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Abstract

One of the important problems in pulsar studies is to determine the magnetic inclination angle «,
the intrinsic width of the radiation beam (2p) and the angle (a 4+ 3) between the observer’s direction
and the rotation axis. In this paper we solve this problem for individual pulses by using the observed
pulse width (2A¢), the swing of polarization angle (2A)), and its central gradient (d¢’/d¢)max-

From the polar cap model we establish three basic geometrical relations, a complete set of equa-
tions from which explicit solutions can be obtained using the observed data. This is the first time that
the orientation of pulsar emission is solved analytically solely on the basis of a geometrical model.
However, the results are shown to be sensitively connected to the polarization-angle swing (2A¢),
which is not well measured for most pulsars. So the number of pulsars to which our method can be
applied is limited. The importance of the measurement of A% is seen from our method. To ensure
the credibility of our results, we have discussed the conditions to be satisfied by all reliable pulsar
measurements. Qur method is shown to be more favorable for pulsars with large pulse width 2A¢,
large central gradient (dy/d®)ma.x and large magnetic inclination angle a. Out of 120 pulsars (from
Lyne and Manchester 1988), 40 are solvable, and 7 are believed to be reliable. We discuss our method
for the determination of pulsar geometry in comparison with other methods.

Introduction Another well known geometrical relation is

One of the important problems in pulsar studies is
to determine the magnetic inclination angle o, the
intrinsic width of the radiation beam (2p), and the
angle (a + () between the observer’s direction and
the rotation axis. Early discussions were focused on
the magnetic inclination a, which is theoretically
given by Jones (1977) as

cos p = cos A¢ sin(a + 3) sina + cos(a + ) cosa
(4)
Using eqs.(1), (2) and (4), the statistical result
given by Wu et al. (1985) shows
p=11°P7087 (5)
) Guseinov and Yusifov gave ranges of a and p for
p (1) pulsars in their article (1985).
P
Investigations of the distribution of a based on the
statistics of apparent beamwidth by Prészynski et
al., (1979) and Wu et al., (1982) showed that the
magnetic inclination tends to be small. But their
method does not work for every pulsar. A sig-
nificant improvement was made by Narayan and
Vivekanand (1982) who made a least-squares fit to
the observed y—¢ curve of polarization-angle vari-
ation. They estimated a and 3 for seven pulsars.
They also described a method in which the observed

tan’a = ™D

p= 100P—-0.7 ~ 4OP—0.7 . (6)
The statistical result given by Lyne and Manchester
(1988) shows

(7

Each method can give the values of a, § and
p, but the values are different for each model. We
hope to determine o, 3 and p without such ambigu-
ity from the observed data. This leads us look back
on the polar cap model, especially the method of

p=6.5°P71/3,

polarization-angle gradients at both the main pulse
and interpulse are used to estimate o and §

least-squares fit to the curve, and question whether
we can make our determination solely on geometri-
cal assumptions. Fortunately, we have the observed

(%) . = :2; (2) polarization position angle given by
_ sinasin A¢
(y_’) _ __ sina ' 3) tandy = sin(a+ ) cos a—cos(a+f) sin acos A¢g
d¢ interpulse Sin(2a + :d) (8)
400
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where 1 is the position angle of the projected direc-
tion of the pulsar rotation axis, 2A% is the swing
of the polarization position angle, 2A¢ is the ap-
parent beamwidth, and 3 is the angle between the
magnetic axis and the observer’s direction. We find
that eqs.(2), (4) and (8) form a complete set of ge-
ometrical restrictions which the six variables a, 3,
p, Ad, Ay, (d/dé)max must satisfy. In short, pa-
rameters a, 3 and p are completely determined by
Ay, A¢ and (dyy/dd)max because of equations (2),
(4) and (8). This forms our geometrical determi-
natton method of pulsar parameters from one self-
consistent model of the polar cap.

Formal derivation
Using egs.(2) and (4), eq.(8) becomes

(58) o
1+ (%)m“ (1 = cos Ag) cos(a + B)

(9)

which leads naturally to a surprisingly useful result

tan Ay =

(d4/d8) gy sin A8 _ 4
cos(a + ) = tandy . (10)
(%'g) (1 - cosAg)
max

It is very clear that the variable a+ 3 can be imme-
diately calculated from the observed measurements
of (d¥/dd)max, A¢ and Ay. Furthermore, eq.(10)
is equivalent to the following two equations

tana = (%%)"‘“ sl + ) (11)
1+ (%)max COS(C! + ﬂ)
0= sin(a + 3)
tanf (%)max + cos(a+ ) 12

Thus we have arrived at a simple analytic solu-
tion of a, 3 and p from the observed data through
eqs.(10), (11), (12) and (4). The calculations are
simpler if we use an expression equivalent to eq.(4)

sin asin A¢

SP = T in Ay

(13)

Eqgs.(10), (11), (12) and (13) show a logical, clear
method for determination of the pulsar parameters
a, # and p.

