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Klingen Eisenstein congruences and
modularity
Tobias Berger , Jim Brown , and Krzysztof Klosin
Abstract. We construct a mod � congruence between a Klingen Eisenstein series (associated with
a classical newform ϕ of weight k) and a Siegel cusp form f with irreducible Galois representation.
We use this congruence to show non-vanishing of the Bloch–Kato Selmer group H1

f (Q, ad0 ρϕ(2 −
k) ⊗Q�/Z�) under certain assumptions and provide an example. We then prove an R = dvr
theorem for the Fontaine–Laffaille universal deformation ring of ρ f under some assumptions, in
particular, that the residual Selmer group H1

f (Q, ad0 ρϕ(k − 2)) is cyclic. For this, we prove a
result about extensions of Fontaine–Laffaille modules. We end by formulating conditions for when
H1

f (Q, ad0 ρϕ(k − 2)) is non-cyclic and the Eisenstein ideal is non-principal.

1 Introduction

The construction of Eisenstein congruences has a long and consequential history.
Interesting in their own right, their significance is amplified by the existence of Galois
representations attached to the congruent forms, as the ones attached to Eisenstein
series are always reducible, while the ones attached to cusp forms are often irreducible.
Using various generalizations of the result known as Ribet’s Lemma, they lead to the
construction of non-zero elements in Selmer groups. This direction was first explored
by Ribet himself in the context of the group GL2 in [45] and later used by many other
authors in a variety of different settings (e.g., [16, 49, 60]).

In a different direction, such congruences can play a crucial role in proving
modularity of deformations of reducible residual Galois representations ρ (see, e.g.,
[6, 9, 10, 17, 50, 54, 56]). In [17] Calegari introduced a method of proving modularity
assuming ρ is unique up to isomorphism, which relies on proving the principality of
the ideal of reducibility of the universal deformation ring R of ρ. This method was
developed further by Berger and Klosin [5, 6, 9] and Wake and Wang-Erickson [56]
and successfully applied in many contexts (see also [1, 29]). It relies heavily on the
ideas of Bellaiche and Chenevier [4] and their study of generalized matrix algebras
(GMAs).

In this article, we pursue both of these directions in the case of Klingen Eisenstein
series of level one on the group Sp4. More precisely, let k ≥ 12 be an even integer
and ϕ be a classical weight k Hecke eigenform of level 1 (i.e., on the group GL2/Q).
Write E2,1

ϕ for the (appropriately normalized) Klingen Eisenstein series on Sp4 induced
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2 T. Berger, J. Brown, and K. Klosin

from ϕ. It is a Siegel modular form of weight k and full level. Congruences between
Klingen Eisenstein series and cusp forms have been studied previously by Kurokawa
[35, 36], Katsurada and Mizumoto [32, 39], Takeda [52], and Urban (unpublished).
Katsurada and Mizumoto obtain congruences as an application of the doubling
method. In this article, we produce congruences via a much shorter argument using
results of Yamauchi [61]. The trade-off is that while our proof is much shorter, we
obtain congruences only modulo a prime �, whereas Katsurada and Mizumoto obtain
congruences modulo powers of �. However, the hypotheses required for our result are
different and less restrictive than those needed in [32]. We show that under certain
conditions E2,1

ϕ is congruent to some cusp form f of the same weight and level with
irreducible Galois representation (Theorem 3.5). This is the first main result of the
article. These congruences are governed by the numerator of the (algebraic part) of
the symmetric square L-function Lalg(2k − 2, Sym2ϕ) of ϕ. We also exhibit a concrete
example when the assumptions of Theorem 3.5 are satisfied (see Example 3.6).

We then proceed to show that these congruences give rise (under some assump-
tions) to non-trivial elements in the Selmer group H2−k ∶= H1

f (Q, ad ρϕ(2 − k) ⊗
Q�/Z�). Here, ρϕ is the Galois representation attached to ϕ by Deligne and we use
the Fontaine–Laffaille condition at �. Assuming the Vandiver Conjecture for � we
also deduce the non-triviality of the Selmer group H1

f (Q, ad0 ρϕ(2 − k) ⊗Q�/Z�)
(Corollary 5.7 and Remark 5.8). This is our second main result and gives evidence
for new cases of the Bloch–Kato conjecture. This conjecture was studied for other
twists of ad ρϕ by [20, 34]. In [53] Urban assumed the existence of Klingen Eisenstein
congruences to prove a result toward the main conjecture of Iwasawa theory for the
adjoint L-function.

To properly analyze these Selmer groups, we require some results on extensions
of Fontaine–Laffaille modules whose proofs appear to be absent in the literature. In
Section 4, we carefully study certain aspects of Fontaine–Laffaille theory, in particular,
prove the Hom-tensor adjunction formula and give a precise definition of Selmer
groups with coefficient rings of finite length.

Given the eigenvalue congruence E2,1
ϕ ≡ f (mod �), we also study deformations of a

non-semi-simple Galois representation ρ ∶ GQ → GL4(F�)whose semi-simplification
arises from the Klingen Eisenstein series. Such a representation is reducible with two
two-dimensional Jordan–Holder blocks and more precisely, one has

ρ = [
ρϕ ∗

ρϕ(k − 2)] .

Conjecturally such representations should arise as mod � reductions of Galois repre-
sentations attached to Siegel cusp forms which are congruent to E2,1

ϕ mod �. We assume
that dim H2−k[�] = 1, where [�] indicates �-torsion. This can be seen as a refinement of
the uniqueness assumption of [50] similar to the one in [6] and as in [6, 17] we prove
the principality of the reducibility ideal of the universal deformation. However, this
principality cannot be achieved through the method of [6] because the representation
in question fails to satisfy the strong self-duality property required for the method of
[loc.cit.]. Instead we improve on a recent result of Akers [1] which replaces the self-
duality condition with a one-dimensionality assumption on the Selmer group Hk−2 ∶=

Downloaded from https://www.cambridge.org/core. 13 Oct 2025 at 21:33:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Klingen Eisenstein congruences and modularity 3

H1
f (Q, ad ρϕ(k − 2)) of the “opposite” Tate twist of ad ρϕ . With these assumptions in

place, we are able to show that the universal deformation ring R is a discrete valuation
ring and prove a modularity result guaranteeing that the unique deformation of ρ
indeed arises from a Siegel cusp form congruent to E2,1

ϕ (Theorem 6.20). This is the
third main result of the article.

