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1. Introduction

Bony’s sharp maximum principle [6] describes the propagation of minima for super-
solutions of degenerate elliptic operators in all the directions that can be reached
through the so-called subunit vectors that characterize the operator. In this paper
we show that in the nonlocal context, for some fully nonlinear degenerate operators
with nonhomogenous diffusion, this is even more true.

We shall investigate two families of operators that we now introduce: given a
direction ξ ∈ R

N and a function u : R
N �→ R, smooth enough, let

Iξu(x) = Cs

+∞∫
0

u(x+ τξ) + u(x− τξ) − 2u(x)
τ1+2s

dτ (1.1)

where s ∈ (0, 1) and Cs is a normalizing constant such that Iξu(x) →
〈
D2u(x)ξ, ξ

〉
as s→ 1−. The so-called k-th fractional truncated Laplacian is defined by

I−
k u(x) = inf

{ξi}k
i=1∈Vk

k∑
i=1

Iξi
u(x) (1.2)
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where Vk denotes the family of k-dimensional orthonormal sets in R
N , while the

k-th fractional eigenvalue, is given by

Iku(x) = inf
dim V =k

sup
ξ∈V, |ξ|=1

Iξu(x). (1.3)

As it was already pointed out in [4, 5], these operators do not satisfy the strong
maximum principle in the sense that there exists nonnegative supersolutions that
reach their minimum. More precisely, if Ω is an open subset of R

N and k < N , then
there exist nonnegative viscosity supersolutions u ∈ LSC(RN ) of

I−
k u = 0 in Ω, (1.4)

or of

Iku = 0 in Ω,

verifying the conditions

min
Ω
u = 0 and U ∩ Ω �= ∅,

where U =
{
x ∈ R

N : u(x) > 0
}

is the positivity set of u.
The main purpose of this paper is to give a characterization of U , for both classes

of operators.
Let us point out that if k = N in (1.2)–(1.3), or if the infimum is replaced by the

supremum in (1.2), then the corresponding operators satisfy the strong maximum
principle, in which case the alternative claim U ∩ Ω = ∅ or U ∩ Ω = Ω holds, see
[4, theorem 4.3 and proposition 4.7] for details.

Before describing the results we obtain, we wish to mention that we are in the
context of nonlocal viscosity solutions, classical references for the definition of vis-
cosity solutions are [1, 7]; see also [5] for a discussion on the notion of viscosity
solutions for operators (1.2) and (1.3). It is important to underline the fact that
for those operators the nonlocal diffusion is along k one-dimensional sets. Nonlocal
operators with nonlocality in subdimensional sets have been considered in other
contexts; in particular, Bass and Chen in [2], using a probabilistic approach, prove
some Hölder regularity results for solutions of equations involving operators that
are sums of operators like (1.1) along N orthogonal directions. Interestingly the reg-
ularity of the solution holds even if Harnack’s inequality does not. Instead Endal,
Ignat and Quiros in [9] consider the heat equation for a very large class of diffusion
terms that include nonlocal operators such as those of Bass and Chen.

We now describe the sharp maximum principle we obtain in the case of the
nonlocal truncated Laplacians (1.2). We will prove in theorem 2.1 that if U is the
positivity set of a supersolution of (1.4), then U satisfies the following geometric
condition GΩ,U,k.

Definition 1.1.

U satisfies GΩ,U,k ⇔ Ω\U �= ∅ and ∀x ∈ Ω\U there exists {ξi}k
i=1 ∈ Vk s.t

x+ τξi /∈ U ∀τ ∈ R, i = 1, . . . , k.
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Furthermore, the ‘vice versa’ is true in the sense that for any Ω and U , open
subsets of R

N , satisfying GΩ,U,k it is possible to construct a supersolution whose
positivity set coincide with U , see theorems 2.3 and 2.5. These two properties
somehow reflects the fact that the diffusion is along k orthogonal lines.

In order to give a better understanding of this geometric condition, we show in
theorem 2.7 that, if ∂U is smooth, condition GΩ,U,k implies that the sum of the
largest k principal curvatures at any point x ∈ Ω ∩ ∂U is non negative.

