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Abstract

Functional programming languages have banned assignment because of its undesirable
properties. The reward of this rigorous decision is that functional programming languages are
side-effect free. There is another side to the coin: because assignment plays a crucial role in
Input/Output (I/O), functional languages have a hard time dealing with I/O. Functional
programming languages have therefore often been stigmatised as inferior to imperative
programming languages because they cannot deal with I/O very well. In this paper, we show that
I/O can be incorporated in a functional programming language without loss of any of the
generally accepted advantages of functional programming languages. This discussion is
supported by an extensive account of the I/O system offered by the lazy, purely functional
programming language Clean. Two aspects that are paramount in its I/O system make the
approach novel with respect to other approaches. These aspects are the technique of explicit
multiple environment passing, and the Event I/O framework to program Graphical User I/O in
a highly structured and high-level way. Clean file I/O is as powerful and flexible as it is in
common imperative languages (one can read, write, and seek directly in a file). Clean Event I /O
provides programmers with a high-level framework to specify complex Graphical User I/O. It
has been used to write applications such as a window-based text editor, an object based
drawing program, a relational database, and a spreadsheet program. These graphical
interactive programs are completely machine independent, but still obey the look-and-feel of
the concrete window environment being used. The specifications are completely functional and
make extensive use of uniqueness typing, higher-order functions, and algebraic data types.
Efficient implementations are present on the Macintosh, Sun (X Windows under Open Look)
and PC (OS/2).

Capsule review

The functional language Clean, developed at Nijmegen, has one of the best developed and most
sophisticated graphical input/output systems of any purely-functional language implemen-
tation. As such it represents an important'data point' in the state-of-the-art, especially because
functional languages have hitherto often been associated with relatively poor I/O capability.
This paper describes how it works.

The proper sequencing between I/O operations is maintained by explicitly threading through
them a value, or environment, representing the state of (an appropriate part of) the external
world. A type system ensures that the environment is never duplicated, so that I/O operations
can be performed right away on the real world. While this is not in itself an original idea, its
development into a fully-fledged event-driven graphical I/O system, is both original and
interesting.
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1 Introduction

Functional programming languages live in a world from which assignment (or
destructive updating) has been banned because of its undesirable properties. Living
without assignment has proven to be very successful, and many accounts have been
written of the advantages of living in a world free of side-effects (Backus, 1978;
Hughes, 1990). However, to write useful applications, it must be possible for
functional programs to interact with the outside world. Doing I/O means
manipulation of I/O resources, such as files, keyboards, mice and screens. In the real
world these resources are globally accessible, and manipulations of them are in
essence assignments. This implies that functional languages cannot use I/O resources
in the same direct, unrestricted way as for example imperative languages can. For this
reason functional languages are often stigmatised as inferior to imperative
programming languages because they cannot deal with I/O very well.

Research on the incorporation of purely functional I/O into functional
programming languages has evolved into basically two styles of solutions: stream
based solutions and environment based solutions. Stream based methods have been
proposed in a (token) stream style (Henderson, 1982; Turner, 1990; Hudak et al.,
1992; Carlsson and Hallgren, 1993) and continuation style (Thompson, 1990;
Dwelly, 1989; Perry, 1988). Essentially, stream based methods transform an input
stream into an output stream. The output stream is not exclusively used for producing
output only, it is also used for requesting input. Some entity outside the program
(usually the operating system) handles the output requests and provides the proper
input. Environment based methods are environment passing methods (Williams and
Wimmers, 1988; Backus et al., 1990) and methods using monads (Peyton Jones and
Wadler, 1993). In. these solutions, functions essentially operate directly on a special
object, the environment, that represents the state of the world. In the literature,
environment based methods are also known as side-effecting I/O systems (Gordon,
1993).

The Clean I/O system that is presented in this paper is an environment based
approach and contributes to the research in functional I/O in two major aspects. The
first aspect is the use of an explicit multiple environment passing style throughout the
system giving explicit and direct access to I/O resources. This has been made possible
by the Uniqueness Type System of Clean (Smetsers et al., 1993; Barendsen and
Smetsers, 1993a, b; Plasmeijer and van Eekelen, 1993) which enables safe and
restricted updates in a pure and functional framework. The second aspect provides
programmers with the Clean Event I/O framework (Achten et al., 1993; Achten and
Plasmeijer, 1993) to program Graphical User I/O in a highly structured and declarative
way. The specifications of interactive programs are functional and programs can be
reasoned about without any assumption about operating systems. The I/O system
demonstrates that functional languages are well suited for I/O, by making extensive
use of uniqueness typing, and well-known functional programming features such as
higher-order functions, polymorphism, and algebraic types.

The paper starts with brief introductions to Clean and Uniqueness Types (Sections
2 and 3). The explicit multiple environment passing style is defined in Section 4. Clean
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file I/O is discussed in Section 5, and Section 6 presents the Clean Event I/O system.
Section 7 discusses how interactive programs can be constructed in the Clean Event
I/O system, and Section 8 briefly views the implementation of the Clean Event I/O
system. Section 9 compares some related work with our approach. Finally, the
conclusions are presented in Section 10, and current and future research on functional
I/O is presented in Section 11.

2 Clean

Clean (Brus et al., 1987; Nocker et al., 1991; Plasmeijer and van Eekelen, 1993) is a
lazy functional programming language based on Term Graph Rewriting (Barendregt
et al., 1987). To give an idea of what Clean programs look like, Fig. 1 presents an
example of the well-known fibonacci function. The examples in this paper are
presented in the new Clean 1.0 syntax (Plasmeijer and van Eekelen, 1994, in
preparation). Where appropriate, the text includes remarks on peculiarities of this
notation.

fib: :IntH-Int
fib 1 = 1
fib 2 = 2
fib n = fib (n-l)+fib (n-2)

Start::Int
Start=fib 100

Fig. 1. A Clean program for fibonacci. Function definitions are optionally preceded by their
type definition. Type symbols start with a capital, (type) variables always start in lowercase.
Function names can start either with a capital or in lowercase. An n-ary function named f with
arguments of type x1;... xn, and result type T has a type definition f: : xt T2. . .zn -> t. The special
function named Star t gives the initial expression of the program.

Term Graph Rewriting systems are well suited for efficient implementations of
functional languages (Groningen et al., 1991; Smetsers et al., 1991; Plasmeijer and
van Eekelen, 1993). Graph rewriting is actually used in many implementations of
functional languages. The main difference between Clean and other lazy functional
languages is that in Clean graph rewriting is explicitly in the semantics of the
language. In Clean, the function application to be evaluated is represented by a
possibly cyclic computation graph. Function definitions are actually Term Graph
Rewriting rules. Each rule alternative is a graph with a left-hand side root (LHS) and
a right-hand side root (RHS). Figure 2 depicts the graph structure of the third f ib
alternative. Each node in the graph contains a symbol ( f i b , + , —, 1, 2) and
arguments pointing to other nodes.

In Clean, reasoning about programs is reasoning about computation graphs. It is
straightforward to denote cyclic structures and shared computations. For instance,
the semantics of Clean prescribe that the argument node n is shared in the
computation graph constructed on the right-hand side of the example explicitly
reflecting the call-by-need evaluation which is commonly used in the actual
implementation of functional languages.
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Fig. 2. The third alternative of the fibonacci rule depicted as a graph.
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Fig. 3. One rewrite step of the initial expression of the fibonacci example, (a) The root
expression, (b) graph extension, (c) graph redirection, and (d) garbage collection.

Term graph rewriting obeys the functional semantics. Figure 3 illustrates one formal
rewrite step of the computation graph f i b 100 of the fibonacci example (the
implementation is done in a much more efficient way!). The initial graph (a) consists
of only one redex, namely the graph f i b 100, which matches the third alternative of
the f i b rewrite rule. Rewriting this redex occurs in the following way: a new graph
is created for those nodes of the right-hand side of the rule that are new to the
computation graph (in the example these are two nodes labelled f ib , and nodes
labelled + , — , 1 and 2). This process is called graph extension (b). After extending
the computation graph, the original computation graph root is overwritten with the
root of the extended graph that matches the right-hand side of the rule (c). In term
graph rewriting terminology, this process is called 'redirection' of the left-hand side
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root to the right-hand side root. Finally, the nodes that have become unreachable
from the new root of the computation graph are garbage collected (d).