We then proceed to formulate conditions for non-cyclicity of the Selmer group
Hk−2. While many results in the literature give bounds on the orders of Selmer groups
(in particular, Corollary 5.7 gives such a lower bound on H2−k), the structure of these
groups is notoriously mysterious. In this article, we prove that if the (local) Klingen
Eisenstein ideal Jm is not principal then Hk−2 is not cyclic (Corollary 7.3). We further
refine this result by providing a criterion for non-principality in terms of the depth
of congruences between cusp forms and E2,1

ϕ (Corollary 7.5). An intriguing feature of
these results is that Hk−2 is non-critical, i.e., this Selmer group is not controlled by a
critical L-value in the sense of Deligne.

2 Background and notation

Given a field F , we denote by GF its absolute Galois group. Fix a rational prime � > 2.
If M is a topological Z�[GF]-module, we will write M(n) = M ⊗ εn for the n-th Tate
twist where ε denotes the �-adic cyclotomic character.

For each prime p, we fix an embedding Q ↪ Qp . This is equivalent to choosing
a prime p of Q lying over p and fixes an isomorphism Dp ≅ GQp , where Dp is the
decomposition group of p. We will denote by Ip ⊂ Dp the corresponding inertia group.
We also fix an isomorphism Q� ≅ C.

Let E denote a finite extension of Q� with valuation ring O, uniformizer λ, and
residue field F. For a continuous homomorphism ρ ∶ GF → GLn(O), we write ρ ∶
GF → GLn(F) for the mod λ reduction of ρ.

For n ∈ Z+, we denote by Matn (resp., GLn) the affine group scheme
over Z of n × n (resp., invertible) matrices. Given a matrix γ ∈ Mat2n , we

will write it as γ = [aγ bγ
cγ dγ

], where the blocks are in Matn . Set GSp2n =

{g ∈ GL2n ∶ tgJn g = μn(g)Jn , μn(g) ∈ GL1} , where Jn = [
0n −1n
1n 0n

], where 1n is

the n by n identity matrix, and μn ∶ GL2n → GL1 is the homomorphism defined via
the equation given in the definition. Write GSp+2n(R) for the subgroup of GSp2n(R)
consisting of elements g with μn(g) > 0. We set Sp2n = ker(μn) and

Γn = Sp2n(Z) = {g ∈ GL2n(Z) ∶ tgJn g = Jn} .

Note that Sp2 = SL2, the subgroup scheme of GL2 of matrices of determinant one.
The Siegel upper half-space is given by

hn = {z = x + iy ∈ Matn(C) ∶ x , y ∈ Matn(R), tz = z, y > 0},

where we write y > 0 to indicate that y is positive definite. The group GSp+2n(R) acts
on hn via γz = (aγz + bγ)(cγz + dγ)−1.
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4 T. Berger, J. Brown, and K. Klosin

For a function f ∶ hn → C set ( f ∣κγ)(z) = μn(γ)nk/2 j(γ, z)−k f (γz) for γ ∈
GSp+2n(R) and z ∈ hn , where j(γ, z) = det(cγz + dγ). A Siegel modular form of weight
k and level Γn is a holomorphic function f ∶ hn → C satisfying ( f ∣kγ)(z) = f (z) for all
γ ∈ Γn . If n = 1, we also require the standard growth condition at the cusp. We denote
the C-vector space of Siegel modular forms of weight k and level Γn as Mk(Γn). Any
f ∈ Mk(Γn) has a Fourier expansion of the form

f (z) = ∑
T∈Λn

a(T ; f )e(Tr(Tz)),

where Λn is defined to be the set of n by n half-integral (diagonal entries are in Z,
off diagonal are allowed to lie in 1

2 Z) positive semi-definite symmetric matrices and
e(w) ∶= e2πiw . Given a ring A ⊂ C, we write f ∈ Mk(Γn ; A) if a(T ; f ) ∈ A for all T ∈
Λn . Define the subspace Sk(Γn) = ker Φ ⊂ Mk(Γn) of cusp forms, where Φ( f )(z) =

limt→∞ f ([z 0
0 it]) .

We will now introduce certain Eisenstein series, which will play a prominent role
in this article. For n ≥ 1 and 0 ≤ r ≤ n define the parabolic subgroup

Pn ,r =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 b1 ∗
∗ u ∗ ∗
c1 0 d1 ∗
0 0 0 tu−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Γn ∶ [
a1 b1
c1 d1

] ∈ Γr , u ∈ GLn−r(Z)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

We define projections ⋆ ∶ hn → hr , z = [z⋆ ∗
∗ ∗] ↦ z⋆and ⋆ ∶ Pn ,r → Γr , γ ↦ γ⋆ =

[a1 b1
c1 d1

] .

Let ϕ ∈ Sk(Γ1). The Klingen Eisenstein series attached to ϕ is the series

E2,1
ϕ (z) = ∑

γ∈P2,1/Γ2

ϕ((γz)⋆) j(γ, z)−k ,

where z ∈ h2. The Eisenstein series converges for k ≥ 12 (see [33, Theorem 1, p. 67] for
example). Note that [33, Theorem 1, p. 67] gives Φ(E2,1

ϕ ) = ϕ.
Given two Siegel modular forms f1 , f2 ∈ Mk(Γn) with at least one a cusp form, set

⟨ f1 , f2⟩ = ∫
Γn/hn

f1(z) f2(z)(det y)k dμz,

where z = x + iy with x = (xα ,β), y = (yα ,β) ∈ Matn(R), dμz =
(det y)−(n+1)∏α≤β dxα ,β ∏α≤β d yα ,β with dxα ,β and d yα ,β the usual Lebesgue
measure on R.