In the case of the operator (1.2), i.e. k-th fractional eigenvalue, the geometric
condition of the positivity set is GΩ,U,k.

Definition 1.2.

U satisfies GΩ,U,k ⇔ Ω\U �= ∅ and ∀x ∈ Ω\U there exists V linear space s.t.

(i) dimV = k

(ii) x+ v /∈ U ∀v ∈ V.

Mutatis mutandis the results are the same as for I−
k . This condition, which is in

fact stronger than GΩ,U,k as it will be seen later, is different in nature because even
though the operator is defined only through one-dimensional integrals and so with
one-dimensional diffusion, the sets involved in the propagation of the minimum are
k-dimensional affine spaces.

Also, if ∂U is smooth, GΩ,U,k implies that the (N − k)-th principal curvature is
nonnegative. Furthermore, when k = N − 1, GRN ,U,N−1 implies that the connected
components of U are convex sets, see theorems 3.5 and 3.6.

It is inevitable to compare the results that hold in the nonlocal case with those
obtained for the differential operators to which these operators tend when s goes
to 1. It is easy to see that, under reasonable conditions on the function u, I−

k u
converges pointwise to P−

k (D2u) := λ1(D2u) + . . .+ λk(D2u), while Iku converges
to λk(D2u), where λ1(D2u) � λ2(D2u) � . . . � λN (D2u) denote the eigenvalues of
the Hessian D2u arranged in nondecreasing order. Among other things, for these
very degenerate elliptic operators, some characterizations of the positivity set were
given in [3].

Remarkably, the conditions on the principal curvatures of ∂U , which are implied
by GΩ,U,k or by GΩ,U,k, are the same in the local case and in the nonlocal case.
But differently from the local case, see [3, theorem 11], the statement of theorem
3.6 cannot be reversed. There exist open sets, with convex connected components,
for which GRN ,U,N−1 is not true. A very simple example is given by the union of
disjoint open balls in R

N .
With a different aim, but with a similar point of view, Del Pezzo, Quaas and Rossi

in [8] have introduced a notion of fractional convexity and they define the s-convex
envelope through I1u, in similarity with the result of Oberman and Silvestre [10].

2. The case of I−
k

Let U and Ω be open subsets of R
N . Since GΩ,U,k is trivial if U = ∅, henceforth we

shall assume that U is nonempty.
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Theorem 2.1. Assume that u ∈ LSC(RN ) is a bounded and nonnegative (in R
N )

viscosity supersolution of

I−
k u = 0 in Ω

such that minΩ u = 0. Then its positivity set U =
{
x ∈ R

N : u(x) > 0
}

satisfies
GΩ,U,k.

Proof. Let x0 ∈ Ω\U . Then u(x0) = 0. We test u from below at x0 by

ψn(x) =

{
0 if |x− x0| < 1

n

u(x) otherwise.
(2.1)

From the inequality

I−
k ψn(x0) � 0

we infer that, for any n ∈ N, there exists an orthonormal frame {ξ1(n), . . . , ξk(n)}
such that

Cs

k∑
i=1

+∞∫
0

[u(x0 + τξi(n)) + u(x0 − τξi(n))]χ( 1
n ,+∞)(τ)

τ1+2s
dτ � 1

n
, (2.2)

where χ( 1
n ,+∞) denotes the characteristic function of the interval ( 1

n ,+∞).
Up to a subsequence we can further assume that

lim
n→+∞ ξi(n) = ξ̄i for i = 1, . . . , k

and that
{
ξ̄1, . . . , ξ̄k

} ∈ Vk.
Using Fatou’s lemma in (2.2) we obtain

k∑
i=1

+∞∫
0

lim inf
n→+∞

[u(x0 + τξi(n)) + u(x0 − τξi(n))]χ( 1
n ,+∞)(τ)

τ1+2s
dτ � 0. (2.3)

Since for any τ > 0 we have χ( 1
n ,+∞)(τ) → χ(0,+∞)(τ) as n→ +∞ and

u(x0 ± τ ξ̄i) � lim inf
n→+∞ u(x0 ± τξi(n)),

by lower semincontinuity, then we infer from (2.3) that

k∑
i=1

+∞∫
0

u(x0 + τ ξ̄i) + u(x0 − τ ξ̄i)
τ1+2s

dτ � 0. (2.4)

