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DEGREES GIVING INDEPENDENT EDGES
IN A HYPERGRAPH

Davip E. DAYKIN AND RoLAND HAGGKVIST

For vr-partite and for r-uniform hypergraphs bounds are given

for the minimum degree which ensures d independent edges.

1. Introduction and statement of results
(i) ~HYPERGRAPHS

Let ¢, r, 8 be positive integers with 2 < r and let’
s=1{1,2, ...,8t . Aset H of subsets of S is a hypergraph. The
members of H are called edges. Two edges o, B € H are independent if

anB=@ . The degree degH(x) of £ €S in H is the number of
members of H containing x . We write 6(H) for min{degH(x)} over

£ €S . Let B be the set of all a < S of cardinality lo| =» . In
this paper each H < B so H . is an r-graph or r-uniform hypergraph. We
are concerned with the least number ® such that every H with w < §(H)
has more than d independent edges. Related problems are dealt with in

the references.
(ii) r-PARTITE pr-GRAPHS
Suppose S is a disjoint union § = Rl u...u Rr with lRil =ec

for 121 =<=r so s=cr . Let A be the set of all a < § such that

fa n Ril =1 for 1 =i =r . Inthis case any HC A CB is an

r-partite hypergraph.
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THEOREM 1. If 0=d <e¢ and H 1is r-partite as above with

8(H) > {cr_l-(c-d)r-l}(r-l)/r
then H has more than d independent edges.
To see how close this theorem gets to w consider

EXAMPLE 1. Put d=gqr +p with 0<p<ryr. For 17 =p

select q + 1 elements of Ri . For p<i =r select q elements of

Ri . Let H consist of all o € A which contain at least one of the d
. : r-1 =1 Nr=1

selected elements. Then &(H) is approximately ¢ - (c-r d) but

H does not have d + 1 independent edges.

(iii) GENERAL r-GRAPHS

EXAMPLE 2. Select d elements of S and let H consist of all

a € B which contain at least one of the selected elements. Then

s = (53] - [

] but # does not have d + 1 independent edges.
THEOREM 2 (Bollob&s, Daykin and Erdds). If 0 =d and

2r3(d+2) <g and

w s 13- (52

r-1 r-1
then H has more than d independent edges.

That this theorem has evaluated ww is shown by Example 2. It appears
in [1] where it is in fact proved that all H with a fixed number of
independent edges and high &(H) are subhypergraphs of Example 2. In
Theorem 2 it is required that s be large. Without this requirement we

bound w in

THEOREM 3. If r divides s and

5(#) > {[s‘l]-[s‘dr‘l]}(r-l)/r

r-1 r-1
then H has more than d independent edges.

For Theorems 1 and 3 we prove slightly more than what is stated.

Namely that if Cl, ey Cd is any maximum set of independent edges, and

if E 1is any possible edge in S\{C1 U ... U Cd} then F has low average
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degree. We beliéve the condition »r divides s can be removed but were

not able to do so.

2. Proof of Theorem 1

Part (i). Assume that 1 =d <¢ and H has d independent edges

Cl’ vy Qi but not d + 1 . Choose arbitrarily members Cd+1’ cees Cc

of A so that S is the disjoint union S = cl u,.. U Cc . We label the

elements x(Z, J) of S so that

(1) ¢; = {21, §), ..., &(r, )} for 1==ec,
(2) Ri = {z(Z, 1), ..., z(Z,e)} for 1<i<r,.

The reader will probably find it helpful to think of S as the elements of
a matrix. Then ¢, C refer to columns and »r, R to rows. We write D

for the union of the d independent edges D = Cl U... U Cd and F for

Cc the end column in the matrix.

We will use the cyclic permutation O on #»n distinct positive

i w cee i = .= W, ise.
integers 1 R wn defined by Own wl and th wt+l othervise

We proceed to partition 4

Part (ii), civen a={xﬁ,ﬁ),“.,x&,@J}€A let

1A

{wl, SRR {jl, et jr} with 1S® <...<w Sc. Note that

n =2r . Then put

(3) K(a) = {{x[l, Oejl], ces x[r, oejr]} :1<ec< n} )

We say that the members of K(a) are obtained by rotating o . The sets

K(a) are the equivalence classes of our partition of 4 .

Part (iii). TLet X ={a : a € 4, an D # ¢} . Then.by definition of
d we have H<S X . Let K be the set of equivalence classes in the
partition of A . If K € K 4then either K< X or KnX=¢ . TFor
L © A define

A(L) = Z (x € E)degL(x) .

