
THE MATHIEU GROUPS 

R. G. STANTON 

1. Introduction. An enumeration of known simple groups has been given 
by Dickson [17]; to this list, he made certain additions in later papers [15], [16]. 
However, with but five exceptions, all known simple groups fall into infinite 
families; these five unusual simple groups were discovered by Mathieu [21], 
[22] and, after occasioning some discussion [20], [23], [27], were relegated to the 
position, which they still hold, of freakish groups without known relatives. 
Further interest is attached to these Mathieu groups in virtue of their pro­
viding the only known examples (other than the trivial examples of the sym­
metric and alternating groups) of quadruply and quintuply transitive permu­
tation groups. 

Basically, the two important Mathieu groups are the group 9D?i2 of order 
Wi2 = 95040 and the group 90?24 of order ra24 = 244823040. The other three 
Mathieu groups are subgroups of these two; SDÎn is a subgroup of index 12 in 
3Dîi2 whereas 9K23 is a subgroup of index 24 in 9K24 and SDÎ22 is a subgroup of 
index 23 in 9)?23. Since the Mathieu groups are exceptional both in their 
simplicity and their multiple transitivity, it should be of interest to investigate 
whether they are the unique simjple groups of their orders. Hence we shall 
consider the two groups 9Ki2 and 9W24 and prove the following 

MAIN THEOREM. The only simple group of order w i 2 is the Mathieu group 
9#i2; the only simple group of order ra24 is the Mathieu group 9K24. 

2. Definition of the Mathieu groups. A brief summary of the history of the 
Mathieu groups is provided by Witt [30] ; we shall ignore the older permutation 
definition and give a more combinatorial one which is also due to Witt. This 
necessitates the introduction of the concept of a Steiner system [31]. 

A Steiner system ©(/, w, n) is defined to be a set of (*)/(?) ra-member clubs 
formed from n individuals who are subject to the proviso that every / persons 
must meet together in one club and one club only. Clearly one person will 
occur in mp/n clubs, p denoting the total number of clubs. Such a Steiner 
system is identical with the "complete 1-l-m configuration'' of tactical arrange­
ment [13], [24], [25]. 

The Steiner group of ©(/, w, n) is the group of all those permutations of the 
n individuals which leaves the set of clubs invariant; such a group will be 
/-fold transitive. We now define the two fundamental Mathieu groups SDîit 
and 9D?24 as the groups of the two Steiner systems ©(5, 6, 12) and ©(5, 8, 24). 
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If we consider all the clubs of ©(/, ra, n) which contain a fixed individual, 
these clubs will in turn form another Steiner system @(/-l, ra-1, w-1). The 
systems ©(4, 5, 11) and ©(4, 7, 23), ©(3, 6, 22) can thus be obtained from the 
two systems given in the preceding paragraph. Their groups, which we call 
SHii» 5DÎ23, and 2)?22, are the other three Mathieu groups and occur as subgroups 
of the two larger groups 9D?i2 and 3JÎ24. 

The orders of $0îi2 and SD?24 may be obtained from the given definitions; 
thus 3Wi2 is 5-fold transitive and so has order mu equal to 12.11.10.9.8.&, where 
k is the order of the subgroup leaving five persons invariant. Since every 
permutation other than the identity of an /-fold transitive group must alter 
at least 21 — 2 symbols, it is necessary that k be unity and so mu = 95040. 
A slightly more intricate combinatorial analysis yields m24 = 24.23.22.21.20.48 
= 244823040. 

We may now amplify the statement of our problem. Dickson [17] has 
shown that there are infinitely many group orders g with the property that 
there exists two simple groups of order g\ the lowest such value of g is 20160. 
We shall here study simple groups of orders mu and w24; it is first shown that 
the character tables for simple groups of these two orders are unique and are 
consequently identical with the character tables already known [18], [19] fer 
9Ki2 and 9K24. Thence it is possible to demonstate the theorem stated in the 
introduction. 

3. Modular characters of groups. Since the assumption of the existence 
of simple groups of order Wi2 and m2i is a rather meagre one with which to 
start, we must attack the problem by local methods. These are provided by 
the theory of modular group characters for a fixed prime p. We briefly sketch 
here some of the more fundamental results which we shall employ from this 
theory. 