Discussion

Although nearly 500 pulsars have been discovered,
polarization measurements are presently available
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for only about 100, and not all of these measure-
ments can be used. For the polar cap model, the
linear polarization position angle typically follows
a simple, frequency-independent, ‘S-shaped’ trajec-
tory across the pulse profile (Lyne, Smith, and Gra-
ham 1971, Manchester 1971). The observed data
(d¥/dd)max, A¢ and Ay must be consistent with
the polar cap model. If (d¢//d¢)max and Ay are
considered to be reliable, there is a strict require-
ment on the possible range of the observed Ay. A
rough estimation (Lyne and Manchester 1988) is

dy

tan Ay = (—) sin A¢), (14)

d¢

which can be treated as an approximation of our
eq.(9) when (dy/d¢)max(l — cos Ag) is relatively
small. A strict analysis involves the use of eq.(9).
Using A¢ and (dy/dd)max as parameters, the
polarization-angle swing 2A is a function of the
magnetic inclination, a (figures 1, 2, 3 and 4). So it
is evident that there is a possible range of observed
parameters. This self-consistency condition can be
calculated when eq.(10) is set to 1. Thus

gdw{dm sinA¢ -1
tan A¢ <1

(%—g)m“ (1-cosAg¢)|

(15)

for all the pulsars of our interest. Figures 1 to 4
show that:

1. The curves of Ay vs. a are generally flat
with respect to the variation of a when the values of
A¢ are small, even when the values of (dy/d¢)max
are large (cf. figure 1). It is means that we cannot
estimate the value of a + 3 from eq.(10);

2. For the median value of A¢, the curves of
Ay vs. o are flat for small values of (dv¥//d¢)max,
but steep for large values of (d{//d@)max (cf. figure
2).

3. For the larger values of A¢ the curves become
steeper (cf. figures 3 and 4), but for small values of
a parts of the curve are rather flat. We define an
error function E

CO8 Or

da 1 + (05738 e con B

E= = .
2dAy  2sin® Ay tan 52 sin(a + B)

(16)

which best explains the variations in our figures as
a combined result of the influences of parameters
2Avy and (dy/d¢)max: a larger value of 2A¢ means
a greater change of 2A1), and the higher the value
of 2A1y the curve locates, the larger the range of
2A% results. Furthermore, we expect the smallest
error coefficient E at the center of each curve when
a ~ 90°. Thus if eq.(16) is treated as an error esti-
mation of our calculation of a with respect to small
fluctuations in 2A1%, only those pulsars with large
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Figure 1 Polarization angle swing 2o as a function of

the magnetic inclination a for A¢ = 15° and selected
(dy/dd)max values.
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Figure 3 Polarization angle swing 2a as a function of
the magnetic inclination a for A¢ = 45° and selected
(d¢/dd)max values.

pulse width 2A¢, large polarization-angle swing
2A¢ [or large central gradient (dy'/d¢)max), and
large observer angle a + § (or large magnetic in-
clination a), are of interest for reliable results.

4. We used the pulsar data in Lyne and Manch-
ester’s (1988) table 1 and 2. Out of 120 pulsars,
40 satisfy the conditions determined by eq.(15). Of
these 40, there are pulsars with an error coefficient
E as large as 50, and 22 pulsars have E values larger
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Figure 2 Polarization angle swing 2a as a function of
the magnetic inclination a for A¢p = 30° and selected
(d¢/d¢)max values.
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Figure 4 Polarization angle swing 2a as a function of
the magnetic inclination a for A¢ = 60° and selected
(d¢/d¢)max values.

than 5. Reliable results were obtained only for those
with small error coefficients from eq.(16).

Conclusion

We have hereby introduced a method to compute
pulsar geometry. OQOur equations are constructed
solely on a self-consistent geometrical model of the
polar cap. No statistical relations are used. The
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quality of present observations of polarization limits further in the understanding of the observed data.
the application of our method. Only a small frac- Our knowledge in this respect is certain to increase
tion of pulsars having large magnetic inclination a, if better polarization-angle variation measurements
large pulse width 2A4, and large central gradient (especially Ay) are obtained.

d , .
(Eg)max have been an}enable to our analysis. How- Acknowledgment: This work was supported
ever, our method provides a tool which may carry us by the Natural Science Foundation of China.

https://doi.org/10.1017/50002731600155623 Published online by Cambridge University Press


https://doi.org/10.1017/S0002731600155623