Moreover, u � 0 in R
N by assumption, hence by (2.4) we conclude that

u(x0 + τ ξ̄i) = 0 ∀τ ∈ R, i = 1, . . . , k

that is x0 + τ ξ̄i /∈ U for any τ ∈ R and any i = 1, . . . , k. �
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Remark 2.2. Theorem 2.1 excludes the existence of bounded supersolutions u ∈
LSC(RN ) of

I−
k u = 0 in Ω bounded domain

such that

min
Ω
u = 0 and u > 0 in R

N\Ω.

Conversely, any open subset U satisfying GΩ,U,k coincide with the positivity set
of a supersolution u of the equation (1.4).

Theorem 2.3. Assume that U is an open set satisfying GΩ,U,k. Then there exists
a nonnegative and bounded (in R

N ) supersolution u ∈ LSC(RN ) of

I−
k u = 0 in Ω

such that

min
Ω
u = 0 and U =

{
x ∈ R

N : u(x) > 0
}
.

Proof. Let us define u ∈ LSC(RN ) by

u(x) = χU (x).

It is clear that U =
{
x ∈ R

N : u(x) > 0
}
. Moreover, since Ω\U �= ∅ by definition

of GΩ,U,k, it holds that minΩ u = 0.
To prove that u is a viscosity supersolution, let x0 ∈ Ω. If x0 ∈ Ω ∩ U , then

u(x0) = 1. Since U is open, the function u is in fact constant in a neighbourhood
of x0. Hence, for any ξ ∈ R

N , with |ξ| = 1, Iξu(x0) is well defined and

Iξu(x0) = Cs

+∞∫
0

u(x0 + τξ) + u(x0 − τξ) − 2
τ1+2s

dτ � 0

considering that 0 � u(x) � 1 for any x ∈ R
N . Then we infer that the inequality

I−
k u(x0) � 0

holds in classical, and so in the viscosity, sense at x0 ∈ Ω ∩ U .
Assume now that x0 ∈ Ω\U , so that u(x0) = 0. In this case u can be discontinuous

at x0 depending on whether x0 ∈ Ω ∩ ∂U or not.
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To check that the inequality I−
k u(x0) � 0 holds in the viscosity sense, let ϕ ∈

C2(Bδ(x0)), δ > 0, be such that

ϕ(x0) = 0 and ϕ(x) � u(x) ∀x ∈ Bδ(x0). (2.5)

Consider the function

ψ(x) =

{
ϕ(x) if x ∈ Bδ(x0)
u(x) otherwise.

Using the hypothesis GΩ,U,k, there exists an orthonormal frame
{
ξ̄1, . . . , ξ̄k

}
,

depending on x0, such that

u(x0 + τ ξ̄i) = 0 ∀τ ∈ R, i = 1, . . . , k. (2.6)

Thus, by (2.5)–(2.6), we conclude

I−
k ψ(x0) �

k∑
i=1

Iξ̄i
ψ(x0) = Cs

k∑
i=1

δ∫
0

ϕ(x0 + τ ξ̄i) + ϕ(x0 − τ ξ̄i)
τ1+2s

dτ � 0 . �

Remark 2.4. As a consequence of theorem 2.1 and of the proof of theorem 2.3, if
u ∈ LSC(RN ) is a nonnegative and bounded (in R

N ) viscosity supersolution of

I−
k u � 0 in Ω,

then the characteristic function χU of its positivity set U =
{
x ∈ R

N : u(x) > 0
}

is in turn viscosity supersolution of the same equation, that is

I−
k χU � 0 in Ω.

Next theorem provides the existence of a Lipschitz continuous entire supersolu-
tion with a prescribed positivity set U satisfying the property GRN ,U,k.

Theorem 2.5. Assume that U is an open and bounded subset of R
N that satisfies

GRN ,U,k. Then there exists a nonnegative and bounded viscosity supersolution u ∈
Lip(RN ) of

I−
k u = 0 in R

N (2.7)

such that U =
{
x ∈ R

N : u(x) > 0
}
.