Given γ ∈ GSp+2n(Q), we write T(γ) to denote the double coset ΓnγΓn and set
T(γ) f = ∑i f ∣kγ i , where the γ i are given by the finite decomposition ΓnγΓn = ∐i Γnγ i
and f ∈ Mk(Γn). Let m > 1. We define T(n)(m) via

T(n)(m) = ∑
d1 e1= ⋅ ⋅ ⋅ =en dn=m

d1 ∣d2 ∣ ⋅ ⋅ ⋅ ∣dn ∣en ∣en−1 ∣ ⋅ ⋅ ⋅ ∣e1

T(diag(d1 , . . . , dn , e1 , . . . , en)).
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Klingen Eisenstein congruences and modularity 5

In particular, for p a prime, we have

T(n)(p) = T(diag(1n , p1n)).

We also define

T(n)i (p2) = T(diag(1n−i , p1i , p21n−i , p1i)), 1 ≤ i ≤ n.

The spaces Mk(Γn) and Sk(Γn) are both stable under the action of T(n)(p) and
T(n)i (p2) for 1 ≤ i ≤ n and all p. We say a nonzero f ∈ Mk(Γn) is an eigenform if it
is an eigenvector of T(n)(p) and T(n)i (p2) for all p and all 1 ≤ i ≤ n. As we will be
focused on the case n = 2, we specialize to that case. We let T′ denote the Z-subalgebra
of EndC(Sk(Γ2)) generated by the Hecke operators T(2)(p) and T(2)1 (p2) for all
primes p.

Recall that E/Q� denotes a finite extension with valuation ring O and uniformizer
λ. Given eigenforms f1 , f2 ∈ Mk(Γn ;O), following the notation in [61] we write f1 ≡ev
f2 (mod λ) if λ f1(T) ≡ λ f2(T) (mod λ) for all T ∈ T′, where T f i = λ f i (T) f i .

For an eigenform ϕ ∈ Sk(Γ1), we set

L(s, ϕ) ∶=∏
p
(1 − λϕ(p)p−s + pk−1−2s)−1 ,

L(s, Sym2ϕ) =∏
p
[(1 − α2

p p−s)(1 − αp βp p−s)(1 − β2
p p−s)]−1 ,

where λϕ(p) is the eigenvalue of T(p) ∶= T(1)(p) corresponding to ϕ and αp , βp
denote the roots of X2 − λϕ(p)X + pk−1. The symmetric square L-function converges
in the right half-plane R(s) > k, satisfies a functional equation, and has analytic
continuation to the entire complex plane.

For an eigenform f ∈ Sk(Γ2), we define

Lp(X , f , spin) = (1 − λ f (p)X + (λ f (p)2 − λ f (p2) − p2k−4)X2

− λ f (p)p2k−3 X3 + p4k−6 X4),

where we write λ f (p) is the eigenvalue of T(2)(p) corresponding to f and λ f (p2) for
the eigenvalue T(2)(p2) corresponding to f.

Theorem 2.1 [59, Theorem 1] Let f ∈ Sk(Γ2) be an eigenform. For a sufficiently large
finite extension F/Q�, one has Lp(X , f , spin) ∈ F[X] for all primes p ≠ � and there is a
semisimple continuous representation ρ f ∶ GQ → GL4(F), which is unramified outside
of � so that for p ≠ �, one has Lp(X , f ; spin) = det(1 − ρ f (Frobp)X).

3 Congruence

We keep the notation of Section 2. Throughout this section, we fix an even weight
k ≥ 12 and an odd prime � and make the following assumption.

Assumption 3.1 Given an even weight k ≥ 12 and prime �, assume that E/Q� is
sufficiently large to contain the fields F from Theorem 2.1 for all forms f ∈ Sk(Γ2). We also
assume that for every eigenform ϕ ∈ Sk(Γ1), the field E contains all the Hecke eigenvalues
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6 T. Berger, J. Brown, and K. Klosin

of ϕ as well as the value Lalg(2k − 2, Sym2ϕ) (see (3.1) for the definition). In addition,
we suppose that E contains a primitive cube root of unity.

Recall that we denote the valuation ring of E by O. Let ϕ ∈ Sk(Γ1) be a normalized
eigenform and consider the Klingen Eisenstein series E2,1

ϕ . In this section, we show
under certain conditions that E2,1

ϕ is eigenvalue-congruent to a cuspidal Siegel modu-
lar form with irreducible Galois representation.

Write

E2,1
ϕ (z) = ∑

T∈Λ2

a(T ; E2,1
ϕ )e(Tr(Tz)).

For T that are singular, i.e., det T = 0, one has T is unimodularly equivalent to

[n 0
0 0] for some n ∈ Z≥0. For such T, one has a(T ; E2,1

ϕ ) = a(n; ϕ), where ϕ(z) =

∑n>0 a(n; ϕ)e(nz).
We use the following result to prove our congruence.

Corollary 3.2 [61, Corollary 2.3] Assume � ≥ 7. Let g be a Hecke eigenform in
Mk(Γ2;O) with Fourier expansion g(z) = ∑T∈Λ2 a(T ; g)e(Tr(Tz)). Assume that λ ∣
a(T ; g) for all T with det T = 0 and that there exists at least one T > 0 with a(T ; g) ∈
O×. Then, there exists a Hecke eigenform f ∈ Sk(Γ2;O) so that g ≡ev f /≡ev 0 (mod λ).

For T = [ m r/2
r/2 n ], we say T is primitive if gcd(m, n, r) = 1. We set det(2T) =

Δ(T)f2 for a positive integer f and where −Δ(T) is the discriminant of the quadratic
field Q(

√
−det(2T)). We set χT = (−Δ(T)

⋅
), the quadratic character associated with

the field Q(
√
−det(2T)).