In general, a computation graph consists of several redices. The rewriting process
needs a reduction strategy to determine what redex should be rewritten. The default
reduction strategy of Clean is the lazy functional strategy. A (sub)graph that contains
no redex is said to be in normal form. A (sub)graph in which the root node is not a
function symbol is said to be in root normal form. In the remainder of this paper when
we discuss Clean we will use the term functions for rewrite rules and vice versa for
convenience.

3 Uniqueness types

Because Clean is based on a typed Term Graph Rewriting system it is possible in this
system to use type information to state properties of graphs. One such interesting
property states that a specific subgraph of a computation graph is not shared by any
other node of that graph. A subgraph that fulfils this property is said to appear
uniquely in the computation graph. More formally, the uniqueness property is stated
as follows (Plasmeijer and van Eekelen, 1993):

root of G

Fig. 4. The uniqueness property depicted.

A node « of a graph G is unique with respect to a node m of G if n is only reachable
from the root of G via m and there exists exactly one path from m to n (Fig. 4).

Why is this an interesting property? To answer this question, it is necessary to recall
the rewriting semantics of Clean. In this system, rewriting a matching rule alternative
in a computation graph (the redex) creates a completely new graph matching the
right-hand side of the rule alternative. The redex root is redirected to the newly
created graph. If we know that an offered argument of this rule is unique with respect
to the application node and it is not used in the function body then it will become
garbage. In that case a new object can be constructed by making use of the old one.
This means that one can destructively update such an argument to construct the
function result. If the offered argument of the rule is not known to be unique with
respect to the application node then it is illegal to reuse the argument because it might
be shared.

It would be nice if at compile time the uniqueness of arguments and results of
functions could be determined. Unfortunately, this is undecidable. In Clean a
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decidable approximation has been incorporated using Uniqueness Types (Smetsers et
al., 1993; Barendsen and Smetsers, 1993 a, b). Uniqueness Types differ from Linear
Types (Girard, 1987; Wadler, 1990a) defined on lambda calculus. An essential
difference is that in the analysis of Uniqueness types, graphs play a crucial role.
Uniqueness Types restrict the use of graphs and function applications in a program,
whereas Linear Types restrict the use of variables inside function definitions. The
relationship between Uniqueness Types and Linear Types is a topic of further
investigation. Closer related work to the Uniqueness Type system is by Guzman
and Hudak (1990), who present an extended lambda calculus with state operations
which safety is warranted by the type system.

The Uniqueness Type System is quite a complex type system, and a formal
treatment of this system is beyond the scope of this paper. The complete formal
framework of Uniqueness Types can be found in Barendsen and Smetsers (1993 a),
the main results of this work have been published in Barendsen and Smetsers (1993 b).
The incorporation of this formal type system in Clean is described in Plasmeijer and
van Eekelen (1994, in preparation). For this paper it is sufficient to know that the
uniqueness attribute * can be assigned to any type {synonym types, algebraic types and
abstract data types) by prefixing the attribute to the type.

The uniqueness type system uses a kind of reference count analysis called sharing
analysis. The sharing analysis allows an arbitrary number of references to a unique
object as long as it can statically deduce that the reference count will be one when the
object is accessed by the function that wants it to be unique. The sharing analysis
marks each reference in a right-hand side as not-shared (if it could be shown that the
object points to a not-shared object) or shared (otherwise). There are several cases to
mark a reference not-shared. In case there is only one reference in the right-hand side
of a rule to a certain object (the reference count of the object is one), the mark clearly
should be not-shared. If it can be shown that the evaluation order is such that other
references will be vanished on time, they are not counted and the reference to be
marked will still be marked as not-shared. An example of such a situation is the
reference to an object in both a guard and its guarded expression. The guard will be
evaluated before the guarded expression will be evaluated, so the reference is lost
when the guarded expression is evaluated. As a result, unique objects are allowed to
be observed in guards.

Objects marked shared by the sharing analysis cannot be typed unique. So, the
sharing analysis is input for the type system to check uniqueness type consistency. For
each reference (argument in a node) it is determined how many other references there
will exist whenever the object is accessed (and evaluated to root normal form) via this
reference. The type checker verifies the correctness of the use of uniqueness attributes
in rules by examining all applications on the right-hand side of a function to check
that when a parameter or a result of a uniqueness type is demanded, a unique graph
of the demanded type is offered. In this context demanded type means that either the
corresponding formal parameter with the applied function has a uniqueness attribute
or the result type with the defined function has the uniqueness attribute.

The Uniqueness Types system is a powerful tool which provides a wide range of
interesting applications in the implementation and use of functional languages. It
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provides the basis of efficient and functional I/O, it can be used for the
implementation of destructively updateable arrays and user-defined unique data
structures, it can be used in the analysis of memory usage of functional programs (as
has been done by Chirimar et ai, 1992 for a language based on Linear Types), and it
can serve as a general safe interfacing facility for functional languages with the
imperative world.

4 Explicit multiple environment passing

Specifications of interactive programs require a method in which sequences of I/O
operations can be defined. In order to be able to reason properly about interactive
programs it is vital that these sequences be evaluated in a predictable order (e.g. in the
teletype kind of interactive systems prompts must appear before one waits on user
input) and that the evaluation of an I/O operation has an immediate effect (when the
prompt is demanded to appear it must show on the screen). In this section, we
introduce an improved type of explicit environment passing scheme that will provide
these vital properties for a lazy functional language. This scheme is used throughout
the I/O system.

4.1 Explicit environment passing

Explicit environment passing schemes are well suited as methods for specifications of
interactive programs. In an explicit environment passing scheme there is one special
data object in normal form, the environment, which is some sort of encoding of
(changes in) the state of the world. A program doing I/O is a function that given an
initial environment produces a new environment in which all subsequent changes are
contained. Programs can change the state of the world and retrieve information from
the world by functions that have access to this environment. The evaluation of such
a function consists of two actions: the state of the world is changed immediately, and
a new instance of the environment is yielded in which the change to the state of the
world is reflected. We will call the change to the state of the world the effect of the
function. Because we intend these functions to have an immediate effect, they are
hyper-strict in their environment arguments. As a result the environment argument
will always be in normal form before the function is evaluated. Functions that inspect
(read) the world yield what has been read. So, every access rule accounts for its effect
on the state of the world in the environment object. Each new operation is applied to
the environment result of the previous operation. Sequences of operations are easily
expressed as sequences of function applications on the environment.

Figure 5 gives a small example of what a typical explicit environment passing
program looks like. Suppose we have an environment of type World. The function
echo is a simple recursive function on World. It retrieves a character from the
environment by some predefined function getChar and prints it on screen using
some predefined function putChar. The recursion of echo terminates if a newline
character, denoted with ' \ n ' , has been retrieved by getChar.

The explicit environment passing style can be seen by the way world (which is a
value of type World) is used to pass around the state of the world after each
operation. The effect of the program is rather obvious: if a user types the character
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echo: :World^World
echo world
I c='\n' = world2

= echo world2
where
(c, worldl ) = : getChar world
world2 =:putChar c worldl

Fig. 5. An example of the explicit environment passing style. Guarded expressions are preceded
by a conditional expression |. Local definitions of constant functions (which are actually
subgraph expressions) are defined by the = : symbol rather than the more custom-
ary = symbol.

catch: :World^ (World, World)
catch world =(worldl, world2)

where
worldl = :putChar '\n' world
world2=:echo world

Fig. 6. A program illustrating the danger of unrestricted environment passing.

sequence cv..cn' \ n ' (all characters cx are not the newline character), then the screen
will show the character sequence c1c2...cn. Moreover, the program expresses
successfully that each character cx is being put on screen immediately after it has been
read and before character c1+1 is being read.