Proof. We define

u(x) = dist(x,RN\U).

Clearly u is bounded and Lipschitz in R
N . Moreover, since U is open, u(x) > 0 if,

and only if, x ∈ U .
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To check that u is a viscosity supersolution of (2.7), let x0 ∈ R
N and let ϕ ∈

C2(Bδ(x0)), δ > 0, be such that

u(x0) − ϕ(x0) = 0 � u(x) − ϕ(x) ∀x ∈ Bδ(x0). (2.8)

Setting

ψ(x) =

{
ϕ(x) if x ∈ Bδ(x0)
u(x) otherwise,

we have to prove that I−
k ψ(x0) � 0.

We choose y0 ∈ R
N\U , depending on x0, such that

ϕ(x0) = u(x0) = |x0 − y0| . (2.9)

Moreover, by the definition of u, we have

ϕ(x) � u(x) � |x− y| ∀x ∈ Bδ(x0), y ∈ R
N\U. (2.10)

Using (2.9)–(2.10) with x = y + x0 − y0 and setting φ(y) = ϕ(y + x0 − y0), we then
obtain

φ(y) � φ(y0) ∀y ∈ Bδ(y0) ∩ (RN\U). (2.11)

Since y0 ∈ R
N\U , by the assumption GRN ,U,k there exists an orthonormal frame{

ξ̄1, . . . , ξ̄k
}

such that

y0 + τ ξ̄i /∈ U ∀τ ∈ R, i = 1, . . . , k. (2.12)

Then, from (2.11) and (2.12), we have

φ(y0 + τ ξ̄i) + φ(y0 − τ ξ̄i) − 2φ(y0) � 0 ∀τ ∈ [0, δ), i = 1, . . . , k.

The above inequality implies that

k∑
i=1

δ∫
0

φ(y0 + τ ξ̄i) + φ(y0 − τ ξ̄i) − 2φ(y0)
τ1+2s

dτ � 0.

Moreover, since φ(y0 ± τ ξ̄i) = ϕ(x0 ± τ ξ̄i) for τ ∈ [0, δ) and i = 1, . . . , k, we obtain

k∑
i=1

δ∫
0

ϕ(x0 + τ ξ̄i) + ϕ(x0 − τ ξ̄i) − 2ϕ(x0)
τ1+2s

dτ � 0 . (2.13)

Now, we use the inequality

u(x) � |x− y| ∀x ∈ R
N , y ∈ R

N\U
with the particular choice x = x0 ± τ ξ̄i and y = y0 ± τ ξ̄i to infer that

u(x0 ± τ ξ̄i) � |x0 − y0| = u(x0) ∀τ ∈ [0,+∞), i = 1, . . . , k .
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Thus,

k∑
i=1

+∞∫
δ

u(x0 + τ ξ̄i) + u(x0 − τ ξ̄i) − 2u(x0)
τ1+2s

dτ � 0 . (2.14)

The conclusion

I−
k ψ(x0) � 0

easily follows from (2.13) and (2.14). �

Remark 2.6. The assumption U bounded in the statement of theorem 2.5 has been
used only to guarantee that u(x) = dist(x,RN\U) was bounded. In this way, the
maps

τ �→ u(x+ τξ) + u(x− τξ) − 2u(x)
τ1+2s

(2.15)

are integrable outside the origin, for any direction ξ and any x ∈ R
N .

In the case U unbounded, using the Lipschitz continuity of u, the integrability
of (2.15) far away from the origin, is still true, independently of ξ, provided s > 1

2 .
Another possibility to deal with general U and without the restriction s ∈ (1

2 , 1),
is to replace u(x) = dist(x,RN\U) by

u(x) = min
{
dist(x,RN\U), 1

}
.

The details are left to the reader.

Let u be a viscosity supersolution of

I−
k u = 0 in Ω (2.16)

and suppose that the relative boundary Ω ∩ ∂U of its positivity set U is smooth.
Then, denoting with

κ1(x) � . . . � κN−1(x)

the principal curvatures of Ω ∩ ∂U at x, one has

κN−k(x) + . . .+ κN−1(x) � 0 ∀x ∈ Ω ∩ ∂U.