Define ϑT(z) = ∑a ,b∈Z2 e(z(ma2 + rab + nb2)) = ∑n≥0 b(n; ϑT)e(nz). Given
v ∈ Z≥1, set

ϑ(v)T (z) = ∑
n≥0

b(v2n; ϑT)e(nz).

One can check that ϑ(v)T ∈ M1(Γ(4 det T)), where Γ(N) =
ker (SL2(Z) → SL2(Z/NZ)) and Mk(Γ(N)) denotes the modular forms of weight k
and level Γ(N). Set

D(s, ϕ, ϑ(v)T ) = ∑
n≥1

a(n; ϕ)b(v2n; ϑT)n−s .

We have that D(s, ϕ, ϑ(v)T ) converges in a right half-plane with meromorphic contin-
uation to the entire complex plane [47]. Set

Lalg(2k − 2, Sym2ϕ) ∶= L(2k − 2, Sym2ϕ)
π3k−3⟨ϕ, ϕ⟩ ,(3.1)

Lalg(k − 1, χT) =
Δ(T)k−3/2L(k − 1, χT)

πk−1 ,
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and

Dalg(k − 1, ϕ, ϑ(v)T ) = D(k − 1, ϕ, ϑ(v)T )
πk−1⟨ϕ, ϕ⟩ .

We have each of these terms is algebraic (see [47, 51, 62]. Moreover, we have via [62,
Equation (22)] that if � > k − 1, then Lalg(k − 1, χT) is �-integral.

Theorem 3.3 [38] Let ϕ ∈ Sk(Γ1) be a normalized eigenform with a Fourier expansion
as above. Let T > 0 be primitive. We have

a(T ; E2,1
ϕ ) = (−1)k/2 (k − 1)!

(2k − 2)!
2k−1 Lalg(k − 1, χT)

Lalg(2k − 2, Sym2ϕ)
⋅ ∑

m∣f
m>0

MT(fm−1)∑
t∣m
t>0

μ(t)Dalg(k − 1, ϕ, ϑ(m/t)T ),

where

MT(a) = ∑
d ∣a
d>0

μ(d)χT(d)dk−2σ2k−3(ad−1) and σs(d) = ∑
g∣d
g>0

g s .

Note that while this theorem is only stated for Fourier coefficients indexed by prim-
itive T, we have that Fourier coefficients indexed by non-primitive T are an integral
linear combination of Fourier coefficients indexed by primitive T by [38, Equation
(1.3)] so we only need to consider the primitive T to guarantee the hypotheses of
Corollary 3.2 are satisfied.

Lemma 3.4 Assume � > 4k − 7. Let f ∈ Sk(Γ2;O) be an eigenform. If there exists
a normalized eigenform ϕ ∈ Sk(Γ1;O) so that f ≡ev E2,1

ϕ (mod λ) and that ρϕ is
irreducible, then ρ f is irreducible.

Proof We know via [59] that if ρ f is reducible, then the automorphic representation
associated with f is either CAP or a weak endoscopic lift. Moreover, by [42, Corollary
4.5] since f ∈ Sk(Γ2) and k > 2, the automorphic representation attached to f can be
CAP only with respect to the Siegel parabolic, i.e., f is a classical Saito–Kurokawa lift.
Suppose that f is a Saito–Kurokawa lift of ψ ∈ S2k−2(Γ1). Then, we have ρss

f = ρψ ⊕
εk−1 ⊕ εk−2. Using the fact that f ≡ev E2,1

ϕ (mod λ) and that the eigenvalues of E2,1
ϕ

are given by λ(p; E2,1
ϕ ) = a(p; ϕ) + pk−2a(p; ϕ), the Brauer–Nesbitt and Chebotarev

Theorems give that ρss
f = ρϕ ⊕ ρϕ(k − 2), where recall that we write ρϕ(k − 2) for

ρϕ ⊗ εk−2. This is a contradiction if ρϕ is irreducible. Thus, f cannot be a Saito–
Kurokawa lift. It remains to show that the automorphic representation associated with
f is not a weak endoscopic lift. The possible decompositions of ρ f are given in [48,
Theorem 3.2.1] under the assumption that � > 4k − 7. Of these, the only case remaining
to check is Case B(v), which states if ρ f = σ ⊕ σ ′ with σ and σ ′ both two-dimensional,
then det(σ) = det(σ ′). In our case, this would require det(ρϕ) = det(ρϕ(k − 2)),
i.e., εk−1 = ε2k−3, which is impossible by our assumption that � > 4k − 7. Thus, ρ f is
irreducible. ∎
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8 T. Berger, J. Brown, and K. Klosin

Theorem 3.5 Assume that � > 4k − 7. Let ϕ ∈ Sk(Γ1;O) be a normalized eigenform.
Suppose that λ ∣ Lalg(2k − 2, Sym2ϕ). Furthermore, assume there exists T0 > 0 so that

valλ (Lalg(2k − 2, Sym2ϕ)a(T0 , E2,1
ϕ )) ≤ 0.

Then, there exists an eigenform f ∈ Sk(Γ2;O) so that

E2,1
ϕ ≡ev f (mod λ).

If in addition ρϕ is irreducible, then ρ f is irreducible.

Proof Set H2,1
ϕ (z) = Lalg(2k − 2, Sym2ϕ)E2,1

ϕ (z). For T ≥ 0, define c(T) =
valλ(a(T ; H2,1

ϕ )). Let c = minT≥0 c(T). Since H2,1
ϕ ∈ Mk(Γ2), the Fourier

coefficients a(T ; H2,1
ϕ ) have bounded denominators so c is well-defined [46].

Moreover, our assumption that there is a T0 > 0 with valλ(a(T0; H2,1
ϕ )) =

valλ (Lalg(2k − 2, Sym2ϕ)a(T0 , E2,1
ϕ )) ≤ 0 gives that c ≤ 0. Set

G2,1
ϕ (z) = λ−c H2,1

ϕ (z).