This clear use of explicit environment passing schemes makes them very attractive
as a basis for a functional I/O system with direct access to I/O resources. The idea
of using explicit unrestricted environment passing schemes is indeed not new. Gordon
(1993) mentions the unpublished PhD thesis of Redelmeier (1984) in which this idea
is presented. However, there is a catch to unrestricted explicit environment passing.
The environment represents the world and as there is only one world around one gets
into serious problems as soon as the environment is duplicated or shared. Sharing the
environment allows the introduction of an arbitrary number of environment
changing sequences. The manipulations on the world that are performed in one
sequence are not recorded in the environments of the other sequences. Because the
world has been updated according to some interleaving of these manipulations none
of the resulting environment objects reflect the state of that updated world anymore.

The program in Fig. 6 illustrates this catch. The function ca tch does two things
on the world: put a newline on screen (by worldl ) , and echo the keys typed by a user
of the program using echo from the previous example (by world2). Suppose the
user of this program types the same character sequence cv..cn' \ n ' as previously. The
output of the program can be any character sequence c'1c'2...c'n+1 with for some
i ( l ^ i ^ n + 1) , c^ = ' \ n ' , c'1 = ci (for j < i ) , and c ^ c ^ (for j > i ) because
the order of evaluation of wor ld l and world2 is undetermined. So the state of the
real world contains the character sequence c ^ c ^ c ^ . However, environment
wor ld l records a real world with state ' \ n ' , and world2 records a real world with
state Ci-.c,,' \ n ' . Neither environment correctly reflects the state of the world.

Despite the catch, Clean I/O is based on the explicit environment passing style. The
environment that is passed around in the Clean I/O system is of type *World. The
initial environment is given as an optional argument of the S t a r t rule. It should be
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noted that the environment object cannot be introduced by a function because it
would introduce the possibility to introduce an arbitrary number of environment
objects. The only proper way to deal with the world is to regard it as a parameter of
a program. In order to avoid the catch, and to reflect the 'unique' nature of the actual
world represented by the environment, all environment operations require their
environment argument to have the uniqueness attribute (so the example functions
have the types getChar: : *World->- (Char, *World) and putChar: :Char
*World->* World). Due to the Uniqueness Typing the Clean I/O system restricts
access of the program to the environment, and prevents sharing and introduction of
multiple environments. The type system of Clean rejects ca tch due to the fact that
putChar demands world to have type *World, but instead world has offered type
World (because ca tch contains two references to world). Obviously, the offered
type cannot be coerced to obtain the uniqueness attribute. The function echo needs
a small addition in its type definition to turn it into a correctly typed Clean definition
(see Fig. 7).

echo: : *World->-*World
echo world
| c = '\n' =world2

= echo world2
where
(c, worldl) = :getChar world
world2 =:putChar c worldl

Fig. 7. The function echo now as a correctly typed Clean program.

4.2 Multiple environments

Environment passing schemes based on one single environment enforce programmers
to create a spine of I/O function applications in a program. This is a very severe
restriction on functional program expressiveness, as programs are obliged to over
determine order of evaluation. To our knowledge, this is basically true for all safe
environment based approaches in functional I/O (see also the discussion in Section
9.2), and also for all stream based approaches (as they consider one single stream
that carries the I/O operations).

Reconsider, for example, the echo function in Fig. 7. In this program the spine
of I/O operations is formed by the sequence getChar, putChar, getChar ,
putChar, ... of read/write operations. However, for this program it is sufficient to
express that at least as many characters are read as there are characters printed. This
relationship cannot be defined in an environment passing scheme without fixing an
evaluation order.

The combination of explicit environment passing and Uniqueness Types is a
powerful one as it allows a very liberal and safe use of multiple environments.
Introducing multiple environments allows a program to define multiple sequences of
I/O operations without predetermining an evaluation order between these sequences.
Other advantages of using multiple environments are that such sequences of
applications can be evaluated in parallel, and environments can be used to support
modular programming of interactive programs.
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events for
I/O devices

*Events

v. y
Fig. 8. The Clean environment hierarchy.

The Clean I/O system defines a hierarchy of environments (see Fig. 8). Therefore,
in our terminology environment should not be understood as an encoding of the state
of the world as a whole but rather as a specialised data structure that encodes the state
of a specific part of the world. These environments must be independent: operations
on one environment should not have an effect on another environment. In the Clean
environment hierarchy the top environment is the environment of type *World. Two
sub environments can be retrieved from the world environment by decomposition.
One represents the state of the file system and the other represents the event stream
communication to and from Graphical User Interface elements. Their corresponding
types are * F i l e s and *Events, respectively.

The decomposition rule OpenWorld of the world environment into the file system
and event stream environments has type *World-> (*F i l e s , *Events) . It should
be noted that as a result the world is no longer available for subsequent use. The
environments can be used in the program and finally compose a new world again, by
a composition rule CloseWorld of reverse type *F i l e s *Events->*World. The
start rule of a Clean program that does I/O is always of type *World-*-*World. In
this way environments that have contributed to the effect of the program are always
restored to the world environment. This is called hygienic use of environments.

5 File I/O

Clean file I/O is a good example of an I/O system using the explicit multiple
environment passing scheme. The top environment of the file I/O system is the object
of type * F i l e s introduced in the previous section that encodes the real world file
system. This environment is again a container of yet smaller environments: the
individual files themselves (see Fig. 9).

A Clean file has type F i l e or * F i l e . To open or close a file one needs a unique
file system. Writeable files are opened as * F i l e ; read only files do not require the
uniqueness attribute. Once a writeable file has been opened it cannot be opened again
until the file is closed. Read only files can be opened an arbitrary number of times,
but cannot be opened as writeable files anymore. Because read only files do not change
the state of the file system they do not need to be closed, but can be made garbage
safely when they are not needed anymore.
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Fig. 9. The Clean environments for file handling.

All this is controlled and administered by the unique file system which is needed
for the opening and closing of all files. It should be noted that the unique file system
models the actual file system. All the file administration is in reality handled by the
operating system. This implies that there is no need whatsoever to administrate
anything in Clean itself. This means that all file I/O is handled as efficiently as possible
because there is no administration overhead in the functional implementation
component. The use of these files is as powerful, flexible, and efficient as it is in
common imperative programming languages. For instance, in both types of files
(Fi le as well as *Fi le) it is possible to perform random access (seeks). The Clean
file primitives allow all basic types to be written directly to files and read from files.
One can write to and read from writeable files in any order.

The programming style when using files is basically the explicit environment
passing style. Figure 10 shows an example of a file copying program that illustrates

Start:: -World •> 'World
Start world
= newWortd

where
(files, events) =: OpenWortd world
(sourceOpen, source, files 1) =: SFOpen "Source* FfleadOata files
(destOpen, desl. files2) =. FOpen TJest" FWriteData files!
desti =: copyFile source dest
newWorld =' CloseWortd (CloseFile desti files2) events

copyFile :: File "File -> 'File
copyFile source dest
I readOK = copyFile soured (FWriteC c dest)

= dest
where
(readOK, c. source 1) =: SFReadC source

Fig. 10. A program copying a file named Source to a file named Dest .

the use of World, F i l e s and F i l e . The first action of the program is to decompose
the unique world into the file system f i l e s and event stream e v e n t s . The file
system is used to open the source and destination files (first source is opened for
reading, using the predefined function SFOpen, and then d e s t is opened writeable
by FOpen). As source is going to be read only, it is opened as a shareable file. The
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file d e s t is being written into and must therefore have the uniqueness attribute. The
function copyFi le copies the contents of source character by character to des t .
After completion of copying, the written file is closed in the file system, and the final
world is composed from the file system and the event stream.

6 Graphical user I/O

The techniques involved in programming Graphical User Interfaces make an
interesting area of research because the corresponding I/O {Graphical User I/O) is
radically different from file I/O and is much more complicated. In a Graphical User
Interface system the Graphical User I/O is done entirely with Graphical User
Interface elements such as windows, menus and dialogues. These interface elements are
characterised by a highly interactive behaviour. Applications that use Graphical User
Interface systems have a very dynamic use of interface elements. Graphical User
Interface systems are event driven. An event is a data object recording a true event in
the outside world or the operating system. Events come from different sources: the
user of a program communicates with that program via interface objects in the course
of which events are generated (e.g. key presses, mouse movements). The operating
system uses events to communicate to the program that things have been changed
(e.g. windows become partially visible, programs are scheduled). Finally, man-
ipulations of the interface objects by the program may generate events as well (e.g.
opening and closing of windows or dialogues). The operating system provides these
events for programs by the so-called event stream. The event stream is a sequence of
events. In this sequence event A precedes event B iff A has occurred before B.