This geometric property is a consequence of theorem 2.1 and the following

Theorem 2.7. Let U be an open set verifying GΩ,U,k and assume that Ω ∩ ∂U is a
C2-hypersurface. Then

k∑
i=1

κN−i(x) � 0 ∀x ∈ Ω ∩ ∂U. (2.17)
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Proof. Let x0 ∈ Ω ∩ ∂U . By assumption, and by an orthogonal transformation, we
may assume that x0 = 0 and that for some r > 0

U ∩Br = {x ∈ Br : xN > f(x′)} , (2.18)

where x = (x′, xN ) and

f ∈ C2(Br(x′)), f(0′) = 0, Df(0′) = 0′. (2.19)

Moreover, the principal curvatures of Ω ∩ ∂U at x0 = 0 are the eigenvalues of
D2f(0′).

Since GΩ,U,k holds and x0 = 0 ∈ Ω\U , then there exists
{
ξ̄i

}k

i=1
∈ Vk such that

τ ξ̄i /∈ U ∀τ ∈ R, i = 1, . . . , k. (2.20)

We claim that
〈
ξ̄i, eN

〉
= 0 for any i = 1, . . . , k, where eN = (0′, 1).

If not, then
〈
ξ̄i, eN

〉 �= 0 for some i ∈ {1, . . . , k}. Replacing ξ̄i with −ξ̄i if
necessary, we can further suppose that

〈
ξ̄i, eN

〉
> 0. Since

f
(
τ ξ̄′i

)
= o(τ) as τ → 0,

we infer that for any τ positive and small enough

τ
〈
ξ̄i, eN

〉
> f

(
τ ξ̄′i

)
.

Thus, using (2.18), we have that for any τ positive and small enough

τ ξ̄i ∈ U

which contradicts (2.20).
Since

〈
ξ̄i, eN

〉
= 0, we can write

ξ̄i = (ξ̄′i, 0). (2.21)

Moreover,
{
ξ̄′1, . . . , ξ̄

′
k

}
is an orthonormal frame in R

N−1.
Consider now, for i = 1, . . . , k, the functions

gi(τ) = f(τ ξ̄′i) τ ∈ (−r, r).
Using (2.18)–(2.19)–(2.20)–(2.21) we obtain that

gi(τ) � 0 = g(0) ∀τ ∈ (−r, r).
Hence for any i = 1, . . . , k

g′′i (0) =
〈
D2f(0′)ξ̄′i, ξ̄

′
i

〉
� 0,

from which we conclude that
k∑

i=1

κN−i(x0) = sup

{
k∑

i=1

〈
D2f(0′)ξi, ξi

〉
: {ξ1, . . . , ξk} orthonormal set in R

N−1

}

�
k∑

i=1

〈
D2f(0′)ξ̄′i, ξ̄

′
i

〉
� 0. �
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3. The case of Ik

As it was mentioned in the introduction, for the operator Ik the right condition
on the positivity set is GΩ,U,k, see definition 1.2. We start the section giving an
example of a bounded open set U ⊂ R

3 which satisfies the condition GR3,U,2, but
not GR3,U,2. Such an example can be easily generalized to R

N and k < N .

Example 3.1. Let

U = U1 ∪ U2,

where U1 and U2 are the two unit and open balls defined by

U1 =
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 < 1
}

U2 =
{
(x, y, z) ∈ R

3 : x2 + (y − 4)2 + z2 < 1
}
.

Let us first show that condition GR3,U,2 is not satisfied. For this we consider, for ε
positive and small enough, the point Pε = (0, ε,

√
1 − ε2) /∈ U . We claim that every

two-dimensional plane π passing through Pε has nonempty intersection with U . This
is obvious if π is not the tangent plane to the unit sphere ∂U1 =

{
x2 + y2 + z2 = 1

}
,

since Pε ∈ ∂U1. On the other hand, if π is the tangent plane to ∂U1 at the point
Pε, it is not difficult to see that(

0, 4,
√

1 − ε2 − ε√
1 − ε2

(4 − ε)
)

