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Abstract

British put options are financial derivatives with an early exercise feature whereby on
payoft, the holder receives the best prediction of the European put payoff under the
hypothesis that the true drift of the stock price is equal to a contract drift. In this paper,
we derive simple analytic approximations for the optimal exercise boundary and the
option valuation, valid for short expiry times — which is a common feature of most
options traded in the market. Empirical results show that the approximations provide
accurate results for expiries of at least up to two months.

2010 Mathematics subject classification: 91G20.
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1. Introduction

Put options are financial derivative contracts between a holder and a writer that allows
the put option holder to sell an underlying security for a predetermined exercise (or
strike) price K at an expiry time ¢ = 7. If the value of the underlying security at expiry
is S 7, then the value of the contract at expiry, called its payoff, is max(K — S7,0). A
put option that can only be exercised at expiry is called a European put option and
these options can be priced using the famous Black—Scholes option pricing formula
[2]. A put option that can be exercised at any time up to the expiry time is known
as an American put option. These are considerably harder to price as the possibility
of early exercise leads to a free boundary problem, where the free boundary separates
the region between where it is optimal to hold the option and where to exercise the
option. This boundary is known as the optimal exercise boundary. Zhu [10] found
an analytic solution to the American put problem when the underlying asset pays
no dividends. Although the solution involves an infinite sum of double integrals and
can be very computationally time intensive for accurate results, the result constituted
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a significant breakthrough in the search for a closed-form solution to the American
put pricing problem. There is an enormous amount of literature on the pricing of
American options under different approaches (for example, binomial, Monte Carlo,
finite-difference, analytic approximations, numerical methods for integral equations
etc). For a detailed exposition, we refer the reader to the comprehensive review article
by Zhu [11] and the exhaustive list of references in the book by Detemple [3].

Recently, Peskir and Samee [7] introduced a new put option contract called a British
put option defined as “a financial contract between a seller/hedger and a buyer/holder
entitling the latter to exercise at any stopping time ¢’ prior to expiry ¢ = T, whereupon
his payoff (deliverable immediately) is the ‘best prediction’ of the European put payoft
max(K — S7,0), given all the information up to time ¢’ under the hypothesis that the
true drift of the stock price is set equal to a predetermined contract drift ¢”. The
authors in [7] explain that from the viewpoint of a “true buyer” who does not wish
to sell or hedge the option, if the true drift of the stock price ., is greater than the
risk-free rate r, then the return from the investment in an American or European put
option is unfavourable. With a British put option, this issue is addressed so that under
the circumstance that the put holder believes e, > 7, then he can effectively substitute
the unfavourable drift with a contract drift and minimize his losses.

Assuming that the underlying stock price S evolves as dS = peqS dt + oS dW, with
W a standard Wiener process, the price of a British put option V(S, ) with exercise
price K and expiry 7, in the continuation region {(S, ) € (0, ) X [0, T],S > b(1)},
where b(f) is the optimal stopping boundary (to be determined), satisfies a free
boundary problem for a partial differential equation (PDE). Assuming that the contract
drift u > r, the mathematical formulation is (see the article by Peskir and Samee [7])

Vi + ’ 2Vgg+rSV5—rV:0, (1.1a)
V(,H) >0 asS — oo, (1.1b)
V(b(1),1) = G*(b(1), 1), (1.1c)
Vs(b(1),1) = G’S‘ (b(1), 1), (1.1d)
V(S,T) =max(K - S,0), (1.1e)
where in (1.1c) and (1.1d)
G*(S,1) = KN(fi) - S¢“TON(f), (1.2a)

_[n(S/K) + (u=a?/2)(T —1)]

= , 1.2b

! oNT =1 (-2
2 —

fe- [In(S/K) + (u+ o= /2)(T —1)] (1.20)

oNT —t
and N(x) = (1/ V27) f_ xoo eV 2 dy is the standard normal distribution function.
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Peskir and Samee [7] showed that the value of the optimal exercise boundary at
expiry is given by b(T) = rK/u. We note that e"7G"(S, ) is the Black—Scholes
formula for the arbitrage-free price of a European put with strike price K and expiry
T. Hence, if the contract drift u could be less than the risk-free rate r, then the British
put option could be considered as an American option on an undiscounted European
put option on a stock that pays a dividend ¢ = r — u > 0. However, for a British put
option, the contract drift u satisfies u > r.