We have a(T ; G2,1
ϕ ) ∈ O for all T ≥ 0 since c(T) − c ≥ 0 for all T ≥ 0. Observe that

for T with det T = 0, we have a(T ; G2,1
ϕ ) = λ−c Lalg(2k − 2, Sym2ϕ)a(n; ϕ) for some

n ∈ Z≥0. Since a(n; ϕ) ∈ O by assumption and −c ≥ 0, this gives λ ∣ a(T ; G2,1
ϕ ) for all

T with det T = 0, i.e., all the Fourier coefficients indexed by singular T vanish modulo
λ. Moreover, since c = c(T̃) for some T̃ , we have a(T̃ ; G2,1

ϕ ) ∈ O× for some T̃ . Since
c ≤ 0 and λ ∣ a(T ; G2,1

ϕ ) for all singular T, we have T̃ > 0. Thus, Corollary 3.2 and the
fact that G2,1

ϕ and E2,1
ϕ have the same eigenvalues gives an eigenform f ∈ Sk(Γ2;O) so

that E2,1
ϕ ≡ev f /≡ 0 (mod λ). By Lemma 3.4, we get that ρ f is irreducible. ∎

Example 3.6 Consider the space M26(Γ2). This space has dimension seven and is
spanned by E2,0 (Siegel Eisenstein series), E2,1

ϕ (Klingen Eisenstein series), three Saito–
Kurokawa lifts, and two non-lift forms Υ1 and Υ2, where here ϕ ∈ S26(Γ1) is the unique
newform given by

ϕ(z) = e(z) − 48e(2z) − 195804e(3z) + ⋅ ⋅ ⋅ .

We have via [21] that

Lalg(50, Sym2ϕ)

= 241 ⋅ 163 ⋅ 187273
326 ⋅ 510 ⋅ 77 ⋅ 114 ⋅ 132 ⋅ 172 ⋅ 19 ⋅ 232 ⋅ 29 ⋅ 31 ⋅ 37 ⋅ 41 ⋅ 43 ⋅ 47 ⋅ 657931

.

We consider � ∈ {163, 187273} and show that both primes produce an example for
Theorem 3.5.

The Klingen Eisenstein series associated with ϕ is given in the beta version of

LMFDB. By considering the Fourier coefficients indexed by [1 0
0 0] and [2 0

0 0], one
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can see that the Klingen Eisenstein series given there, say ELMFDB
ϕ , is given by

E2,1
ϕ (z) = −

ELMFDB
ϕ (z)

26 ⋅ 33 ⋅ 11 ⋅ 19 ⋅ 163 ⋅ 187273
.

We have from LMFDB that

a ([ 1 1/2
1/2 1 ] ; E2,1

ϕ ) = 22 ⋅ 5 ⋅ 43
11 ⋅ 19 ⋅ 163 ⋅ 187273

.

Consider G2,1
ϕ (z) = Lalg(50, Sym2ϕ)E2,1

ϕ (z). We have for � as above that � ∣ a(T ; G2,1
ϕ )

for all T with det T = 0 and a ([ 1 1/2
1/2 1 ] ; G2,1

ϕ ) /≡ 0 (mod �). Thus, by Theorem 3.5,

there exists a non-trivial Hecke eigenform f ∈ Sk(Γ2; Z�) with E2,1
ϕ ≡ev f (mod �).

Consider first the prime � = 163 and suppose that ρss
ϕ ,163 = ψ1 ⊕ ψ2 for some charac-

ters ψ1 , ψ2. Since ρϕ is unramified for all p ≠ �, we see that ψ1 and ψ2 are each an integer
power of ε (see the proof of Lemma 5.3). As 163 ∤ a(163; ϕ), we know ϕ is ordinary at
163 and we get ρss

ϕ ,163 = ε25 ⊕ 1. By [45, Proposition 2.1] we can find a lattice such that

ρϕ ,163 = [
1 ∗
0 ε25] /≅ 1⊕ ε25 .

One can use ordinarity of ϕ to show that ∗ gives an unramified 163-extension of
Q(ζ163) (see, e.g., the proof of Theorem 4.28 in [10]). By Herbrand’s Theorem, this
implies that 163 ∣ B26. However, one can check this is not true, so we must have that
ρϕ ,163 is irreducible and so E2,1

ϕ must be congruent (modulo 163) to a cusp form f that
is not a Saito–Kurokawa lift, i.e., ρ f is irreducible by Theorem 3.5. One uses LMFDB
to check that f = Υ2.

Now consider the case that � = 187273. In this case, it is less practical to calculate
a(187273; ϕ), so we directly eliminate the possibility that E2,1

ϕ is congruent to a Saito–
Kurokawa lift modulo 187273. The space to consider is S50(Γ1). This space has one
Galois conjugacy class of newforms consisting of three newforms, call them ψ1 , ψ2,
and ψ3. Each newform has a field of definition Kψ i generated by a root α i of

c(x) = x3 + 24225168x2 − 566746931810304x − 13634883228742736412672.

One has that λ(2, E2,1
ϕ ) = −805306416 and that λ(2, ψ i) = 249 + 248 + α i . One uses

SAGE to check that λ(2, E2,1
ϕ ) /≡ λ(2, ψ i) (mod 187273), so E2,1

ϕ must be congruent to
a cusp form that is not a Saito–Kurokawa lift. One uses LMFDB to see that E2,1

ϕ ≡ev Υ1
(mod 187273).

4 Extensions of Fontaine–Laffaille modules

In this section, we gather various facts (in particular, Propositions 4.8 and 4.20) about
extensions of Fontaine–Laffaille modules, which we use in this article but which to the
best of our knowledge have not been published elsewhere.
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10 T. Berger, J. Brown, and K. Klosin

4.1 Definitions

We keep our assumption that � is an odd prime. We fix integers a, b such that 0 ≤
b − a ≤ � − 2. In this section, let E be an arbitrary finite extension of Q� with ring
of integers O, uniformizer λ, and residue field F. Write LCAO (respectively, LCNO)
for the category of local complete Artinian (respectively, Noetherian) O-algebras with
residue field F. For a category C, we will write X ∈ C to mean that X is an object of C.