∈ π ∩ U2

for any ε positive and sufficiently small. Hence GR3,U,2 is not fulfilled at Pε.
Now we prove that U has the property GR3,U,2. Fix (x0, y0, z0) /∈ U . If there exists

a two-dimensional linear space V ⊂ R
3 such that ((x0, y0, z0) + V ) ∩ U = ∅, then

we are done. Suppose now that for any linear space V , with dimV = 2,

((x0, y0, z0) + V ) ∩ U �= ∅.
In particular, this implies that

x0 ∈ (−1, 1) , y0 ∈ (0, 1) ∪ (3, 4) , z0 ∈ (−1, 1) . (3.1)

Otherwise, it is obvious that there exists a two-dimensional linear space W such
that

((x0, y0, z0) +W ) ∩ U = ∅.
By symmetry, we suppose in the following that y0 ∈ (0, 1). A similar argument,
with obvious changes, holds in the case y0 ∈ (3, 4). We can pick V in such a way

((x0, y0, z0) + V ) ∩ U1 = ∅.
We then have that ((x0, y0, z0) + V ) ∩ U2 �= ∅ . Note that ((x0, y0, z0) + V ) ∩ U2 is
a disc and that

dist ((x0, y0, z0), ((x0, y0, z0) + V ) ∩ U2) � |(x0, y0, z0) − (0, 4, 0)| − 1 > 2.
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After a rigid transformation we can also assume that (x0, y0, z0) = (0, 0, 0), V is
spanned by e1 = (1, 0, 0) and e2 = (0, 1, 0) and that

((x0, y0, z0) + V ) ∩ U2 =
{
(x, y, 0) ∈ R

3 : (x− α)2 + y2 < ρ2
}

for some α > 2 and ρ ∈ (0, 1]. Now, it is immediate to see that

r1 :

{
x = y

z = 0
, r2 :

{
x = −y
z = 0

are two orthogonal lines passing through (x0, y0, z0) and such that

r1 ∩ U = r2 ∩ U = ∅.
Since (x0, y0, z0) /∈ U is arbitrary, we conclude that U has the property GR3,U,2.

Theorem 3.2. Assume that u ∈ LSC(RN ) is a bounded and nonnegative (in R
N )

viscosity supersolution of

Iku = 0 in Ω

such that minΩ u = 0. Then its positivity set U =
{
x ∈ R

N : u(x) > 0
}

satisfies
GΩ,U,k.

Proof. Let x0 ∈ Ω\U . We proceed as in the proof of theorem 2.1 testing u from
below at x0 by the sequence of function ψn defined in (2.1). Hence for any n ∈ N,
there exists a k-dimensional linear space V = V (n) such that

Cs sup
ξ∈V, |ξ|=1

+∞∫
0

[u(x0 + τξ) + u(x0 − τξ)]χ( 1
n ,+∞)(τ)

τ1+2s
dτ � 1

n
. (3.2)

Choose an orthonormal basis {ξ1(n), . . . , ξk(n)} of V . Passing to a subsequence, we
can also assume that

lim
n→+∞ ξi(n) = ξ̄i i = 1, . . . , k.

Let V̄ = span
{
ξ̄1, . . . , ξ̄k

}
. We have dim V̄ = k. We claim that V̄ satisfies also con-

dition (ii) in definition 1.2. For this we shall prove that for any fixed unit vector
ξ ∈ V̄ , then

x0 + τξ /∈ U ∀τ ∈ R. (3.3)

Let ξ ∈ V̄ be such that |ξ| = 1 and let

v(n) :=
k∑

i=1

〈ξi(n), ξ〉 ξi(n).

Note that v(n) ∈ V = V (n) and that

lim
n→+∞ v(n) = ξ. (3.4)
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Hence, for any n sufficiently large, |v(n)| > 0. Using (3.2) with ξ(n) = v(n)
|v(n)| ∈ V

we have

Cs

+∞∫
0

[u(x0 + τξ(n)) + u(x0 − τξ(n))]χ( 1
n ,+∞)(τ)

τ1+2s
dτ � 1

n
.