In the stopping region, where S < b(¢), the price is set as V(S, ) = G*(S, t). Peskir
and Samee [7] showed that the arbitrage-free price admits the early exercise premium

representation
T
V(S,0) =e TGS, 1) + f J(S,t,v,b(v))dv, (1.3a)
t
where .
J(x,1,v,2) = =77 f H'(v, ) f(v —t,x,y)dy, (1.3b)
0
with

e I N

H'(t,x) = uxe"(r”)N(— g M+ o;)(T - f)])

)|
e R

and where ¢(x) = (1/ V2m)e™"/? is the standard normal density function. Furthermore,
the rational exercise boundary of the British put option is given in [7] as the unique
continuous solution to the nonlinear integral equation

T
F(b(t),t):f J(b(2),t,v,b(v)) dv, (1.4)

where F(x,1) = G*(x,1) — e"T=)G"(x, ) and J is given in (1.3b). The implicit form of
the optimal exercise boundary in equation (1.4), involving a double integration, makes
finding this boundary computationally and numerically intensive (see, for example,
the book by Kwok [5] for numerical procedures for approximating the free boundary
for American options). The optimal exercise boundary also needs to be found in order
to compute the option values. In this paper, we provide quick, simple and accurate
approximations for the optimal exercise boundary for short expiry times, such as one
or two months. In fact, options with short tenor dominate the options markets. We
also derive an analytic approximation for the option value that is independent of the
exercise boundary values, and which is valid for short times to expiry and for stock
spot prices in the vicinity of Kr/u.
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2. The approximate solution

Main resuLT.  An approximate solution for the optimal exercise boundary b(¢) valid
for short times to expiry in the vicinity of Kr/u is given by

b(t) = % exp(g bi‘r"/z), @2.1)

where 7 = 0*(T —t)/2 and b;, fori = 1,2, ..., 5, are listed in Appendix A.

An approximate solution for the British put option V(S, f) with exercise price K and
expiry T, valid for short times to expiry and in the vicinity of Kr/u in the continuation
region {(S,?) € (0,00) X [0,T],S > b(¢)}, is given by

2
V(S 1) = KW[ln(%), %(T _ z)] + GH(S. 1), (2.2a)
where
SH — In(r/j0)
W)= Y 13+ (LR (2.2b)
; f( NG )
3+j - n 3+j A X 2+j .
0 = Y ylity +erf(2) Y pitity' + €Y ality 2.20)
i=0 =0 =0

and G#(§, 1) is given in (1.2a)-(1.2c). For j=0,1,...,4, the coeflicients of Q;(n) in
(2.2¢), namely, y;[il,i =0,1,...,3+ j,B,[i],i=0,1,...,3 + ja;lil,i =0,1,...,2 + j,
are listed in Appendix B.

We note that expansions of the type (2.1) for the free boundary In b(¢) have been
used in heat conduction by Tao [8], in which b(¢) is the solidification boundary, and
have also been used in option pricing by Alobaidi and Mallier [1] and by Goard [4] for
the optimal ‘shout’ boundary for shout options.