Definition 4.1 [31, Definition 2.3]/[13, Definition 4.1]
1. A Fontaine–Laffaille module is a finitely generated Z�-module M together with a

decreasing filtration by Z�-module direct summands M i for i ∈ Z such that there
exists k ≤ l with M i = M for i ≤ k and M i+1 = 0 for i ≥ l , and a collection of Z�-
linear maps ϕ i

M ∶ M i → M such that ϕ i
M ∣M i+1 = �ϕ i+1

M for all i and M = ∑i ϕ i
M(M i).

The category of all Fontaine–Laffaille modules is denoted MF f
Z�

. Morphisms in
this category are Z�-linear maps f ∶ M → N satisfying f (M i) ⊂ N i and f ○ ϕ i

M =
ϕ i

N ○ f ∣M i for all i. We will write MF f
tor,Z�

for the full subcategory whose objects
are of finite length as Z�-modules.

2. For a fixed interval [k, l], we denote the full subcategory of MF f
?,Z�

whose objects
M have a filtration satisfying Mk = M and M l+1 = 0 by MF f ,[k , l]

?,Z�
for ? ∈ {∅, tor}.

3. For any A ∈ LCAO, a Fontaine–Laffaille module over A consists of an object
M ∈ MF f ,[a ,b]

tor,Z�
together with a map θ ∶ A → EndMF f ,[a ,b]

tor,Z�

(M) that makes M into

a free finitely generated module over A in such a way that M i is an A-direct
summand of M for each i. A morphism between two such objects is required to
additionally preserve the A-structure. We will denote this category of Fontaine–
Laffaille modules over A as MF f ,[a ,b]

tor,Z�
⊗Z�

A.
4. For M ∈ MF f ,[a ,b]

tor,Z�
⊗Z�

A, any integer i for which M i/M i+1 ≠ 0 is called a
Fontaine–Laffaille weight for M. The set of Fontaine–Laffaille weights for M will
be denoted by FL(M).

Remark 4.2 We impose the stronger restriction on the length of the filtration as in
[12, Section 4] and [18, Section 2.4.1] compared to that in Section 1.1.2 of [20] or [31,
Definition 2.3] (which allow the length to be � − 1).

Definition 4.3 We introduce the following examples of Fontaine–Laffaille modules:

1. If 0 ∈ [a, b], we write 1 ∈ MF f ,[a ,b]
Z�

for the Fontaine–Laffaille module defined by
1i = Z� for i ≤ 0 and 1i = 0 for i > 0. We set ϕ i ∶ 1i → 1 to be given by x ↦ �−i x for
i ≤ 0.

2. For any A ∈ LCAO, we define Mn ,A ∈ MF f ,[a ,b]
tor,Z�

⊗Z�
A to be the free rank one A-

module equipped with the filtration M i
n ,A = A for i ≤ n, Mn+1

n ,A = 0 and ϕ i ∶ M i
n ,A →

Mn ,A given by x ↦ �n−i x for i ≤ n. We put 1A = M0,A.

Definition 4.4 [13, Definition 4.9] For M ∈ MF f ,[a ,b]
tor,Z�

and s ∈ Z define M(s) to be
the same underlying Z�-module, but change the filtration to M(s)i = M i−s for any
i ∈ Z. This means that M(s) ∈ MF f ,[a+s ,b+s]

tor,Z�
.
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4.2 Extensions

To ease notation in the rest of this section, we put CI
A = MF f ,I

tor,Z�
⊗Z�

A for A ∈ LCAO.
Here, I = [a, b].

Definition 4.5 (Definition/Lemma) Given M , N ∈ CI
A define a filtration on the A-

module HomA(M , N) by

HomA(M , N)i = { f ∈ HomA(M , N) ∣ f (M j) ⊂ N j+i for all j ∈ Z}

and Z�-linear maps ϕ i ∶ HomA(M , N)i → HomA(M , N) by

ϕ i( f )(ϕ j
M(m)) = ϕ i+ j

N ( f (m))

(note that M = ∑ϕ j
M(M j)) for f ∈ HomA(M , N)i and all m ∈ M j and j ∈ Z.

We claim this defines a Fontaine–Laffaille structure and that HomA(M , N) ∈
MF f ,[a−b ,b−a]

tor,Z�
⊗Z�

A.

Proof First note that there exists a canonical A-module homomorphism ψ ∶ M∨ ⊗A
N → HomA(M , N), where M∨ = HomA(M , A). Definition 4.19 in [13] defines a
Fontaine–Laffaille structure on M∨ (and Lemmas 4.20 and 4.21 prove that this
structure is well-defined and so we get an object in MF f ,[−b ,−a]

tor,Z�
⊗Z�

A). Definition
4.17 in [13] then gives us the Fontaine–Laffaille structure on M∨ ⊗A N .

We claim that transferring this structure on M∨ ⊗A N via ψ to HomA(M , N)
matches our definition. Recall from [13] that (M∨)i = { f ∈ HomA(M , A)∣ f (Mk) ⊂
1i+k

A for all k ∈ Z} and (M∨ ⊗ N)n = ∑i+ j=n(M∨)i ⊗A N j . We will first show that
ψ((M∨ ⊗ N)n) ⊂ HomA(M , N)n . Let f i ⊗ n j ∈ (M∨)i ⊗A N j . Then, ψ( f i ⊗ n j) ∶
m ∈ Mk ↦ f i(m)n j ∈ N j . In fact, the image lies in N n+k . This is clear for j ≥ n + k. If
j < n + k (and hence 0 < i + k) it follows since f i(m) ∈ 1i+k

A = 0. To show the reverse
inclusion ψ((M∨ ⊗ N)n) ⊃ HomA(M , N)n consider f ∈ HomA(M , N)n and let j be
maximal among integers l such that f (M) ⊂ N l . To satisfy f (Mk) ⊂ N k+n for all
integers k, we need f (Mk) = 0 for k + n > j by maximality of j. This means that
we need f to factor through M/M1−i for i ∶= n − j. By [13, Lemma 4.20] we have
(M∨)i = HomA(M/M1−i , A) so we get

(M∨)i ⊗ N j = HomA(M/M1−i , A) ⊗ N j ψ
≅ HomA(M/M1−i , N j).

