
THE FOURIER TRANSFORM OF VECTOR-VALUED

FUNCTIONS

by SUSUMU OKADA

(Received 11 September, 1984)

For each natural number n, let u,,(x) = (1-cos nx)/Trnx2 (xeU). It is well-known that
a bounded continuous function / on the real line IR is the Fourier transform of an
integrable function on IR if and only if the functions <£„(/) (n = 1, 2, . . .) , defined by

dt, (xeR),

form a Cauchy sequence in the space ££x(U) (cf. [2]). Such a characterization, which can be
extended to functions defined on a locally compact Abelian group more general than U, is
based on the fact that the space ^ ( R ) is complete with respect to convergence in mean.

However, as noted in [6], this criterion cannot be extended to characterize the
Fourier transforms of vector-valued, Pettis integrable functions. This is due to the fact
that the space of Pettis integrable functions is not complete with respect to convergence in
mean (cf. [8]).

The integral introduced in [7] does not surfer from this defect. It leads to a space of
integrable functions which is complete with respect to convergence in mean. Accordingly,
the Fourier transforms of such vector-valued, integrable functions can be characterized by
a criterion analogous to that which characterizes the Fourier transforms of scalar-valued
integrable function. The aim of this note is to present such a criterion.

1. The Archimedes integral. Let A be a choice of Haar measure in a locally
compact Abelian group G. Let X be a complex Banach space and X' its dual space.

Let Y be a locally convex HausdorfF space into which the space X is continuously
embedded. A function F: G —» Y is called Archimedes integrable with respect to A. in the
space X, briefly (X, A)-integrable, if there exists a function H.G-+Y, vectors qeX and
Borel subsets Et of G, (i = 1,2,...), such that

(i) the function F is A-almost everywhere equal to H;
(ii) the sequence {c;A(Ej)}ieN is unconditionally summable in the space X; and

(Hi) if y'e Y', then

for every g e G for which
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The X-valued set function FA denned by
oo

(FA)(E)=£ c

for every Borel set E, is called the indefinite integral of the function F with respect to A.
Since Y' separates points of X, the indefinite integral FA is well-defined (cf. [7, Lemma 1,
Note 11]). By the Vitali-Hahn-Saks theorem, it is <7-additive. We shall also use the
classical notation

(FA)(E)=f Fdk,

for each Borel set E.
The vector space of all Y-valued, (X, A)-integrable functions on G is denoted by

££(k;X, Y). Define the seminorm ||-|| on the space ££(k;X, Y) by

| = sup{|<x\FA>| (G) : |x ' | s l .x ' sX '} ,

for every Fei£{k\X, Y), where |(x', FA)| denotes the total variation of the complex
measure (x1, FA). The topology on i£(A;X, Y) given by this seminorm is called the
topology of convergence in mean. It is clear that the space of X-valued, (X, A)-integrable
Borel simple functions on G is dense in the space J£(k;X, Y) (cf. [7, Proposition 2]).

There always exists a locally convex Hausdorff space Y, into which X is continuously
embedded, such that the space i?(A, X, Y) is complete with respect to convergence in
mean. For example, if 0 is a total subset of the dual space X', then X is continuously
embedded into the product space C e and we have the following result.

THEOREM 1.1 ([7, Theorem 5]). The space ££(k;X,C&) is complete with respect to
convergence in mean.

The relationship between the Pettis integral and the Archimedes integral is given by
the following result.

PROPOSITION 1.2 ([7, Proposition 14]). A function F:G -*Xis (X, k)-integrable if and
only if it is strongly measurable and Pettis integrable with respect to A. Moreover, the
indefinite integral FA of each function F e J£(A; X, X) is equal to the indefinite Pettis integral
ofF.

2. The Fourier transform. Let G be a locally compact Abelian group and F its dual
group. Let A be a fixed Haar measure in the group G. Let v be the Haar measure in F
which is so normalized that the inversion formula is valid (cf. [9, Theorem 1.5.1]).

Throughout this section, X is a Banach space and Y is a locally convex Hausdorff
space into which X is continuously embedded.

For each function Fe££(k; X, Y), let

F(y)= f F(g)(-g, y) dg {yeT).
Jr.
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The X-valued function F so defined is called the Fourier transform of the function F. It
exists by [7, Corollary 4].

According to [4, Theorem 33.12], the Banach algebra i?i(G) of all complex-valued,
A-integrable functions on G admits an approximate unit {ua}aeA such that

(i) for every aeA, the function ua is non-negative and (uaA)(G) = l;
(ii) for every aeA, the Fourier transform ua of ua is a continuous function on F

with compact support;
(iii) for every aeA, the function ua is equal to the inverse Fourier transform of ua;
(iv) lim ua = 1 on F, the convergence being uniform on all compact subsets of F.

aeA

Let aeA. Suppose that / : T —* X is a weakly continuous map. Then, for every g e G,
the X-valued function 7 >-> f(y)ua(y)(g> 7), where 7 € l \ is Pettis v-integrable since it has
weakly compact range (cf. [5, Lemma 4] or [3, p. 88]). Let

«»a(/)(g)=_[/(7)fio(7)(&7)d7 (geG), (1)

where the right hand side of (1) is the Pettis integral over F.