Proor. First, to simplify the boundary conditions, we let
V(S,1) = KW(S, 1) + GH(S, 1),

which transforms the problem (1.1a)—(1.1e) to

0_2 2
W, + Wss +rSWs — rW + £(S.1) = 0,
where
78,0 = B[Ny 4 e TN | = V() + B TN,
oNT =1 K K
subject to

W(S,t) >0 asS — oo,
Wb(r),r) =0, Ws(b(t),H)=0, W(S,T)=0.
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Now, setting S = Ke*,t =T — 27/ o2, the problem reduces to

Wy =W + (k= DW, — kW + F(x,7), (2.3a)

where
2 - 2 2
F(x,7) = —2( \/2_“)[ =N'(fi) + TN ()] - KN(f) + U—’;e’CeM“ N(f2) (2.3b)
and
[x+ (u—0?/2)21/0?] [x+u+0o?/2)2t/0*] . 2r
= — , = - 5 k = —. 23
h Nr 12 N.r: - (239

Equation (2.32) needs to be solved in the continuation region where x > B(1) =
In(b(T — 27/0%)/K), subject to

W(x,7) >0 asx— oo,

W(B(1),7) =0
W.(B(1),7) =0
W(x,0)=0

Note that B(0) = by = In(r/u) < 0,as u > r.

Since, at expiry, the value of the exercise boundary is not the strike price, we
perform a local analysis in the vicinity of x = by = In(r/u) and 7 = 0, and introduce
the new variables

x— by =vX, (2.4a)
T = ay, (2.4b)
W =ey(X,y). (2.4¢)

Substituting (2.4a)—(2.4c) into (2.3a) yields

flﬂy = %lﬁxx + (k- DZyy —key + i’y’(ln(f) +vX, ay). (2.5)
a v v U

In order to balance the leading terms, we need & = v°,

(2.5) and (2.3b), (2.3¢),

a = v* and so, from equations

Uy = Py + (k= Dy — 2 + Q(X, y; v), (2.6a)
where
_ - 4k 12kX
QX y;v) = [kX+ Z(kX2 i )+ —(k X3+ ”y)
2 3! o2

Vi, 24k,u ,  48ku?

+E(kX +7Xy+ 4 y)
A

W0k, 24002
TRy 4 TXyz) ;- ] (2.6b)

Lv5
+§(kX +

to be solved on {(X,y) : X > X¢(y) = B(r) — by/v,y € [0, oT/2v*).
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The boundary and initial conditions are now

l//(X, 0) = 0? l//(X/(Y), )’)) = O’ !//X(Xf(y)’ J’)) =0

Letting
(X, y) = vo(X,y) + Wi (X, ) + Vi (X, y) + -+, 2.7)

from (2.6a),
Wo(X,y) + 1 (X, y) + V(X y) + -+ )y
= (Wo(X,y) + v (X, y) + V2 (X, y) + - xx
+ (k= Dv(o(X, ) + v (X, ) + V(X y) + - )x
— B Wo(X,y) + v (X, y) + VU (X, y) + -+ ) + Q(x, v, v) (2.82)
to be solved, subject to

Yo(X,0) + vy (X, 0) + VZ(//Z(X, 0)+---=0, (2.8b)
Yo(Xr (), y) + (X, (), y) + v2w2<xf<y>,y> +.0=0, (2.8¢)

(t//o)(X;(y) NHVa= (l//1)(Xf(y) )+ (l//z)(Xf(Y),y) +---=0.  (2.8d)

We assume that the free boundary Xy(y)is of the form

Xf(y)—va’ 1y’/2 by \/_+b2vy+b3v2 32 4
i=1

(so that B(t) = by + by T + bot + b37?/? + ---). To determine the functions y;(X, y)
in (2.7), we equate coefficients of v in (2.82)—(2.8d). In general, we find that the
governing PDE for ¢, (X, y) takes the form

