n M is nonempty.

Since H is a proper subset of K. , this contradicts the minimality of

K . Therefore f(S) c 5 . Since z^ € ̂ [sg] for z±, z^ € 5 ,

S * S c U , we obtain, by (*),

6(5) <=us = <5

Thus S is a proper subset of K . Again the minimality of K is

contradicted. Therefore our assumption that 6(0(x)) f A is not true.

Hence 6[0(x)) = A and f(jc) = a; .

COROLLARY 4.2. // ^ is a closed, convex, weakly compact subset of

X and if f is a S-nonexpansive mapping of K into itself, which has

^-diminishing orbital diameters, then f has a fixed point.

This corollary is obtained by putting M = K in the above theorem.
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5. 3-normal structure

We assume that the (3-diametral map on P*(X) ex i s t s .

DEFINITION 5 .1 . Let A be a nonempty subset of X having a t leas t

two elements. A point a € A i s to be called non 3-diametral if

U 6{x, a} * 6(A) .
xiA

DEFINITION 5.2. A subset A of X having at leas t two elements

wil l be said to have 3-normal s t ructure , i f for each subset H of A

which contains more than one point, there i s a point x € H , which i s a

3-non diametral point of H .

EXAMPLE 5 .3 . A metrisable space X which has normal s t ructure,

possesses 3-normal s t ructure .

THEOREM 5.4. Let K be a closed, convex subset of a locally convex

topological vector space X , and let M be a weakly compact subset of

K . If f : K -*• K is B-nonexpansive such that for each x € K ,

(i) clco(0(a;)) n M ± 0 , and

(ii) clco[0(x)) has ^-normal structure,

then there is a point x € M such that f{x) = x .

Proof. Let us define X̂. as in the proof of Theorem l».l and obtain

the set L as follows. Suppose 6[K ) + A . Let x € K . By (ii)

there is a point y € clco(0(x)) such that

U6{y, 0)} * 6(clco(0(x))) = £/ ,

say, where ID runs through clco[0(a;)) .

Let L = Iz € Kx : 0{fl{x)) c Uj-z) for some n\ . Then y i L and

L i s nonempty. L i s convex, invariant under / , and L n M ? 0 as in

the proof of Theorem U.I . Accordingly, L = K .

Following the argument of Theorem h.X, one can see that

5 = {s € Kx : K^ c U^z]}

i s nonempty, closed, convex, and invariant under f . But
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6(S) c i / ^ 6(0(x)) c 6(^3 .

Thus S is a proper subset of X , contradicting the minimality of K^ .

Hence 6 [K ) = A and K consists of a single point which is fixed under
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