We conclude that f ∈ ψ−1((M∨)i ⊗ N j) ⊂ ψ−1((M∨ ⊗ N)n).
Now, we check the Z�-linear maps: Recall from [13] that for f ∈ M∨, we

have ϕ i
M∨( f )(ϕ j

M(m)) = ϕ i+ j( f (m)) for all m ∈ M j and j ∈ Z. We also have
ϕn

M∨⊗A N = ∑i+ j=n ϕ i
M∨ ⊗ ϕ j

N . We claim that ϕn
HomA(M ,N) ○ ψ = ψ ○ ϕn

M∨⊗A N ∶ (M∨ ⊗
N)n → HomA(M , N). For this, one calculates that both sides map f ⊗ n ∈ (M∨)i ⊗
N n−i to the homomorphism, for which

ϕk
M(m) ↦

⎧⎪⎪⎨⎪⎪⎩

0 if i + k ≥ 0
ϕn+k

N ( f (m)x) if i + k ≤ 0
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12 T. Berger, J. Brown, and K. Klosin

for any m ∈ Mk (for ψ ○ ϕn
M∨⊗A N this uses ϕn+k

N ∣N n−i = �k+i ϕn−i
N for i + k ≤ 0). This

claim, combined with the results in [13] shows that the definition of ϕn
HomA(M ,N)

is well-defined and satisfies the requirements for HomA(M , N) to be a Fontaine–
Laffaille module in MF f ,[a−b ,b−a]

tor,Z�
⊗Z�

A. ∎

For M , N ∈ CI
A consider the map ϕ − 1 ∶ HomA(M , N)0 → HomA(M , N), which

takes f to the homomorphism that sends m = ∑ j ϕ j
M(m j) to

∑
j

ϕ j
N( f (m j)) − f (m) = ∑

j
(ϕ j

N( f (m j)) − f (ϕ j
M(m j))) .

Note that ker(ϕ − 1) = HomCI
A
(M , N).

Proposition 4.6 [18, Lemma 2.4.2] and [31, Proposition 2.17] Given M , N ∈ CI
A,

we have an exact sequence of A-modules (note that HomFil,A(M , N) in [31] equals
HomA(M , N)0)

0 → HomCI
A
(M , N) → HomA(M , N)0 ϕ−1→ HomA(M , N) → Ext1

CI
A
(M , N) → 0.

Given M , N ∈ CI
A, we write FL(M) > FL(N) if there is an integer j such that all

elements of FL(M) are greater than or equal to j, and all elements of FL(N) are strictly
less than j.

Proposition 4.7 The extension group Ext1
CI

A
(M , N) is a finitely generated A-module.

Furthermore, one has:

1. If FL(M) > FL(N) then Ext1
CI

A
(M , N) ≅ HomA(M , N), in particular, it is a free A-

module and rkA(Ext1
CI

A
(M , N)) = rkA(M)rkA(N).

2. If FL(M) < FL(N) then Ext1
CI

A
(M , N) = 0.

Proof This follows from Proposition 4.6. In particular, Ext1
CI

A
(M , N) is a quotient

of the finitely generated A-module HomA(M , N). The calculation on [31, p. 238]
(“two notable cases”) is carried out for MF f ,[0,�−1]

tor,Z�
⊗Z�

A, but applies verbatim to
CI

A. If FL(M) > FL(N) then this calculation shows that HomA(M , N)0 = 0, while if
FL(M) < FL(N) then one gets HomA(M , N)0 = HomA(M , N). ∎

Proposition 4.8 (Hom-tensor adjunction) Let M , N ∈ CI
A. Assume that

HomA(M , N) equipped with the filtration as in Definition 4.5 is an object in CI
A

and that 0 ∈ I. Then, there exists a canonical isomorphism of A-modules:

Ext1
CI

A
(M , N) ≅ Ext1

CI
A
(1A, HomA(M , N)).

Proof The statement follows from the existence of the following commutative dia-
gram with exact columns:
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0

��

0

��

HomCI
A
(M , N)

��

HomCI
A
(1A, HomA(M .N))

��

HomA(M , N)0 ψ′
��

ϕ−1
��

HomA(1A, HomA(M , N))0

ϕ−1
��

HomA(M , N)
ψ

��

α
��

HomA(A, HomA(M , N))

��

Ext1
CI

A
(M , N)

ψ̃
��

��

Ext1
CI

A
(1A, HomA(M , N))

��

0 0

(4.1)

The exactness of both columns follows from Proposition 4.6. The second horizontal
arrow is the usual isomorphism ψ of A-modules given by f ↦ (a ↦ a f ) (recall that
the underlying module of the object 1A is A) with the inverse map sending g to g(1),
where 1 is the multiplicative identity of A. The map ψ̃ is defined by lifting an element of
Ext1

CI
A
(M , N) to HomA(M , N) and using ψ. The exactness of the first column ensures

that such a map is well-defined.
The first horizontal arrow is the restriction ψ′ of ψ to HomA(M , N)0 (note that

HomA(M , N)0 is a subgroup of HomA(M , N) even though ϕ − 1 is not necessarily
injective). We need to check that ψ′ lands in HomA(1A, HomA(M , N))0. By its
definition, we need to check if f (1 j

A) ⊂ HomA(M , N) j . If j > 0 there is nothing
to check as then 1 j

A = 0, so assume that j ≤ 0. Then, 1 j
A = A and HomA(M , N) j ⊃

HomA(M , N)0. So, it is enough to show that if f ∈ HomA(M , N)0 then ψ′( f )(A) ⊂
HomA(M , N)0. Let a ∈ A. Then, ψ′( f )(a) = a f , which clearly lies in HomA(M , N)0

as HomA(M , N)0 is an A-module.
Now, let g ∈ HomA(1A, HomA(M , N))0. We need to show that ψ−1(g) lands in

HomA(M , N)0. Again we need to consider ψ−1(g)(1 j
A). If j > 0, then g = 0, hence

we are done. Assume that j ≤ 0. Then, 1 j
A = A and ψ−1(g) = g(1). As 1 ∈ 10

A and g ∈
HomA(1A, HomA(M , N))0 we must have that g(1) ∈ HomA(M , N)0. So, we are done
again.