M
Wy = Wadxx + K= DWax — Ko + ) X2y, n>2, (29)
Jj=0
where
E n even
M={2_
- n odd

and the c,; are constants. When n = 0, the governing PDE is similar to (2.9), but
does not contain the second and third terms on the right-hand side (RHS); and when
n = 1, the governing PDE is again similar to (2.9), but does not contain the third term
on the RHS. By symmetry reduction, ¢, can be written as ¢, = y"*¥/2Q, (1)), where
n = X/+/y, reducing the PDE to an ordinary differential equation (ODE) for Q,(n).
We note that this corresponds to PDE (2.9), possessing a classical symmetry with
generator

b

0 0 0
I= Xﬁ + 2}76_ + (I’l + 3)‘//;1 l,bn
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which generates a scaling transformation ¥ = e€x, j = €>y, ¢, = """y, that can be
seen to leave (2.9) invariant.
The free boundary under this transformation is of the form

X
B

and the boundary conditions (2.8c) and (2.8d) would be as follows, to be evaluated at
n= b]Z

n(y) = = by + byv+fy + b3v?y + -

b2
200 + v b Q) + O] + V2 an' +b30) + Q) + Qz]
b3 b2
TN [bzgz #baQy+ 20Y +bsba 0y + 03 + 20 + b3Q;]
2

b b3 24 bz 2 4
+v4y7/2[b2b Qy + 2— v+ 73Q0 +

24Q//l/+b Q3+_Q

b3
+b30) + by Q) + éQ’{’ +byb3 Q) + Q4 + bsgg] +.-=0 (2.10a)

and
b2
’ 3/2 -2 IN Z 2 ’
¥0h + v b0 + Q11+ V| 20Y + b Q) + 1207 + 03|
b3 2
3 5/2 b b 20" 4 byb:0!" 2 " 4 b0
2Q + 4Q0+ Qo + b,b3Qy +Q3 Q1 +b30]
244 b%b:ﬁ 1777 244 b4 11117 b2 ///
vy babagy + 2205 Q 200"+ b4 +
b3
+b305 + by Q) + gz V4 bybs Q) + Q4+ bsQY | +---=0.  (2.10b)

We now equate coefficients of v/,i = 0, 1,...,4, to determine the functions y;(X, y),i =
0,1,...,4. In the following, algebraic equations are solved using the mathematical
package MAPLE [6].

e Equating coefficients of v’: From (2.8a)—(2.8d), we find the problem for (X, y)
as

o)y = Wo)xx + kXr,

subject to
l,[/()(X,O)ZO, l//O(bl,J’)ZOa (WO)X(bI,)’)ZO

Using the transformation g = y¥2Qq(17), where n = X/ +/y, the problem reduces
to

3 _
Q) + gann = 500 + k=0, (2.11a)
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subject to
Qo(b1) = Qy(by) =0 and (2.11b)
X
lim y*/2 (—):0. 2.11¢
y—»oy Qo NG ( )

The solution to (2.11a)—(2.11c) can be written as

\é_(n +6n)erf( )] (2.12)

In order to satisfy equation (2.11c), we need only consider the case X > 0,
because when y = 0 in the continuation region, X > 0. So, from (2.12), we
require A = —A, \/7r/2, so that

Qo() = kp + Ay + 617) +A2[ TPRGP 4 4) +

Qo(n) = kn + Az[—¥(ﬂ3 +6m) + TP+ 4) + g(f + 6U)erf(g)],

From the two conditions in (2.11b) at the free boundary, b, = —0.9034465979
and A, = 0.07536083712k.
The solution for Qy(77) can be written as

00(m) = ¢ aol0] + 217 ]+erf( JiBoL117 + Bol31 1 + ol 110 + vol3 1,

where the coefficients are listed in Appendix B.
e Equating coefficients of v': From (2.8a), we find the governing PDE for (X, y)

as
kx* 2k
Wy = @0+ E= Do + (- + 2] @13)
and, using the transformation , = y*Q, (1), where 7 = X/ 4/y, this PDE reduces
to the ODE

i B 2k
1)+ 20160 =201 + K= DO + (- + K} =0 @140

and, from (2.8b) and (2.10a)—(2.10b), the conditions are

01(by) =0, (2.14b)

by Qy (b1) + Q1(b1) =0 and (2.14c)
o (X))