The Clean Event I/O system is the framework a program uses to do Graphical User
I/O. The Clean Event I/O system is an abstract Graphical User Interface. In the Clean
Event I/O system Graphical User I/O is denned entirely with abstract devices.
Abstract devices are abstractions of categories of concrete interface elements. The
Clean Event I/O system provides four abstract devices: the window device, menu
device, dialogue device and timer device. Abstract devices are specified on a high level
of abstraction making extensive use of algebraic types. Abstract device specifications
define which Graphical User Interface elements are used by the program, and how
these elements interact with the user or other elements. Clean Event I/O programs are
abstract event driven. An abstract event is always defined in the context of an abstract
device element. Clean Event I/O programs do not retrieve abstract events, but rather
define abstract event handlers. An abstract event handler is a function that is included
in the abstract device specification. Only when the corresponding abstract event occurs
the abstract event handler is evaluated. The abstract event handler is applied to the
current state of the program and yields a new state. The state of the program consists
of the data the program needs at run-time, and the run-time state of its interface
elements. A Clean Event I/O program has access to its interface elements at run-time
via a special unique environment of type *IOState. A Clean Event I/O program
only needs to specify the abstract devices to create an interactive program. The Clean
Event I/O system takes care that the abstract devices are correctly mapped to the
concrete devices, and that the concrete events are correctly mapped to abstract events.

https://doi.org/10.1017/S0956796800001258 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001258


The ins and outs of Clean I/O 93

In Section 6.1 we show how abstract devices and its interface elements are denned
using algebraic types. Section 6.2 focuses on the abstract event handlers, and explains
how these functions affect the run-time state of the program and the interface
elements. Section 6.3 defines how the Clean Event I/O system uses the abstract device
definitions, and the appropriate environments to create a running program. Section
6.4 briefly describes the abstract devices other than the menu device. Finally, Section
6.5 gives a small example of an interactive program.

6.1 Defining abstract devices

Abstract devices provide Clean programmers with a high level view of Graphical User
Interface elements. These abstract interface elements are specified by functional
expressions that are instances of a set of predefined algebraic types (see Figs 11 and 12).
For each abstract device there is denned an algebraic type that fully specifies how the

: :DeviceSystem s= TimerSystem [TimerDef s]
| MenuSystem [MenuDef s]
| WindowSystem [WindowDef s]
| DialogSystem (DialogDef s]

Fig. 11. The algebraic type definition of devices. The type [a] is a list of a. The symbols printed
in bold face are alternative constructors of the algebraic type (variants of the type).

:MenuDef s
= PullDownMenu Menuld MenuTitle SelectState[MenuElement s]
:MenuElement s
= MenuItem Menultemld ItemTitle KeyShortcut SelectState (MenuFunction s)
| CheckMenuItem MenuItemid ItemTitle KeyShortcut SelectState MarkState(MenuFunction s)
| SubMenuItem MenuIdltemTitle SelectState [MenuElement s]
| MenuItemGroup MenuItemGroupId [MenuElement s]
| MenuRadioI terns Menultemld [RadioElement s)
| MenuSeparator
:RadioElement s
= MenuRadioItem Menultemld ItemTitle KeyShortcut SelectState (MenuFunction s)
:MenuFunction s = =s (IOState s)-Ms, IOState s)
: KeyShortcut = Key KeyCode | NoKey

Fig. 12. The algebraic type MenuDef to define individual menus. The type
MenuFunction is a synonym type.

individual interface elements of that abstract device should be defined. Because the
algebraic types contain functions that have to operate on the same type of program
state, the type definitions are parameterised with the type variable s which reflects the
type of the program state.

As an illustration of an abstract device definition, Fig. 13 gives an example of a
menu definition. The picture next to the definition shows the concrete device in the
case of the menu definition being mapped to a Macintosh system.

Algebraic types prove to be very useful as a medium for abstract device definitions
in a functional language for several reasons:
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PullDownMenu Fileld "File" Able

Menultem Newld
Menultem Openld
Menultem Closeld
MenuSeparator,
Menultem Saveld
Menultem SaveAsId
MenuSeparator,
Menultem Quitld

"New"
"Open..."
"Close"

"Save"
"Save As.

"Quit"

(Key
(Key
(Key

(Key

'n'
'o'
•w

•s-

Able
Able
Unable

Unable
." NoKey Unable

(Key 'q' Able

New, m
Open, 1
Close, I

%
Save, J
SaveAs, y

1Quit] j

Fig. 13. An example of a menu definition in Clean.

(1) In a functional language it is trivial to add the abstract event handlers to
algebraic types because functions are ' first-class citizens' and can be used in a
curried way. For instance, the menu definition in Fig. 13 specifies that the
program code that should be evaluated when the menu item titled "Open..."
is selected is the function named Open. This is the simple case. But it is also
possible to define a higher order function applied to an arbitrary number of
arguments as abstract event handler, which is very hard to realise in the
classical imperative languages.

(2) Algebraic types provide a specification language of which the syntactical
correctness is verified by the type checker. This eliminates obvious pro-
gramming errors (like typing errors, or mixing up order of arguments) that
occur rather frequently in text-based specifications.

(3) The use of algebraic types for all abstract device specifications provides both
the programmer as well as the definition of the semantics with a formal
notation. A formal notation is invaluable to disambiguate discussions on the
meaning of individual interface elements.

(4) Algebraic type definitions can be made very intelligible and suggestive. We
have carefully chosen suggestive names for the data constructors of the
algebraic type definition of abstract devices which match their actual
appearances as much as possible (WYSIWYS: What You Say Is What You
See). This is clearly illustrated by the example in Fig. 13.

(5) Finally, readable definitions of interface elements serve as good documentation
of programs.

6.2 Abstract event handlers

Clean Event I/O programs are abstract event driven. Abstract events are defined in the
context of abstract devices. Consider for example the menu definition in Fig. 13. One
abstract event defined in the context of this definition is the menu item named
'Open...' has been selected. It is easy to correlate the abstract event with an abstract
event handler, because the abstract event is defined in the context of the algebraic
definition. Therefore it is sufficient to add the abstract event handler in the context of
the abstract device definition that defines the abstract event. So the response of the
program to the abstract event is given by the function Open.

A Clean Event I/O program consists of a number of abstract devices, which in turn
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define the set of possible abstract events, and their corresponding abstract event
handlers. It is not determined in what order the abstract events will occur. Each
abstract event handler can be evaluated in any state of the program. In order to handle
the abstract event appropriately the abstract event handler needs to know the state
of the program. As a result the state of the program will have been changed. So, an
abstract event handler is a state transition function. The state of the program is a data
object which has a fixed type (not a fixed value) because any of the available abstract
event handlers must be applicable.

The state of the program consists of a component controlled by the programmer,
and a component controlled by the Clean Event I/O system. The program controlled
component, called the program state, contains the data the program needs during
evaluation. The program state can have an arbitrary, but uniquely attributed type.
The component controlled by the Clean Event I/O system is an abstract data type
object which contains the run-time states of the interface elements of the program.
This component is a uniquely attributed environment that is specially created for
doing Graphical User I/O. The type of the environment is *IOState *s (it is a
polymorphic type because this environment also contains the abstract even handlers,
which types are based on the program state of type *s).