Consider a group ® of order g = paqbrc. . . where p, q, and r are distinct 
primes. Let k denote the number of classes of conjugate elements. If a class 
contains elements of order prime to p, it is called a ^-regular class; otherwise 
it is termed ^-singular. It is well known that if © is represented by matrices 
with coefficients in a field K of characteristic prime to the order g of ®, then 
the ordinary Frobenius-Schur theory of representation holds and there are k 
irreducible representations over K [14] with corresponding irreducible charac­
ters f i, f 2, . . . , f k [12], [26], [28]. But if K has characteristic p, where p divides 
g, this theory is no longer valid ; the ordinary irreducible representations, when 
their coefficients are taken in such a modular field K, break up further Into 
modular-irreducible representations and the number of these is equal to the 
number of ^-regular classes of conjugate elements. This splitting actually 
corresponds to the fact that the group algebra r of & is not semi-simple when 
taken as an algebra over the field K. The traces of the modular-irreducible 
representations are, after an isomorphic mapping upon the roots of unity in 
the complex field, referred to as the modular-irreducible characters. 
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This splitting-up, in the field K, of the ordinary irreducible representations 
into modular-irreducible representations allows us to make a very significant 
grouping of the ordinary representations. A set of ordinary irreducible 
representations is said to form a block for the prime p if they can be written 
down in some chain order such that each representation has a modular-
irreducible constituent in common with both the preceding and the following 
representations (for brevity, we also say that the corresponding characters 
belong to the same block of characters). Such blocks may run the whole 
gamut of possibilities from blocks made up of a single ordinary representation 
to blocks consisting of all the ordinary representations. The theory of modular 
characters and blocks is developed in detail in [1], [2], [3], [6], [7], [8], [10], [11]. 

We shall denote the various blocks by the notation B^p) and agree that 
Bi(p) shall refer to that block containing the unit representation. The type 
of a block is defined as the minimal power of p dividing the degrees of all 
representations in that block; it may range from 0 to a and is always 0 for 
Bi(p). At the present state of our knowledge, the most useful blocks are those 
of type a-1 ; we refer to these as standard blocks. 

4. Structure of the blocks. If an ordinary irreducible representation has 
degree divisible by pa, then it remains modular-irreducible and forms a block 
by itself. In particular, if g = pg', where (p, g') = 1, we have an especially 
simple situation which has been extensively studied in [4], [5], [29]; all 
representations are either individual blocks or else fall into standard blocks 
of representations whose degrees are all prime to p. 

In this particular case where p divides g to the first power only, the group 
order g may be written in the form 

(1) g = P ^ p v(l + np) 

where pv is the order of the normalizer of the element P of order p, t is the 
number of different classes of conjugate elements of ® appearing in the Sylow 
subgroup [P\, and 1 + np is the number of Sylow subgroups of order p. The 
standard blocks B^p) consist of (p — 1)//M ordinary characters (/M being a 
divisor of p — 1) and a family of t„ ^-conjugate characters, that is, characters 
which differ only in a permutation of the p-th. roots of unity, the g'-th roots of 
unity remaining unaltered. In particular, t\ = t. 

The normalizer of P can be written as \P) X 23 where S3 is a group of order 
v, this order usually being small. If the characters of 33 are known, then we 
can find all the characters of © itself insofar as they lie in standard blocks [4]. 
In particular, all the characters of B\{p) have degrees which are congruent to 
— 1 modulo p except for one exceptional family of t ^-conjugate characters 
whose members have degrees congruent to ± (p — \)/t modulo p. The other 
blocks Bftip) contain characters whose degrees are congruent to dbaM modulo p 
and a family of JM p-con jugate characters whose members have degrees con-
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gruent to =b a^(p — 1)//M modulo p. In any one of these blocks we may con­
sider the characters to be of two kinds; those with degrees congruent to aM 

(including the exceptional family if its JM members have degrees congruent to 
— cLfi(p—l)/tp) are said to be of positive type, and those with degrees congruent 
to — a» (including the exceptional family if its members have degrees congruent 
to anip — 1)/£M) are said to be of negative type. If we set the sum of all 
characters of positive type equal to the sum of all characters of negative type, 
we obtain a character relation which is valid for the ^-regular classes of elements. 
This relation will be our most powerful tool. 

5. Block relationships for two primes. In this section we shall briefly 
enumerate some of the most useful theorems on blocks and block-intersections. 
We use, as before, p and q to denote two primes which divide the group order g. 

LEMMA 1. If a relation 
k 

E a>MS) = 0 

holds for all p-singular elements S of ©, aM being independent of S, then the 
relation still holds if the summation is performed only over characters of some fixed 
block B, that is, 

£ a,US) = 0. 
V B 

Proof. Determine numbers be such that aM = £ f>G^(G). The orthogon-

ality relations for ordinary characters show that fo — 0 for ^-singular elements 
G. Hence aM = £ ^R^R) where R ranges over the ^-regular elements of G. 