}g%y Ql(\/y)— (2.14d)

We write the solution to the equations (2.14a)—(2.14d) in the form

01 = Za [y + erf( )Z/ﬁlmn +Zmz]n (2.15)

Substitution of this form into (2.14a) yields a[0] = @;[2] = 0,81[1] =51[3] =0,
y1[1] = y1[3] = 0 as well as a set of six equations in eight unknowns, so that
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we can write the solutions for the coefficients in (2.15) in terms of two free
parameters, «[3],y;[4]. From the limit condition at y = 0, that is, from (2.14d),
v1[4] = —v/r/2a1(3]. Then, from (2.14b) and (2.14c),

— 1.42034572194,
by = ~0.2898271390299% — ———— ="
o
and the value of a[3]. The nonzero coefficients of equation (2.15) are listed in
Appendix B.

e Equating coefficients of v*: From (2.8a), we get the following governing PDE
for Yo (X, y):
k 2 1/ 12kpuX
W)y = W + (F = DWDx =~ Fo + 5 (RX + —5y)

Using the transformation v, = y>/?Q(1), where = X/ +/y, the PDE reduces to
the ODE
3 5 S B 2k
05 + 204 = 3020 + (k= Q1) = kQoln) + (= + —2n) =o0.
(2.16a)
From (2.8b), (2.10a), (2.10b), (2.11b), (2.14b) and (2.14c), we get the conditions

b2
0a(b)) - ;gz;(bl) =0, (2.16b)
b2
EZQ;;%bI) +b300(b1) + b2QY(b1) + Qy(b1) =0 and  (2.16¢c)

X
lim y*/2 (—):0. 2.16d
y—»Oy Qo NG ( )

We can write the solution to (2.16a)—(2.16d) in the form
. 4 n 5 5
_ /4 o0 i .0 o0
0x(7) = ZO] aalily + erf(2) ;,32[1]77 " ZO] nlilf. @17

Substitution of (2.17) into (2.16a) yields a»[1] = az[3] =0, B:[0] = B>[2] =
B2[4] =0, y2[1] = ¥2[3] = y2[4] = 0, as well as a set of seven equations in nine
unknowns, so that we have solutions for the coeflicients in terms of two free
parameters, @,[4],y>[5]. From (2.16d), we have y,[5] = —v//2a,[4]. Then,
from (2.16b) and (2.16¢),

_0.118637288618ku

5 +0.019602516263 + 0.083527050341k

3

o
—,  0.1186372886179u> 0.167054100682,
—0.02965932215K> — i a
ot o?
and the value of a»[4]. The nonzero coefficients in (2.17) are listed in

Appendix B.
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e Equating coefficients of v3: From (2.8a), we get the following governing PDE
for yr3(X, y):

_ - 1/ 24kuX?>  48ku®
W)y = W + (F = D@~ + o (Bx*+ ZEy+ ZHy2)
4! o o

Using the transformation y3 = y*Q3(1), with p = X/ 1y, reduces the PDE to the
ODE

kn*  ku o 2ku

07 + 204 = 303 + (k= Q4 ~ K1) + (- + H + =) =0,
(2.18a)

From (2.8b), (2.10a), (2.10b) and (2.14c), we get the conditions
atn="b, Q)b+ Q6° b3+Q3+—b§_ (2.18b)

b3 77
b, 05 + by Qf + —Q”” + b3 Q) + O + sz +Q/b;=0 (2.18¢)
X
and  limy? (—) - 0. 2.18d
y—>0y 03 NG ( )

We can write the solution to (2.18a)—(2.18d) in the form

03 = e “me +ert(2 )Zﬁs[l]n +Zygmn'- (2.19)