Abstract event handlers change the state of the program. So the types of abstract
event handlers are of the form : : *s * (IOState * s ) ^ (*s, *IOState *s ) . With
the abstract event handlers a programmer defines how the state of the program
should be affected in case the abstract event handler is triggered by an abstract event.
Changes on the program state component can be easily denned by the programmer,
because this component is denned by the programmer. The IOState environment is
an abstract data object, so changes on this environment can only be done via a library
of predefined functions, the abstract device access functions. All device access
functions take the explicit environment passing style. Their types are of the form
: :zv..Tn * (IOState * s ) ^ (T, * IOState *s ) . For example, typical operations on
the menu interface elements at run-time are enabling and disabling the entire menu
system (also of separate menus or menu elements), adding and removing menu
elements to and from menus, marking menu elements, and changing titles or abstract
event handlers of menu elements (see Fig. 14). As all environment operations, every

EnableMenuSystem :
DisableMenuSystera :
EnableMenus :
DisableMenus :
EnableMenuIterns :
DisableMenuItems :
MarkMenuItems :
UninarkMenuItems :
SelectMenuRadioItera :
ChangeMenuItemTitles :
ChangeMenuItemFunctions:
InsertMenuIterns :
AppendMenuIterns :
RemoveMenuItems :
RemoveMenuGroupItems :

: [Menuld]
: [Menuld]
: [Menultemld)
: [Menultemld]
: [Menultemld]
: [Menultemld]
: Menultemld
: [(Menultemld, String)]
: [(Menultemld, MenuFunction *s) ]
: MenuItemGroupId Int [MenuElement *s]
: MenuItemGroupId Int [MenuElement *s]
: [Menultemld]
: MenuItemGroupId (Int]

MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState
MIOState

*s)
*s)
*s)
*s>
*s)
*s)
*s)
*s)
*s)
*s)
*s)
•s)

*s)
*s)
•s)

->*IOState*s
->*IOState*s
->*IOState*s
->*IOState*s
->-*IOState*s
->*IOState*s
->*IOState*s
-**IOState*s
^*IOState*s
-^*IOState*s
-**IOState*s
->*IOState*s
^*IOState*s
-**IOState*s
^*IOState*s

Fig. 14. The types of the menu device access functions of the Clean Event I/O system.
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abstract device access function changes the appropriate interface element resources,
and administers the effect in the new IOState environment.

6.3 Interactions

In Section 4.2, we have introduced the event stream environment. The previous two
sections presented how Graphical User Interface elements are defined by abstract
devices, discussed abstract event handlers, and introduced the state of a program. In
this section we show how these elements of the Clean Event I/O system are integrated
by the interaction concept to obtain a running interactive program. This relation is
roughly illustrated by the following equalities:

abstract device definitions + event stream = IOState

IOState + program state = interaction

An interaction is a dynamic state transition system where the transitions are defined
by the abstract event handlers of the abstract device definitions and where evaluation
is triggered by the occurrence of abstract events. The abstract device definitions of
an interaction are gathered in a single data object of type : :IOSystem s = =
[DeviceSystem s] (see Fig. 11 for the type definition of DeviceSystem). The
library function startIO evaluates an interaction given initial abstract device defin-
itions of type IOSystem, the initial program state, the initial actions of the inter-
action of type I n i t I O ( : : I n i t I O s = = [ ( s , IOState s ) -» ( s , IOState s) ] ,
and the event stream environment:

S t a r t I O : : ( I O S y s t e m *s) *s ( In i t IO *s) *Even t s^ (*s , *Events)

S t a r t I O performs three actions: (1) creation of the proper environments for the
interaction; (2) evaluation of the initial actions of the interaction; and (3) the
evaluation of the interaction until termination.

(1) S t a r t I O is provided with the definitions of the abstract devices that will
participate in the interaction. With these abstract device definitions the
concrete Graphical User Interface elements are created. As a result the
abstract devices appear to the user in their initial run-time state. The
environment of type * IOState is filled with the run-time states of the concrete
devices and their abstract event handlers.

(2) The second action of S t a r t I O is the evaluation of the initial actions of the
interaction. Suppose the initial actions are the list of transition functions
[ f v..f J , and the initial interaction state is the pair (s0 , io0) . The result of
the initial actions is the new pair (s1 , iox) =fn-fn_1-...-f1 (s0 , io0) with
• being function composition. The initial actions are very convenient for an
interaction to do initialisation actions such as setting up files, verification
procedures, and so on (it may even decide to quit the interaction by applying
the function QuitIO to its IOState environment).

(3) Finally S t a r t I O evaluates the interaction until termination. This is done by
an event loop, which is a simple, recursive function. In each step it retrieves a
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concrete event from the event stream environment. If the concrete event should
by interpreted as an abstract event, the corresponding abstract event handler is
applied to the current interaction state {sir ic^) to obtain the new current
interaction state (s1+1, io1+1) . The effect of this transition (which is
administered in io1+1) is paired with the concrete event that triggered the
transition. The event loop terminates as soon as the IOState component of
the interaction state contains no more concrete devices. The result of S ta r t IO
is the final program state and the changed event stream environment which
contains the pairs of concrete events that have been parsed by the interaction
and their effect, and the concrete events that have not been parsed by the
interaction.

An interaction that decides that it should terminate, can do so by removing all
concrete devices from its current interaction state. This can be done only with the
library function QuitIO with QuitIO: :* (IOState *s) -•* IOState * s .
Quit 10 releases the run-time resources of each device in the interaction and
removes them from the IOState component.

6.4 The other abstract devices

In this section we briefly discuss the abstract devices other than the menu device.
Their complete algebraic type definitions and abstract device access functions can be
found in van Eekelen et al. (1993), and Plasmeijer and van Eekelen (1993). A
definition of the semantics of the I/O system is given in Achten (1994, in preparation).

6.4.1 The timer device

The timer device enables interactions to synchronise on an arbitrary number of time
intervals of arbitrary length. Timing is handled by assuming that all events are
provided with a time stamp. The mechanism cannot provide real-time timing because
the time needed to evaluate an abstract event handler may exceed a given time
interval. The abstract event handler of every active timer is therefore provided with
the discrete number of complete time intervals that have passed. The accuracy of the
timer device is adequate for most animation tasks, or checks that need to be done at
a regular basis.

6.4.2 The window device

Windows are the basic medium in which Graphical User Interface systems
communicate with users. An interaction can have an arbitrary number of windows
open. Windows are stack ordered which means that they can overlap. Of these
windows at most one window is active. The active window is the window that receives
all keyboard and mouse events. The interaction as well as the user can decide which
window to activate. The active window is not demanded to respond to user events:
the addition of a keyboard and mouse event handler is optional. The application
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presents information to its users in a window by drawing into it. Each window has
a local drawing environment of type *Pi cture. Pictures have finite dimensions, given
by the PictureDomain.

6.4.3 The dialogue device

The dialogue device models structured communication between program and user.
Applications can have an arbitrary number of dialogues open. The dialogue device
manages property and command dialogues, as well as notices. Dialogues can change
the mode of an interaction: when opened, a modal dialogue forces the user of the
interaction to deal with the dialogue entirely before any other actions can take place.
Modeless dialogues are less demanding: the user may disregard them and use them
when convenient. Property dialogues are always modeless, and are used to set
properties of the interaction. Command dialogues can be modal or modeless. Notices
are simple modal dialogues to inform the user about unusual or dangerous situations.

The contents of a dialogue is defined by a summary of its dialogue elements rather
than a single drawing environment as is the case with windows. These dialogue
elements are common dialogue elements such as (radio) buttons, (edit) text fields, pop
up elements, and check boxes but also user defined custom controls. As a consequence,
the definition of a dialogue is more complicated than the definition of a window
because the layout between dialogue elements needs to be defined. In order to ease the
effort of defining dialogues, the dialogue elements have a layout attribute of algebraic
type ItemPos to influence their position. With this layout attribute positions can be
expressed relative to the size of the dialogue (Left , Center , Right ) , relative to
earlier placed items (RightTo, Below, XOffset, YOff s e t ) , or in absolute
terms (XY, ItemBox).

6.5 Example

In this section we present an example program that uses several abstract devices in
order to illustrate how to program with the Clean Event I/O libraries. The program
is a simple address database. The user of the program can add and remove addresses
to and from the database, view the current list of addresses, and quit the application.
The end of this section contains the main fragment of the program code which
contains the data structures and the abstract device definitions. Some minor
functions, constants, and the file I/O operations that manipulate the database file
have been omitted for reasons of brevity. Figure 15 gives a snapshot of the
application running on a Macintosh system.