R 

Then 
E a»US) = £ ** £ MR)MS) = o. 

Ï^B R Ï^B 

(Cf. [10], Theorem 8). 

LEMMA 2. If & contains no elements of order pq and if 

E a,UG) = 0 

for all p-regular elements G, then 

E a.UH) = 0 

for all q-singular elements H, the summation being performed over the characters 
of a fixed q-block B. Furthermore, if E is the identity in ©, then 

E a^iE) s 0 mod qb. 

Proof. (The aM denote algebraic integers). Every ^-singular H is p-regular 
k 

and so the hypothesis gives E &i£n{H) = 0- Apply Lemma 1 for the prime q 
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and we have £ aMfM(i?) = 0. In particular, the expression S(X) = ]£ a^^H) 

vanishes for all elements, except the identity, of a Sylow ç-group O . Express 
*SQ0 as a linear combination of the irreducible characters of Q , for X in G . 
The coefficient of the principal character of Q is q~bS(E) ; as this number is an 
algebraic integer, S(E) = 0 mod qb, that is, £ aMfM(£) = 0 mod qh. 

LEMMA 3. / / a character f belongs to the first p-block, so do all its algebraically 
conjugate characters. 

Proof. The necessary and sufficient condition for f to belong to the first 
£-block is 

- L . £<2 . _f_ mod „ 
n(G) r(£) «(G) 

for all G in ®, where }3 is a prime ideal dividing p and n(G) is the order of the 
normalizer of G. An algebraically conjugate character f' can be obtained by 
replacing G by G* where (a, g) = 1. Then n(Ga) = n(G) and, using this con­
dition, with the relation already given, for the element Ga, we have 

JLtWmJL_ m o d p. 
«(G) f'(E) «(G) 

This shows f ' is in the first £-block. 
In the following lemmas, we consider groups of orders divisible by a prime p 

to the first power only, that is, a decomposition of g exists in the form (1). 

LEMMA 4. If v > 1, JAe degrees z of all characters other than the 1-character 
belonging to 1 — 1 representations in the first p-block satisfy the inequality 
2 ^ 1 + 2p. (In this lemma, we assume ® = ©')• 

Proof. We have g written in the form (1) with v > 1. Let J" be a character 
of the first £-block; then ï{V) = ${PV) = £(P) s 2 mod p. If we consider f 
as a character of 25, we have f (25) = a(l) + S cA where the 0, are irreducible 
characters of 23 with 0„ 7̂  (1), a ^ 0, c ^ 0, a and c rational integers. Then 
f (SB) = z mod p. 

Now the order v is prime to p and so a = s mod £, cv = 0 mod £. Then 
?(23) = a(l) + p L M , and 2 = a + p £ b* = « + /*• Since z je 0 mod £, 
a > 0; also, if & = 0, all bP = 0. In this case, f (25) = a(l) and 25 is represented 
by the identity; thus 6 ^ 1 . 

If b = 1, then the representation corresponding to f is composed of the 
identity of order a along with p repetitions of a linear representation g, that is, 

Z ( s ) - ( % x 8 ) -
Then det Z(25) = {det g(25)}p. At this stage, we make the assumption that 
© is identical with its derived group ©'. Then det Z is a linear character of 
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© and so is unity; hence det g(5B) = 1. But g(SJ) is linear and so g(SB) = 1; 
this is impossible. Thus 6 ^ 2 and so 

z = a + pb^2p + l 

for all characters of 1 — 1 representations in the first £-block (when & = ®')-

LEMMA 5. Suppose that p occurs in g to the first power only, as in (1); Let 

the decomposition (1) for a second prime pf be g = p'i^—p—V(l + n'p'). 

Let the group 93' of order v' intersect SB in a group SB of order w. Then, ifw^\> 
every representation in Bi(p) H Bi{p') has a degree z satisfying the inequality 
z^l+ 2pp'. 

Proof. The proof parallels closely that of Lemma 4. Let W be an element 
of SB = 3S H SB'. Then, by the argument of Lemma 4, we have 

f (SB) = a{\) + £«(©) 

where a> is a character, reducible or irreducible, of SB. In a similar manner, 

f (SB) = a'(l) + ^V(SB). 

These two expressions for f (SB) may then be equated. Now let o>0 be a charac­
ter of SB, other than the principal character, which appears in w; its multipli­
city must be divisible by pp'. Then 

r(«B) = o(l) + pp'oiW). 