Substitution of (2.19) into (2.18a) yields a3[0] = a3[2] = a3[4] =0, B3[1] =
B3[3] =B3[5] =0, v3[1] = y3[3] = v3[5] = 0, as well as a set of nine equations in
11 unknowns, so that we have solutions for the coefficients in terms of two free
parameters, a3[5], y3[6]. The limit condition at y = 0, that is, equation (2.18d),
yields y3[6] = —vr/2a3[5]. From (2.18b) and (2.18c¢), we get by (which we list
in Appendix A) and the value of a3[5]. The nonzero coefficients in (2.19) are
listed in Appendix B.

e Equating coefficients of v*: From (2.8a), we get the following governing PDE
for y4(X, y):

40kuXx? 240kp*X
oz o )

_ _ 1 /-
Wa)y = Waxx + (& — DWa)x — ko + g(m ;

Using the transformation ¥4 = y"/2Q4(n), withn = X/ 4/y, reduces the PDE to the
ODE

7 _ _
Q4 (m) + QQ;(n) = 3040+ (k= DQ1() ~ kQa()

knp® ku P 2k? B
+(+ S5+ =hon) =0 (2.20a)
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From (2.8b) and on equating coefficients of v* in (2.10a) and (2.10b), we get the

conditions
7" b%bg, 7 QO ”N
atn = by, b2b4Q() + > Qp + 2 b2 24 b2Q3
b2 b3
+ Q" 2 + b3Q2 + b4Q1 + g m + b2b3Q1 +04= (2.20b)

177 b2b 2444 3 777 bg 17117 24 b% 777 /7
byb, Qg +—Qo Qo +ﬁQo + by 05 +?Q2 + 05b3
b3
+QVbs + gz U+ babs QY + Q + bsQf =0 (2.20c)

and

X
limy””2 (—) - 0. 2.20d
hmy (01 NG ( )

We write the solution to (2.20a)—(2.20d) in the form

Qi) = /“Zamln +erf(2 )men +Zy4mn (2.21)

Substitution of (2.21) into (2.20a) yields

a4[1] = a4[3] = a4[51 =0,  B4[0] = B4[2] = Bal4] = B4[6] = 0
¥4l0] = ya[2] = y4[4] = ya[6] = 0

as well as a set of 10 equations in 12 unknowns, so that we have solutions for
the coeflicients in terms of two free parameters, a4[6], y4[7]. The limit condition
aty =0, (2.20d), yields y4[7] = — v/n/2a4[6]. Then, from (2.20b) and (2.20c),
we get bs (which we list in Appendix A) and the value of a4[6]. The nonzero
coeflicients in (2.21) are listed in Appendix B.

Undoing the change of variables, we get the optimal exercise boundary as given in
(2.1) and the option valuation (2.2a)—(2.2c), giving the required result. O

Sample plots of the optimal exercise boundary for various parameter values are
given in Figure 1. As shown, at expiry, the boundary value is Kr/u, from which it
decreases slowly with time to expiry.

Since American options are well known, it is interesting to compare valuations for
American and British options. A comparison of American and British optimal exercise
boundaries with r = 0.04,u = 0.05,0 = 0.3, K = 1 is plotted in Figure 2. The American
boundary was computed using the analytic approximation with dividend yield g = 0
given by Zhang and Li [9], which is valid for short times to expiry. When r > ¢, at
expiry the American optimal exercise boundary is at the exercise price K. For small
times to expiry, its value remains above that of the British optimal exercise boundary,
although the difference between the two narrows with increasing time to expiry.
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——r=0.01,p=002,6=03 ----- r=0.04, n=0.05,6=0.3
r=0.1,p=0.12,6 =0.3

Ficure 1. Optimal exercise boundary b(f) using equation (2.1) with K = 1.
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g
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0.75 ~—_
0 0.05 0.10 0.15 0.20 0.25
T—t

— American optimal exercise boundary
— — British optimal exercise boundary

Figure 2. Comparison of American and British optimal exercise boundaries (OEBs). Parameters used:
r=0.04,4=0.05K=1,0=0.3.
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FiGure 3. British put option curves using (a) r =0.01,4=0.02,0 =03, K =1 and (b) r=0.1,u =
0.12,0=0.3,K=1.