The data structures used in the program are the program state (AddressBook),
the data structure of a single address (Address), and a data structure for font
information (BookStyle) . These data structures are all record types. In Clean 1.0,
a record type is an algebraic type with exactly one alternative constructor. The
alternative constructor does not need to be specified if the field names uniquely
identify the record type. Record types and record expressions always appear between
{} in a program. The arguments of a record expression can be selected by an extended
form of pattern-matching, and by the field names of the arguments.
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Open =*O
Hild... «;H
Delete *n

j 1 Toemooiveld
j Tel.nr: 080-652483

Rinus Plasmeijer
Nijnwgen
1 Toemooiwld

I Tel.nx: 080-652644

Name:

Street:

Tel.Nr:

Edit Hddress

Rinus Plasmeijer

Nijrnegen

1 Toernooiueld

080-652644

Fig. 15. A snapshot of the address database application while running on
a Macintosh system.

The menu device defines the four commands Open, Add, Dele te and Quit of
the application. Open opens the window named Addresses in which the current list
of addresses is shown. Add opens the Ed i t Address dialogue by which the user can
add addresses to the database. Dele te removes the currently selected address from
the database. It is initially disabled because at start the user has selected no address.
Quit before terminating the interaction asks the user if any changes to the database
should be actually saved to the database file. This is done via a notice.

In the Edi t Address dialogue the user can fill in the text fields of an address.
Pressing the only dialogue button named Add triggers the abstract event handler
AddAddress. This function retrieves the edit text field values of the dialogue, and
creates an address record which is inserted in the current list of addresses. It increases
the picture range of the Addresses window, and redraws its contents.

The user of the application can select an address of the database by pressing the
mouse button when the mouse pointer is in the text area of that address in the
Addresses window. The abstract mouse events in the Addresses window are
handled by the mouse event handler Se lec t . It determines which address is selected,
enables selection of the Delete command, unhilites the previously selected address,
hilites the selected address, and fills the text fields of the Ed i t Address dialogue
with the address fields values of the selected address.

module addressBook

î mport delta, deltaFile, deltaSystem

import deltaEventIO, deltaWindow, deltaDialog, deltaMenu, deltaFont,

deltaPicture

:: 10 = = IOState AddressBook

:: AddressBook = { addresslist ::[Address],

selection ::Int,
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Address = {

Bookstyle

Start: : *World^*World

Start world

= finalWorld

where

(fs, es) =:OpenWorld world

({f iles = fsl}, esl) = :StartIO [MenuSystem menus]

files

name

city

street

tel

font

maxWidth

lineHeight

•Files
String,

String,

String,

String

Font,

Int,

Int

imtialBook initiallO es

menus = : [PullDownMenu AddressMenuId "Book" Able [

Menultem Openld "Open" (Key lo') Able Open,

Menultem Addld " A d d . . . "(Key ' a ' ) Able Add,

Menultem D e l e t e l d " D e l e t e " ( K e y l d' ) Unable Delete,

MenuSeparator,

Menultem Quitld "Quit" (Key 'q') Able Quit ]]

initialBook

initiallO

finalWorld

= :{addresslist= [ ] , selection = 0,

=:[ReadAddressBook, Open, Add]

= :CloseWorld fs l esl

f i les = fs}

Open: :*AddressBook *IO-> (*AddressBook, *IO)

Open addressBook= :{addresslist = addresses} io

= (addressBook, OpenWindows[window] io)

where

window= :ScrollWindow Addressesld (10, 10) "Addresses"

(SorollBar (Thumb left) (Scroll bookstyle.maxWidth))

(ScrollBar (Thumb top) (Scroll bookstyle.lineHeight))

domain (100, itemHeight) (200, 200)

UpdateWindow (Mouse Able Select]

_) =:domain

=:AddressesGetPictureDomain addresses

=:AddressBookStyle

=:NrLinesPerItem*bookStyle.lineHeight

(deft,

domain

bookstyle

itemHeight

top),

Select: :MouseState *AddressBook *I0->- (*AddressBook, *I0)

Select ((x,y), ButtonDown, _)

addressBook= :{addresslist = addresses, selection = index} io

| =EmptyList addresses

= (addressBook, io)

= ({addressBook & selection = indexl}, iol)

where

iol = :ChangeIOState [ EnableMenuItems [Deleteld],

DrawInWindow Addressesld [HiliteAddress index],

DrawInWindow Addressesld [HiliteAddress indexl],

ChangeDialog AddDialogld fillTextFields] io

fillTextFields =:[ ChangeEditText NameTId address.name,

ChangeEditText CityTId address.city,

ChangeEditText StrtTId address.street,

ChangeEditText TelNrTId address.tel ]

address =:GetIndex index addresses

indexl =: (y/itemHeight) + (Minimum 1 (y%itemHeight))

itemHeight =:NrLinesPerItem*AddressBookStyle.lineHeight

"Select _ addressBook io= (addressBook, io)

Add: :*AddressBook *IO-> (*AddressBook, *I0)
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Add addressBook io

= (addressBook, OpenDialog editDialog io)

where

editDialog=:ConmandDialog AddDialogld "Edit Address" [] Addld [

StaticTex NameSId Left "Name:",

EditText NameTId (RightTo NameSId) (MM 70.0) 1 "",

StaticText CitySId Left "City:",

EditText CityTId (Below NameTId) (MM 50.0) 1"",

StaticText StrtSId Left "Street:",

EditText StrtTId (Below CityTId) (MM 50.0) 1"",

StaticText TelNrSId Left "Tel.Nr:",

EditText TelNrTId (Below StrtTId) (MM 30.0) 1"",

DialogButton Addld Center "Add" Able AddAddress]

AddAddress::DialogInfo *AddressBook *IO-> (*AddressBook, *IO)

AddAddress dialoglnfo addressBook= :{addresslist = addresses} io

= DrawInWindowFrame Addressesld UpdateWindow addressBook2 iol

where

(addressBook2, iol) =:ChangePictureDomain Addressesld domain addressBookl io

addressBookl =: {addressBook & addresslist = addressesl}

domain =:AddressesGetPictureDomain addressesl

addressesl =:Insert address addresses

address =:{ name =GetEditText NameTId dialoglnfo,

city =GetEditText CityTId dialoglnfo,

street =GetEditText StrtTId dialoglnfo,

tel =GetEditText TelNrTId dialoglnfo }

Delete::*AddressBook *IO-> (*AddressBook, *IO)

Delete addressBook= :{selection = index} io

= DrawInWindowFrame Addressesld UpdateWindow addressBook2 io2

where

io2 =:DisableMenuItems [Deleteld] iol

(addressBook2, iol) =:ChangePictureDomain Addressesld domain addressBookl io

addressBookl =: {addressBook & addresslist = addressesl, selection= 0}

domain =:AddressesGetPictureDomain addressesl

addressesl =:RemoveIndex index addresses

Quit: : *AddressBook *IO->- (*AddressBook, *IO)

Quit addressBook io

I button = noButton

= (addressBook, io2)

= WriteAddressBook addressBook io2

where

io2 =:QuitIO iol

(button, iol) =:OpenNotice (Notice ["Save changes to address file?"]

(NoticeButton yesButton =:1 "Yes")

[NoticeButton noButton =:2 "No"]) io

7 Structuring interactive programs

In many cases interactive programs can be decomposed into a number of distinct
interactive units. For instance, many applications offer users a facility to edit text.
Instead of programming these facilities over and over again for each new application,
one would like to write a text editing module once, and include it in some way in
various applications. In this section, we will first show how interactions can be used
as interactive modules, and then proceed with individual abstract device elements.
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seq: : <IODef *s) (IODef *t) *Events-**Events
seq (ioSysteraA, programStateA, ioA) (loSystemB, prograraStateB, ioB) events
= eventsB

where

(_, eventsB) = :StartIO ioSystemB programStateB ioB eventsA
(_, eventsA) = :StartIO ioSystemA prograraStateA ioA events

Fig. 16. Sequential composition of interactions. The _ symbol is a wild card which is a
convenient denotation for anonymous node identifiers.