Taking degrees, and using the same sort of determinantal argument as in 
Lemma 4, we obtain the inequality 

z ^ a + 2pp' 

where a > 0, a = a mod py a = a1 mod />'. 

LEMMA 6. As in Lemma 5, assume that p and p' are distinct primes which 
divide g to the first power only and that there are no elements of order pp'. Let 
aij be the number of characters in Bi(p) C\ Bi(p') which are of type i for p and 
type j for p\ the indices i and j being zero or unity according as the character type, 
defined at the end of §4, is positive or negative. Then 

(2) a0o + an = a0i + an. 

Proof. Let a character f be in common to the first £-block and the first 
p'-block; three cases may arise. First f may be non-exceptional for both p 
and p'\ in this case the degree z of f is congruent to ± 1 for both p and p'. 

p' — 1 
Secondly, f may be exceptional for p', that is, z = ± 1 mod p, z = T -—-— 

mod p'. Thirdly, f may be exceptional for p, that is, z = d= 1 mod p', 
p — 1 

z == T £ mod /?. f can not be exceptional for both p and p'. 
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Now consider the degree relation for the first block Bi(p) and take the 
degrees modulo pr. The degrees which are of positive type for p' will then con­
tribute 1 to the congruence; those which are of negative type will contribute 
— 1. In this way we obtain the congruence 

#oo ~~" aoi = #io — #n mod p'. 

/>' — 1 
If t' > 1, the sum a0o + #oi + #io + #n ^ *—— and so the above congruence 

V 

must be an equality. If /' = 1, then a0o + #oi + #10 + #n ^ p' and the con­
gruence must again be an equality. Thus we have the block-intersection 
theorem 

#00 + #11 = #01 + #10-

LEMMA 7. Let p, />', w have the same significance as in Lemma 5. Assume 
p — 1 

now that p' divides and that w = 1. Then v = 1 mod p' and the number 

of elements of 25 of a fixed order other than 1 is also congruent to 1 mod pr. 

Proof, Let 9ft denote the normalizer of {P\ and let Pr denote an element of 
order p'. Since 25 is normal in 9JÏ, P' must transform 25 into itself. Also 
w = 1 ; hence 1 is the only invariant element and this implies that v is congruent 
to 1 mod pf. 

Consider now a class of conjugate elements, other than the identity, in 25; 
P/ will transform this class into another class. If this second class were not 
distinct from the first, then the number of elements in it would have to be con­
gruent to zero mod p'. This is not possible, under the assumptions of the 
lemma, since p' can not divide v. Thus P' carries a class of 25 into a distinct 
class and this completes the Lemma. 

COROLLARY; Under the assumptions of Lemma 7, but without insisting that 
w = 1, we have w = v mod p'. 

In concluding this section, it might be well to emphasize that, while v/e are 
here applying the powerful local methods of modular theory to the Mathieu 
groups, the same general approach could be used on any members of the rather 
large class of groups which contain a prime (or preferably several primes) to 
the first power only. 

6. The blocks in the Mathieu groups. It is not possible to give here1 the 
considerable numerical calculations necessary to find the degrees of the char­
acters of simple groups of orders rai2 and w24. We shall content ourselves 
with indicating briefly the process for the case of the prime 23 in a simple 
group of order m24- We know that there is a decomposition (1) of w24 and, 
by considering the factors of m24 mod 23, the number 1 + np of Sylow 23-

1The details of numerical calculation are available in the author's thesis in the University 
of Toronto library. 
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groups is found to lie in the set 24, 70, 231, 576, 990, 1680, 3520, 5544, 13824, 
19712, 23760, 40320, 84480, 133056, 967680. Also, the number / can, for a 
simple group, be only 1,2, or 11. The possibility t = 11 can be excluded almost 
immediately and this in turn eliminates some of the numbers in the list of 
possible Sylow groups. From there on, numerical work with Lemmas 4, 5, 6, 
and 7 is necessary. The block-intersection theorem that there must be a 
character other than the 1-character in 2?i(23) C\ 2?i(ll) finally allows us to 
eliminate all cases except t = 2, 1 + np = 967680. Thus the decomposition 
(1) for the prime 23 is 

w24 = 23.11.1.967680. 

The decomposition of w24 in the form (1) for the other primes 11,7, and 5 
which appear in the group order to the first power requires an even more 
extended numerical sieving of possible degrees in block-intersections such as 
Bi(23) C\ 2*i(5), etc. When completed, the decompositions are 

m24 = 11.10.1.1225664 for 11, 
m24 = 5.4.12(23.11.7.576) for 5, 
m24 = 7.3.6(23.11.5.1536) for 7. 