Passing to the limit in the above inequality as n→ +∞ and using Fatou’s Lemma,
u ∈ LSC(RN ) and (3.4) we obtain

+∞∫
0

u(x0 + τξ) + u(x0 − τξ)
τ1+2s

dτ � 0.

The assumption u � 0 in R
N yields u(x0 + τξ) = 0 for any τ ∈ R. Thus, (3.3) holds.

�

The proofs of the following three theorems can be obtained, with minor changes,
as those of theorems 2.3, 2.5 and 2.7, see also remark 2.6.

Theorem 3.3. Assume that U is an open set satisfying GΩ,U,k. Then there exists a
nonnegative and bounded (in R

N ) supersolution u ∈ LSC(RN ) of

Iku = 0 in Ω

such that

min
Ω
u = 0 and U =

{
x ∈ R

N : u(x) > 0
}
.

Theorem 3.4. Assume that U is an open subset of R
N that satisfies GRN ,U,k. Then

there exists a nonnegative and bounded viscosity supersolution u ∈ Lip(RN ) of

Iku = 0 in R
N

such that U =
{
x ∈ R

N : u(x) > 0
}
.

Theorem 3.5. Let U be an open set verifying GΩ,U,k and assume that Ω ∩ ∂U is a
smooth hypersurface. Then

κN−k(x) � 0 ∀x ∈ Ω ∩ ∂U.
The geometric condition GRN ,U,N−1 implies the convexity of any connected

component of U , as shown in the next

Theorem 3.6. Let U ⊂ R
N be open set satisfying condition GRN ,U,N−1. Then any

connected component of U is a convex set.

Proof. Let U0 be a connected component of U . Note that U0 is an open subset of
U since U is locally connected.

To the contrary that U0 is a convex set, we suppose that U0 is not convex, which
implies that there are two distinct points x, y ∈ U0 such that the line segment
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[x, y] := {tx+ (1 − t)y : t ∈ [0, 1]} is not contained in U0. This implies that [x, y] is
not contained in U . Indeed, if we suppose that [x, y] ⊂ U , then [x, y] is a connected
subset of U and intersects U0, and therefore, U0 ∪ [x, y] is a connected subset of
U , which yields a contradiction that [x, y] ⊂ U0. Thus, we find that [x, y] is not
contained in U . We can choose λ ∈ (0, 1) so that z := λx+ (1 − λ)y �∈ U . By the
property GRN ,U,N−1, we can choose (N − 1)-dimensional linear subspace V of R

N

such that (z + V ) ∩ U = ∅. Select ν ∈ R
N \ {0} so that z + V = {p ∈ R

N : 〈ν, p−
z〉 = 0} and set

H+={p ∈ R
N : 〈ν, p− z〉 > 0} and H−={p ∈ R

N : 〈ν, p− z〉 < 0}.
Observe that

U0 = (H+ ∩ U0) ∪ (H− ∩ U0), (3.5)

that the right-hand side of (3.5) is a disjoint union of two open subsets of U , and
that either x ∈ H+ and y ∈ H−, or x ∈ H− and y ∈ H+, which assures that both
H+ ∩ U0 and H− ∩ U0 are nonempty. Hence, (3.5) contradicts the connectedness
of U0, which completes the proof. �

As a consequence of theorems 3.2 and 3.6, we have the following,

Theorem 3.7. Let u ∈ LSC(RN ) be a bounded and nonnegative supersolution of

IN−1u � 0 in R
N (3.6)

and satisfy minRN u = 0. Then any connected components of its positivity set is a
convex set.

Remark 3.8. Theorem 3.7 is not true for supersolutions of

Iku = 0 in R
N (3.7)

when k < N − 1 and N � 3. As an example consider

U =
{
x = (x1, . . . , xN ) ∈ R

N : 1 < x2
1 + x2

2 < 2
}
.

Then U has the property GRN ,U,k for any k � N − 2. For this it is sufficient to
consider any k-dimensional linear space V ⊆ {(0, 0, x3, . . . , xN )} in order to fulfil
condition (ii) of definition 1.2.

By theorem 3.3, or theorem 3.4, there exists a bounded and nonnegative viscosity
supersolution of (3.7) whose positivity set coincides with U . On the other hand, it
is clear that U is not convex.
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