In the Clean Event I/O system, interactions can be combined sequentially, or
nested. Interactions are sequentially combined by function application: the event
stream result of an application of S t a r t I O is the argument of the second application
of S t a r t IO . Figure 16 gives an example of sequential interaction composition. The
function seq when applied to two interaction definitions A and B, first evaluates
interaction A and then interaction B. For notational convenience, we introduce a
synonym type : : IODef s = = (IOSystem s, s, I n i t I O s) that collects the
interaction definition components.

editLine: :String •(IOState *s) -» (String, *IOState *s)
editLine line io
= (linel, iol)

where
linel =tgetEditLine si
(si, iol) =:NestIO lOSysteraEditor (InitialEditorState line) InitlOEditor 10

Fig. 17. A text editing interaction that can be used in arbitrary interactions.

Interactions can be nested with the library function NestlO. Any interaction can
start the evaluation of a new interaction during its own evaluation.

NestlO: : (IOSystem *s) *s (InitIO *s) * (IOState *t)-»(*s, *IOState *t)

The type of NestlO is similar to the type of S t a r t IO except for being applied to
the IOState environment of the running interaction rather than the event stream
environment. The type s of the program state of a nested interaction is in general
different from the type t of the program state of the parent interaction that starts the
nested interaction. The nested interaction is completely evaluated and only after its
termination the parent interaction continues evaluation. NestlO takes care that
before the nested interaction takes over from the parent interaction, the parent is
hidden. This means that all the visible Graphical User Interface elements of the parent
interaction disappear from screen, and cannot be accessed by the user. After
termination of the nested interaction, the parent interaction is shown again. As a
result, all interface elements of the parent interaction that had been hidden from the
user reappear. Interactions can be nested arbitrarily deep and arbitrarily many.
Figure 17 gives an example of a function e d i t L i n e that provides a nested text
editing facility.

Another way to structure interactive programs is by the abstract device definitions
of the Clean Event I/O system. Because abstract device definitions are algebraic
types, it is possible to define functions that create abstract device definitions that can
be parameterised. The program in Fig. 18 illustrates this idea. The function
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simpleDraw: :WindowId PictureDomain (Add *s) (Del *s) (Get *s) ̂ -WindowDef *s

simpleDraw id pictureDomain add del get

= FixedWindow id (0, 0) "Picture" pictureDomain (update get)

[Mouse Able (track id add del), CursorCrossCursor]

update:: (Get *s) UpdateArea *s^(*s, [*Picture^*Picture] )

update get _ s= (si, map DrawPoint drawnPoints)

where

(si, drawnPoints) = :get s

track::WindowId (Add *s) (Del *s) MouseState *s *(IOState *s)^(*s, *IOState *s)

track _ _ _ (_, ButtonUp, _) s io = (s, io)

track id _ del (point, _, OptionOnly) s io

= {del point s, DrawInWindow id [ErasePoint

point] io)

track id add _(point, _, _) s io = (add point s, DrawInWindow id [DrawPoint

point] io)

Fig. 18. A window definition for a very simple drawing program.

Fig. 19. The drawing window in action.

simpleDraw creates a very simple drawing window. It is parameterised with an id
and a picture range. The interesting aspect of this window is that it can be applied to
any interaction because it is polymorphic in its program state. Access to the program
state is provided by further parameterisation of three functions with types : : Add
s = = Poin t s->s to add a point to the program state, : : Del s = = Poin t s->-s to
delete a point from the program state, and : : Get s = = s-M s, [Poin t ] ) to retrieve
all points drawn so far. The drawing functions DrawPoint and ErasePo in t are
both of type Poin t *Pic ture->*Pic ture . The mouse event handler t r a c k
erases a point if both the mouse button and the option modifier key are pressed, and
draws a point if the mouse is pressed (regardless of modifier keys). Figure 19 shows
the drawing window in action.

8 Implementation of the interface

The Clean Event I/O system is given structure by the abstract device concept. The
programmer knows how to define abstract devices, and how to change them at run-
time using abstract device access functions. The abstract device concept also gives
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structure to the implementation of the interface between the Clean Event I/O system
and concrete operating systems.

The interface between abstract devices and concrete devices boils down to five
distinct actions for each abstract device: (a) hide concrete interface elements, (b) map
abstract device definitions to concrete interface elements, (c) translate concrete events
into abstract events and evaluate corresponding abstract event handlers, (d) free the
resources of concrete interface elements, and (e) undo the hidden state of concrete
interface elements. Each of these particular actions is a particular function, and so the
interface between abstract and concrete devices is a structure of five abstract device
interface functions (see Fig. 20).

DeviceFunctions s = = HideFunction
OpenFunction
DoIOFunction
CloseFunction
ShowFunction

s,
s,
s,
s,
s

(a)
(b)
(c)
(d)

) (e)

:HideFunction s ==(IOState s)-*I0State s
:OpenFunction s = = (DeviceSystem s) (IOState s)-»IOState s

:DoIOFunction s ==Event s (IOState s)-*(Bool, s, IOState s)
: CloseFunction s = = (IOState s)->IOState s
:ShowFunction s ==(IOstate s)-»IOState s

Fig. 20. The types of the abstract device interface functions.

The abstract device interface functions and the abstract device access functions
provide the Clean Event I/O system with an abstract view of the operating system for
each abstract device. An important advantage of this approach is that porting the
Clean Event I/O system to other operating systems requires only the porting of these
functions. Another advantage is that each operating system interface can exploit the
underlying operating system in order to obtain efficient implementations.

9 Related work

As briefly discussed in the introduction, many solutions to deal with I/O in functional
languages exist. In this section we discuss three approaches in detail: dialogue
combinators (Dwelly, 1989), monads (Peyton Jones and Wadler, 1993), and FUDGETS

(Carlsson and Hallgren, 1993).

9.1 Dialogue combinators

One of the early reports on how functional languages can be used to program
dynamic and complex Graphical User I/O is the paper on dialogue combinators by
Dwelly (1989). Dialogue combinators are a class of functions with well-defined
properties such that programs constructed by these functions behave in a predictable
way. It is a discipline because programmers are not forced to program in this style.
The type of a dialogue combinator is Dig s = s-*[Inputs]->( [Outputs] , s ,
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[ Inputs ] ). A dialogue combinator when applied to some object that represents the
state of the program (the program state in our terminology) of type s, and a stream
of user input of type [ Inputs ] , produces a triple consisting of some output of type
[Outputs ] , the new program state, and the user input that has not been consumed.

Programs are constructed by dialogue combinators, such as Nul lDialogue,
Jo in and Cond. Nul lDialogue: Dig s produces no output, and leaves the
program state and user input unchanged. The application o f Jo in :D lg s^-Dlg
s-^Dlg s to two dialogue combinators dl and d2 produces the dialogue combinator
that first evaluates dl and then d2, and concatenates the output of d2 to the output
of d l . Conditions are functions of type Cnd s = s-> [ Inputs ] -^Boolean, which
inspect the program state and the user input and yield a Boolean result. The
application of Cond:Cnd s^-Dlg s->Dlg s->Dlg s to a condition c and two
alternative dialogue combinators dl and d2 produces the dialogue combinator that
performs dl if c holds and d2 if not.

In order to program dynamic interfaces one special dialogue combinator,
TreeCase, is provided. The basic idea behind this combinator is that dynamic
interfaces can be defined by sets of condition-action pairs [ (c l f a^ ... (cn, an) ] or
rules. The TreeCase combinator searches the first condition cL of a rule i that is
satisfied, and then applies the action a1. The action is provided with the program state
and the user input as usual, but also with the set of all current rules [ (c : , ax) ... (cn,
an) ] . The action may produce some output and change the program state as usual,
but it also yields a new set of rules [ (c'ir a[) ... (c^, a^) ] which is recursively applied
to TreeCase. A rule has type Object tag s = Ob j tag (Cnds) ([Object tag
s ] ^ D l g s) , and TreeCase is a function of type [Object tag s]-^Dlg s. By
providing an initial set of rules, the behaviour of TreeCase is determined if the user
inputs are known.