The groups 93 of orders 12 and 6 which appear associated with the primes 5 
and 7 are just the alternating group on 4 symbols and the symmetric group on 
three symbols. From the groups 93 we see that there exists a 23-block, an 
11-block, 3 5-blocks, and 3 7-blocks. Such a large number of blocks makes 
for smooth working of the block-intersection theorem ai[id we give the results 
of its application in the form of block relations (asterisks denote the families 
of ^-conjugate characters; also, we use the convention that the number a 
shall mean "the character whose degree is a1*): 

Bi(23) 1 + 231' + 231" + 990' + 990" + 3520 + 5544 
= 770* + 45' + 45" + 252 + 10395, 

Bi ( l l ) 1 + 45' + 45" + 1035 + 1035' + 1035" + 23 + 3312 
= 252 + 483 + 5796, 

J?i(7) 1 + 2024 = 990* + 1035, 
52(7) 3312 + 253 = 3520 + 45*, 
Bz(7) 23 + 2277 = 1035* + 1265, 
J8i(5) 1 + 5796 + 1771 « 2024 + 5544, 
B2(5) 252 + 231* = 483, 
J5i(5) 23 + 253 + 5313 = 3312 + 2277. 

During the course of the block determination, it also appeared that there were 
four standard 3-blocks, which were very helpful in finding the character 
relations, namely: 

J52(3) 5796 = 252 + 5544, 
£8(3) 990' + 45' = 1035', 
£4(3) 990" + 45" = 1035", 
54(3) 2277 + 1035 = 3312. 
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In the twelve blocks which have just been given there occur 26 degrees; 
finding the sum of their squares, we check that it is equal to ra24 and so we have 
found all the characters. The complete character table can then be constructed 
by using these block relations, together with the results of [4] concerning the 
expression of the characters of ® in terms of those of 33. It turns out that this 
table can be formed in a unique way, that is, we have 

THEOREM 1. The character table for any simple group of order ra24 is unique 
and hence is identical with that for $ft24. 

The analogous result for 2fti2, namely, that the character table for a simple 
group of order m2i is unique, has already been given in [5]. However, we should 
here give the decomposition (1), which is: 

m12 = 11.5.1.1728 for 11, 
WW = 5.4.2.2376 for 5. 

Thus there is an 11-block and 2 5-blocks; in order for them to fit together, we 
we find that the block relations must be: 

5 i ( l l ) 1 + 45 + 144 = 16* + 54 + 120, 
J5i(5) 1 + 66 + 176 = 99 + 144, 
B2(5) 16' + 16" + 11' + 11" = 54. 

There is also a standard 3-block and a 2-block type 4; these are given by: 

B%(3) 45 + 99 = 144, 
J?«(2) 16' + 16" + 144 = 176. 

The fifteen degrees which occur in these block relations suffice to fill up the 
group order 95040 and, as in the case of m24, the character table can be uniquely 
constructed from the block relations. 

7. Uniqueness of the Mathieu groups. I t is a well-known fact that two 
d^tinct groups of a given order g may possess the same character table; we 
now seek to show that this can not be the case for ntu or ra24. Suppose that 
we consider the character table for 9D?i2 (for a reproduction of this table, cf. 
[19]). Let the corresponding group be represented as a group of linear sub­
stitutions in 11 variables #»; by a rather lengthy discussion of the canonical 
matric form of the elements of order 11 and order 5, one can show that the 
invariance group of the variable X\ is a group of order 7920. When this is 
done, the proof runs smoothly; the group under consideration must have a 
subgroup of index 12 and hence a permutation representation of degree 12. 
Split this permutation representation into irreducible constituents; the only pos­
sible splitting is a splitting into the unit representation and a representation 
of degree 11. This is, however, a necessary and sufficient condition for the 
double transitivity of the group. An exactly similar discussion of a simple 
group of order ra24 can be carried out using the representation of degree 23; 
the invariance group of X\ will have index 24 in this case. Hence we obtain 
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THEOREM II. A simple group of order mu is doubly transitive on 12 symbols; 
a simple group of order m2i is doubly transitive on 24 symbols. 

By consulting the tables of primitive groups, we could immediately identify 
the group on 12 symbols as 2fti2; however, these tables do not extend as far 
as degree 24 and so it is better to proceed by writing down permutation 
representations for the group elements of these doubly transitive groups. 
When these are obtained, they turn out to be identical with the known per­
mutation representations of Win and 9DÎ24 [13], [20], [27]. This result, com­
bined with Theorems I and II, yields the main theorem, as given at the end 
of §1. 
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