Value

0.6 0.7 08 0.9 10 11
s

— — European put —— Britishput ----- American put

Ficure 4. Comparison of European, British and American option curves with r = 0.07, u = 0.08,
c=03,K=1,T-1r=0.2.

In Figure 3, we use (2.2a)—(2.2c) to plot British put option curves for various
parameter values. As with European put options, for small stock prices the British put
option values decrease slightly with expiry time but, at a certain stock price which is
less than the exercise price, there is a cross-over and the longer-dated options become
more expensive.

In Figure 4, we use the integral representation of the American put value given
by Zhang and Li [9], the Black—Scholes formula [2] for a European put and our
approximation (2.2a)—(2.2c) to the British put to compare their prices using parameter
values r = 0.07, 4 = 0.075,0 = 0.3, K = 1 and time to expiry 0.2. As expected, the
British put option has a value between the European and American values — hence the
name ‘British’ as given by Peskir and Samee [7].
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TasLE 1. Errors in equation (3.1) using formula (2.1).

T-t r=00Lu=002 r=01,u=0.12 r=0.04,u=0.05

0.001 2.33x 1078 2.569 x 1077 9.65x 1078
0.025 1.56 x 1077 5.53x 107° 1.23x 107
0.05 3.16 x 1077 1.21x 107 2.69 x 107°
0.1 7.08 x 1077 3.31x 107 6.97 x 107°
0.15 1.17 x 107© 739 x 107? 1.61 x 1073
0.2 1.67 x 107°© 1.36 x 1074 3.20x 107°
0.25 2.20x 107° 2.16 x 107 552x107°

3. Empirical results

3.1. The optimal exercise boundary In order to check the accuracy of our optimal
exercise boundary (2.1), using (2.1) we compute values of b(¢) for T = 1 and ¢ = 0.999
to 0.75 in steps of —0.001 and find the errors in the calculation of (1.4), that is,

T
error = F(b(?), 1) — f J(b(t), 1, v, b(v)) dv. 3.1)

The errors are naturally cumulative, as computation of the error at time ¢ relies on
estimates of b at times ¢ to T. Other parameters used are o = 0.3, K = 1. As can be
seen from Table 1, the errors are very small, even when the time to expiry is 0.25.
This shows that equation (2.1) provides good approximations to the optimal exercise
boundary for small times to expiry.

3.2. The British put option valuations Here, we test the accuracy of our solution
(2.22)—(2.2¢) using various parameter values. We calculate signed percentage errors,
that is,

(Vexact - Vest)

Vexact

where V. is our analytic approximation (2.2a)—(2.2c) and Vex, is the exact solution
given by Peskir and Samee [7], namely (1.3a), where we used our optimal boundary
values. Other parameter values used were K = 1,0 = 0.3. The results are listed in
Table 2.

From Table 2, we see that the percentage errors are very small for S values up to the
strike price. The best approximations are, as expected, for the smaller time to expiry
and for § values near Kr/u. While the percentage errors may look large for the out-
of-the-money options when S = 1.1, the absolute errors are quite small as the actual
option values themselves are very small. For example, the relative error —13.09%
for r =0.01,u = 0.02,T — t = 0.1 corresponds to an absolute error of 1.05 x 1073
and the relative error —46.98% for r = 0.1, = 0.12, T —t = 0.1 corresponds to an
absolute error of 3.13 x 1073, We also found that the percentage errors with the
new approximation formula did not change very much with different values of o
when the other parameter values were held constant. This again suggests that the

% 100%,
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TasLE 2. Signed percentage errors in equations (2.2a)—(2.2c).