Even though the dialogue combinator approach is stream based, our approach has
remarkable similarities, as well as remarkable differences. The concepts on which the
dialogue combinator approach is based, namely those of dialogue combinators as
program state transition functions, sets of changing rules to program the behaviour
of dynamic interfaces, and the TreeCase dialogue combinator to evaluate a
dynamic interface can be retraced in our device concept. The main differences of the
Clean approach are the elimination of event stream handling, the formalisation of the
behaviour of the Graphical User Interface by the devices, and the modularisation of
programs by allowing an arbitrary amount of interactions.

9.2 Monads

One of the currently widely investigated approaches to incorporate I/O in functional
languages is the approach by Peyton Jones and Wadler (1993) based on monads
(Moggi, 1989; Wadler, 1990 b). The system is implemented in Haskell (Hudak et al.,
1992). As we said in the introduction, this is an (implicit) environment based
approach. The environment basically models the state of the machine. Operations (or
actions) on the environment have a special type 10 a which denotes 'actions that,
when performed, may do some I/O and then return a value of type a'. For example,
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the actions ge t c IO : : 10 Char, and putcIO: : Char^IO () read a character from
standard input and write a character to standard output. The type ( ) is a special type
of the empty tuple ( ).

A programmer composes actions with two combinators u n i t I O : :a-^IO a, and
b indIO: : 10 a-* (a^-IO b) -»I0 b. The application un i t IO x denotes the action
that only returns x. The application bindIO m n (or using the Haskell infix notation
m 'bindIO^ k) for an action m: : 10 a, and a function k: :a->-IO b, first does m,
which yields a value x of type a, and then does k x, which yields a value y of type
b. These two combinators actually form the monad. Two other combinators are
derived from un i t IO and bindIO, namely donelO: : 10 () and seqIO: : 10
a^IO b^IO b . The combinator donelO simply does nothing. The application m
x seqIO' n to two actions m: : 10 a and n: : 10 b first does m and then does n, and
yields the result of n.

If we compare the monad approach to our approach then there are some striking
differences. The environment that is manipulated in the monad approach is implicit
and 'appears' only in the 10 type. As a result programming in the system creates one
single spine of I/O operations and therefore over determines order of evaluation (see
the discussion in Section 4.2), and combinators need to be provided in order to
compose actions. To our knowledge combining monads of different type is a rather
tedious task which forms a serious practical restriction on its use. It is interesting to
look at two extensions to the 10 monad that are used to create additional spines of
I/O operations but in an unsafe manner, and see how these can be defined in the
explicit environment style.

The first extension is the combinator de laylO: : I0 a-̂ -IO a by which a program
can spark an action that is evaluated interleaved with the main imperative spine. This
is a dangerous combinator because the result of the program may depend on the
evaluation order between the interleaved action and the main spine. It should only be
used if the programmer proves that the interleaved action cannot interfere with the
spine. In the explicit multiple environment passing style interleaved I/O is obtained
because two spines of I/O can be defined on independent environments. There is no
need for proof obligation because environments are independent by definition.

The second extension is the combinator perform 10: : I0 a^-a by which a program
sparks an action that is not connected to the main spine at all. Again, the programmer
has to prove that the action cannot cause any side-effects in the program. This is
clearly an example of unhygienic programming (end of Section 4.2). In the Clean
Event I/O system this situation cannot occur because an interactive program needs
to yield a result value of type * Wo r id , which can only be done by applying the
composition rule to the event stream and file system environments.

9.3 FUDGETS

The FUDGETS system by Carlsson and Hallgren (1993) is a system developed recently
in which the stream based functional I/O approach is unified with Graphical User
Interfaces (in particular the X Windows system). The basic concept of the approach
is the fudget (/unctional Widget). The fudget is the basic instrument to receive and
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handle concrete events, and send commands to other fudgets. Events and commands
are communicated using streams. A fudget that accepts high level events of type a,
and that sends commands of type P, is a fudget of type F a |3. The system provides a
set of primitive fudgets.

A program can create complex graphic interfaces by composing fudgets, and as
usual a number of combinators are provided to do so. For instance, the combinator
> + < puts two fudgets f x and f2 of type Fax Px and Fa2 P2, into a new fudget f of
type F(a1 + a2) P1 + P2). The notation a + p is shorthand for the algebraic type
E i t h e r with E i t h e r <xP = Left <x| Right p. The new fudget f is the parallel
composition of f x and f 2. Any message of type ô  is sent to f i ; which results in a
response of type p\. Program code is connected in a fudget structure by defining code
as stream processing functions of predefined abstract data type SPap. The operator
absF turns such a function of type SPaP into an abstract fudget of type Fa p.
Because SP is an abstract data type combinators are provided to create stream
processing functions, namely the input combinator getSP: : (a-s-SPaP)-»SP<xP,
and the output combinator putSP: : [a] -> (SP a P) ->SP a p. The application getSP
(\a-»sf) gets an incoming message of type a and continues as the stream processor
sf. The application putSP 1 sf outputs the messages in 1 and continues as the
stream processor sf. Finally, to get an executable program, the fudget structure is
offered to a function which takes care of the stream handling with the operating
system.

In contrast with the Clean Event I/O system, the FUDGETS system has no concept
of a state that is accessible for the Graphical User Interface elements that are part of
the interaction. All state is local to a fudget. For both event handling and
communication, the FUDGETS system relies entirely on stream processing. Abstract
fudgets are demanded to be written as stream processors, forcing a continuation style
on the program. Although the paper describes how fudgets can be created
dynamically, it is not clear if it is possible to dispose of fudgets dynamically. This is
a necessary property of an I/O system as Graphical User Interfaces are recognised for
their highly dynamic use of interface elements.

10 Conclusions

In this paper we have shown how file I/O and Graphical User I/O have been
incorporated in the lazy functional programming language Clean. File I/O is denned
entirely using the explicit multiple environment passing method. This method allows
explicit handling of resources from the outside world, such as files, event streams,
windows, and so on. The direct use of the resources is safe due to the Uniqueness
Types of Clean's typing system. The restrictions that are imposed by the Uniqueness
Type System to the programmer do not seriously hamper the functional expres-
siveness of the language. By the environment hierarchy the outside world is given
structure, and multiple environments can be used in the same program independently.
The complexity of programming Graphical User Interfaces is managed by introducing
several stages of abstraction. A program is structured by partitioning it into a number
of independent interactions. Each interaction can be considered on its own. An
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interaction is a dynamic state transition system which is constructed in a declarative
style. An interaction is defined by an initial set of devices and an initial program state.
The devices are defined by algebraic types which provide a concise and clear notation
of the interface elements. The use of algebraic types to specify abstract devices and
interactions is a very flexible tool, as algebraic types can be manipulated easily in a
functional language.

The Clean Event I/O library provides portability to very different operating
systems. We have made implementations of the I/O library for the Sun under X
Window system, using the Open Look Interface Toolkit, and the Macintosh. We are
currently working on an implementation on PC's under OS/2. This means that a
Clean application created and tested on a Macintosh only needs to be recompiled to
run exactly the same on a X Window system. Still, the resulting applications obey the
different look-and-feels of these systems. The library has been used to write several
large applications (a full-feathered text editor, a relational database application, a
spreadsheet, a Turing machine programming environment, and many games). The
runtime performances of these programs are competitive with imperative programs.

Finally, we hope to have shown not only by the extensive account of the Clean I/O
system (and in particular the Uniqueness Typing) but also by the related work, that
functional languages have very strong organisational, abstractive, and expressive
power. It is important that an I/O system for a functional language retains these
strengths.

11 Current and future work

Research on the Clean I/O system as presented in this paper has concentrated mainly
on how to make I/O resources explicitly and safely available, and how to program
Graphical User I/O in a high-level and portable way. A technical report on the
operational semantics of the Clean I/O system is in preparation (which will discuss
the meaning of non-terminating interactive programs, and how to reason about
interactive programs). Part of our current and future research focuses on making the
I/O system more orthogonal. Concrete topics in this area are to what extent the
window and dialogue device can be unified, and the completion of the set of functions
to structure and combine interactive programs. The other main part of our research
activities will be to investigate how the explicit multiple environment passing scheme
can form a base for distributed (or parallel) interactive programs. Topics in this area
are the environment hierarchy of a world that contains many other worlds, and the
investigation of communication primitives between interactions.
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