THEOREM 2.1. Let / : F - * X be the Fourier transform of an element of i?(A; X, Y).
Then f is a bounded continuous function vanishing at infinity, and the X-valued functions
®a(f)> where aeA, given by (1) are (X, k)-integrable and form a Cauchy net in the space

; X, X) with respect to convergence in mean.

Proof. Take a function Fei£(A;X, Y) such that F = f. Then there exist (X, A)-
integrable, Borel simple functions Hn:G—>X (n = l ,2 , . . . ) , which are convergent in
mean to the function F. It follows that, for every natural number n,

l / ( 7 ) - H B ( 7 ) N | F - H j (yeT). (2)

For every natural number n, the function Hn is continuous and vanishes at infinity
since Hn is a simple function (cf. [9, Theorem 1.2.4]). It follows from (2) that the function
/ is also continuous and vanishes at infinity.

Let a e A. By [6, Lemma 7], the function <&»(/) is Pettis A-integrable. We claim that
<£>„(/) has relatively compact range in the space X. Indeed, the bounded function fua with
compact support is Bochner v-integrable and its indefinite Bochner integral has relatively
compact range R in X (cf. [3, Theorem VIII. 1.5]). Consequently, the range of <&„(/) is
included in the compact set 4bco R, where bco R denotes the closed balanced convex hull
of the set R.

Since the function <&„(/) is scalarly A-integrable and has separable range, it vanishes
A-almost everywhere outside some Borel set of a-finite measure. By the Pettis measura-
bility theorem, the function <&„(/) is strongly A-measurable. It follows from Proposition
1.2 that the function $„(/) is (X, A)-integrable.

For every aeA and every natural number n,

ll<M/)-<MHJNI|F-Hj. (3)
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In fact, the strongly A-measurable functions 3>a(/) and <&a(Hn) both vanish A-almost
everywhere outside a Borel set E of cr-finite measure. Let /x = (F-Hn)A. Since ua has
compact support, the Fubini theorem ensures that, for every x' e X',

dg\ K*', <*>«(/)-3>«(HJ>I d\ = \B\\O d(x', n>(h)£ ua(y)(g-h, y) dy

= f If ua(g-h)d(x

d|<x»|(h)f ^(g-

dg

Thus, the inequality (3) is valid.
Let n be a natural number. Since Hn is a simple function, it follows from [10,

Theorem 2(a)] that the net {Oa(HJLe A is Cauchy in the space 5£{X;X, X). By (3), the
net {<&«(/)}«eA is also Cauchy in the space 5£(k;X, X).

The statement in Theorem 2.1 that the Fourier transform of an Archimedes integra-
ble function vanishes at infinity is a vector version of the classical Riemann-Lebesgue
lemma.

A sufficient condition for an X-valued function on F to be the Fourier transform of
an Archimedes integrable function on G is given by the following result.

THEOREM 2.2. Let 0 be a total subset of the dual space X' and Y = C®. Let f.T^X
be a bounded weakly continuous function such that, for every as A, the function
^a(f)'-G-*X, given by (1), is (X, k)-integrable and the net {<&<x{.f)}asA. is Cauchy in the
space S£{\; X, X) with respect to convergence in mean.

Then the function f is the Fourier transform of a function belonging to the space

Proof. The Cauchy net {Oa(/)LeA has a limit, F, in the complete space S£(\;X, Y)
(cf. Theorem 1.1). It follows from [10, Theorem 2(a)] that, for every 0e@,

(6, /(Y)> = [ <«, Kg)X-g, Y) dg = (0, F(Y)> (Y 6 0 .

Since © is a total subset of X', we have / = F.
Theorems 2.1 and 2.2 can be used to characterize those X-valued functions on F

which are Fourier transforms of X-valued Bochner A-integrable functions on G. This
gives a slight extension of the characterization in [1], where it was assumed that G is a
metrizable locally compact Abelian group.

COROLLARY 2.3. A function / : F —» X is the Fourier transform of an X-valued, Bochner
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A-integrable function on G if and only if the following conditions hold:
(i) the function f is bounded and continuous;

(ii) for every a e A, the function <&„(/): G —* X, given by (1), is Bochner A-integrable,
and the net {&a(f)}aeA is Cauchy with respect to the Bochner seminorm; that is,

lim |<J>a(/)-3>3(/)| dA = 0 .
ot,3eA J Q

Proof. To prove the 'only if part, take a Bochner A -integrable function F:G-^X
such that F = f. Statement (i) is a consequence of Theorem 2.1. Now, given e >0, choose a
Bochner A -integrable, Borel simple function H: G —» X for which

I \F-H\d\<e.
JG

By the argument in the proof of Theorem 2.1,

\F-H\dk,

which implies statement (ii), since H is a simple function.
To prove the 'if part, take a Bochner A-integrable function F:G-+X such that

lim f |F-<t»»(/)|dX=0.
as A Jn

It then follows from Theorem 2.2 that f=F.
The author wishes to thank Professor Igor Kluvanek and Werner Ricker for valuable
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