Let Y={a:0€¢A4,anE#£0} . If X € K then either KnY=¢ or
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K<Y according as 0 = A(K) or not. For all L CA we have

ML) = ML 0 Y) and in particular A(H) = A(Hn X nY) .
Assume for the moment that
(kL) rA(H n K) = (r-1)A(K) for all K € K with KCcXnY.

Then we have
(5) rA(H) = r ) MH n K) < (r-1) ¥ A(K) = (r-1)0(X n ¥) ,
where summation is over K € K with KcXnY .

Part (iv). Clearly A(4) = re™ 1 ana AX nY) = r(cr_l-(c-d)r—l)
So the result follows by (5). It remains to prove (L).

Part (v). Suppose K € K and Kc X nY . If o € K then the other
members of K are obtained by rotating o . Hence every x € F is in
exactly one member of X and so A(K) =r . If k= |K|] then X
consists of k independent members of A . Again by the rotation
K n Cj # @ for less than k of the J in 1 =4 =d . Therefore if

K c H we could remove these Cj from Cl’ e Cd and adjoin K to get

more than d independent edges of # . "Hence K ¢ H and so
A(H n K) = »r -1 and this proves (4).

3. Proof of Theorem 3

We use ideas from the last proof. In fact we have chosen our notation
so that parts of the last proof carry over unchanged, provided 4 now
means the set B of all a c S with |a| =2r . Do not be deceived.

Although the writing is the same the meaning is different.

Part (i). As before. Note that before the R's were given but now
they are defined by (2).

Part (ii). Given a row vector v [v(l), ..., v(e)) of non-negative

integers v(j) 1let

W={wl, ...,wn}={j:l j <cand 0<v(j)},

1A

with 1 =< wl < ... < wn . Note that n = ¢ . Now define a permutation =

of {1, ...,e} by wj=0j if § €W but mj =J otherwise. Finally
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put

v=vw = {{E%), ..., v(®%)) : 1 se =n}

For example if » = (1, 0, 2, 1, 0, O, 2) then 7n = 4 and
Ww=1{1,3,4, 7} and V is v and (2,0, 1, 2, 0, O, 1)

Given o €4 put v(j) = la n le for 1 =j<e¢ . Inthis way a

yields a row vector v . In turn v yields a set V of row vectors as

above. We use V = V(a) to define K< A4 by
K =K(a) = {B : B €4, row vector of 8 € V(a)}

Clearly the set K of all sets K{(a) over o € A are the equivalence

classes of a partition of 4 .

Part (iii). As before.

Part (iv). Clearly A4(4) = r[i:i] and A(X n Y) = r{[i:i]-[s;fgjl]}.

So the result follows by (S). It remains to prove (L).

Part (v). Choose any X € K with K< X nY and fix it. An

ordering of Cj is a bijection Aj : Cj + {1, 2, ..., r} and the number
of these is r! ., For 1 =j =c¢ 1let A. be an ordering of Cj . We say
thet a € X is good in A = (Al, Ac) if

U { U )\.(:z:)}={1, 2, ..., r}
15/%e ‘weanC J

If we think of A as reordering the columns of S as a matrix then a is
good in A if it has exactly one element in each row of the reordered S .

If a, B € XK then the numbers |a n le are the same as the numbers
|B n Cﬁl in some order. Hence o and B are good in the same number ¢
of the A . For each A let F(A) and G(A) be the set of all a in X
and H n K respectively which are good in A . Then

(6) AMHE N K) =t Y AGN) and AK) =t Y A(F(V) ,

where summation is over A . Assume for the moment that

(7 rA(G(X)) = (r-1)A(F(X)) for a1l A .
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Then (4) follows immediately using (6).

Part (vi). Choose any A and fix it. PFor simplicity write F, G
instead of F(A), G(A) . After S has been reordered by A we renumber
the elements x(Z, j) of S so that (1) and (2) again hold. Given any
o € F we define the set K(a) exactly as in (3). To avoid confusion let
K(a) %be called J . Because the members of J are obtained by rotating
& they are all in K . Also by construction they are all good in A . In
fact the various J partition F . Exactly as in Part (v) of the proof of
the last theorem we find that A(J) = r and A(EnJ) <r -1 . Hence

PA(G) =2 Y AM(HnJd) =r Y (r-1) = (r-1) ¥ r = (r-1) ¥ A(J) = (r-1)A(F) ,

where summation is over the equivalence classes J which partition F ,

and this proves (7).
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