r=0.01,u=0.02 r=0.1,u=0.12 r=0.04,u =0.05
Kr/u=20.5 Kr/u=0.83 Kr/u=0.8

S T-t=0.1 T-t=02 T-t=01T-t=02T-t=01T-1r=02

(%) (%) (%) (%) (%) (%)
0.5 (-6.01 x 107%) (-8.53x 107°)  -5.65 -0.13 -1.85 -2.38
0.6 (-2.75x1077) (-5.97x107%  -1.96 -0.12 -0.54 -0.48
0.7 (-8.96 x 107%) (-2.49x 1073%)  -0.34 —-0.08 -0.06 -0.03
0.8 (—4.57x 107%) -0.05 -0.02 -0.15 -0.01 2.35
0.9 -0.13 -0.41 -0.4 -2.67 -0.16 -0.56
1.0 -1.51 -2.26 -4.78 -8.84 -1.95 -3.19
1.1 -13.09 -10.31 —46.98 -17.06 —-18.55 -15.72

analytic approximation in (2.2a)—(2.2c) provides relatively accurate results for British
put options with short tenor.

4. Conclusion

Peskir and Samee [7] introduced the British put option, which offers the put option
holder protection when the holder believes that the actual drift of the underlying asset
is greater than the risk-free interest rate. They derived a nonlinear integral equation
for the optimal exercise boundary and a double integral, an early exercise premium
representation for the value of the option. In this paper, we have derived a simple
analytical formula for the optimal exercise boundary which has been shown to generate
fast and accurate answers for options with expiry times up to 0.2 years. We note that
options with short tenor are extremely popular in the market. Further, we have derived
a simple formula for the option valuation, independent of the exercise boundary, which
again has been shown to be accurate for options with short tenor. Both formulas found
only involve sums of standard functions and are easily implemented in mathematical
computer packages.

Appendix A

In this appendix we list the first five coeflicients b; in the optimal exercise boundary
(2.1) in terms of k = 2r/0'2,,u and o

by = ~0.9034465979,

1420345721

by = ~0.2898271300% - 222K
g

_ 0.1 186372886ku

3 +0.0196025162 + 0.0835270503k — 0.0296593222k>

o2
0.1 186372886/12 0.1670541007u
a o * o2 ’

https://doi.org/10.1017/51446181115000450 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181115000450

[16] A time-dependent variance model 237

0.0168388832° . -, 0.0083468988
g = - 4 0.0021048604F° + 0.0313406909F7 — -2
o g
1253627636, 0.0252583248ku>  0.0126291624K> _
0 5364 636u” | 0.025 583 8k 0.0126 926 U, 0.0041734494F,
(o (o (o
_0.0044941011kx*  0.0033705758k%u*  0.0011235253k°u
bs = - o6 + pa - )
0.00602187120ku*  0.0030109356k%u  0.0159250152ky
- ot - o? - o?
0.0022470506,* . . _
+ O 1 0.0001404407R — 0.0057207135R + 0.00150546782F°
g
- 001204374241 0.0228828542
—0.003558808% + s e
o o
0.0071176157
-2 0.0007732477.
o
Appendix B
Here, we list the nonzero coeflicients of the function Q;(n), j=0,...,4,in(2.2¢) in

terms of k = 2r/0?, u and 0.

a[0] = 0.3014433484k,
ao[2] = 0.0753608371k,
Bol1] = 0.4007208178k,
Bol3] = 0.0667868030k,
Yol11 = 0.5992791822k,
Yol[3] = —0.0667868030k,

an[1] = 0.09228445812 + 0.1507216742k + (@Tw’
@1[3] = —0.0133798053K + 0.0376804 186k + 002672&
B110] = 025843029308 + ‘mz_w,

B112] = 0.0580698841K2 + 0.2003604089% + (m‘ﬁiw’
B114] = —0.0118575437k + 0.0333934015% + (Wrﬂ’
71101 = 0.2415697070F + ‘wfw,

Yil2] = —0.0580698841 > +0.299639591 1% - (m‘ﬁiw’
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71[4] = 0.0118575437F — 0.0333934015% - —— =~
o
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