This shows that ψ′ is a bijection, hence an isomorphism. Hence, by the second Four
Lemma, ψ̃ is injective, and since it is clearly surjective, it is an isomorphism. ∎

4.3 Fontaine–Laffaille Galois representations

Fix an interval I = [a, b] with a, b ∈ Z and b − a ≤ � − 2. In this section, we introduce
certain categories of GQ�

-representations and define a covariant version VI of the
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functor in [25] from the categories of Fontaine–Laffaille modules defined in Section 4.1
to these categories of Galois representations.

Let Acris and Bcris denote the usual Fontaine’s �-adic period rings (see Definitions
7.3 and 7.7 in [26] and [24]). We recall that a Q�[GQ�

]-module V is called crystalline
if dimQ�

V = dimQ�
H0(Q� , V ⊗Q�

Bcris). Our convention is that the Hodge–Tate
weight of the cyclotomic character is +1.

Definition 4.9 Let A ∈ LCAO. We introduce the following categories:
(i) Rep f

Z�
(GQ�

), the category of Z�[GQ�
]-modules that are finitely generated as Z�-

modules.
(ii) Rep f

tor,Z�
(GQ�

), the full subcategory of Rep f
Z�
(GQ�

) whose objects are required
to be of finite length as Z�[GQ�

]-modules.
(iii)Repcris,I

Z�
(GQ�

), the full subcategory of Rep f
Z�
(GQ�

)whose objects are isomorphic
to T/T ′, where T and T ′ are GQ�

-stable finitely generated submodules of a
crystalline Q�-representation with Hodge–Tate weights in I.

(iv) Repcris,I
tor,Z�

(GQ�
), the full subcategory of Rep f

tor,Z�
(GQ�

) whose objects are iso-
morphic to T/T ′, where T and T ′ are GQ�

-stable lattices in a crystalline Q�-
representation with Hodge–Tate weights in I.

(v) Repcris,I
free,A(GQ�

), the category of free finite rank A-modules M with an A-linear
GQ�

-action, for which there exists a crystalline representation of GQ�
defined

over E with Hodge–Tate weights in I containing GQ�
-stableO-lattices T ′ ⊂ T , and

an O-algebra map A → EndO(T/T ′) such that M is isomorphic as an A[GQ�
]-

module to T/T ′. We will call objects of this category Fontaine–Laffaille A-
representations (with weights in I).

Remark 4.10 Definition 4.9(v) matches Definition 2.1 in [31] .

Definition 4.11 [12, p. 363] and [13, Definitions 4.7 and 4.9] Similar to [13] we define
the following two functors:
1. A covariant functor Tcris ∶ MF f ,[2−�,0]

Z�
→ Rep f

Z�
(GQ�

) defined via

Tcris(M) ∶= ker(1 − ϕ0
Acris⊗Z�

M ∶ Fil0(Acris ⊗Z�
M) → Acris ⊗Z�

M) .

2. A covariant functor VI ∶ MF f ,[a ,b]
Z�

→ Rep f
Z�
(GQ�

), defined via

VI(M) = Tcris(M(−b))(−b).(4.2)

Recall that M(−b) was defined in Definition 4.4, while (−b) on the outside
denotes the Tate twist as defined in Section 2.

Remark 4.12 We note that for ? ∈ {∅, tor}, the category MF f ,[a ,b]
?,Z�

is a full subcat-
egory of MF f ,[a ,a+�−2]

?,Z�
, since they are both full subcategories of MF f

?,Z�
(cf. Defini-

tion 4.1), so in particular (4.2) makes sense.

Remark 4.13 Note that VI extends Tcris to general I (in particular, V[2−�,0] = Tcris).
Also observe that for M ∈ MF f ,[a ,b]

tor,Z�
, we have M(−b) ∈ MF f ,[2−�,0]

tor,Z�
since M(−b)1 =

Mb+1 = 0 and M(−b)2−� = M2−�+b = M as b + 2 − � ≤ a. In particular, the definition
of VI makes sense.
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Compared to [13] we work with the more restrictive interval [2 − �, 0] for Tcris and
correct a sign error in the Galois twist in [13, Definition 4.9]

Theorem 4.14 [12, Theorem 4.3] [41, Section 2] [20, Section 1.1.2] [27, Section 2.2] [13,
Fact 4.10] and [31, Theorem 2.10] We have:

(i) The covariant functor V[a ,b] ∶ MF f ,[a ,b]
Z�

→ Rep f
Z�
(GQ�

) is well-defined, exact, and
fully faithful.

(ii) For M ∈ MF f ,[a ,b]
Z�

, one has V[a ,b](M) = lim←A
n

V[a ,b](M/�n).

(iii) The essential image of V[a ,b] is closed under formation of sub-objects, quotients,
and finite direct sums. It is given by the subcategory Repcris,[−b ,−a]

Z�
(GQ�

). For M ∈
MF f ,[a ,b]

tor,Z�
, the lengths of M and VI(M) as Z�-modules agree; in particular, the

essential image of MF f ,[a ,b]
tor,Z�

under V[a ,b] is Repcris,[−b ,−a]
tor,Z�

(GQ�
).

(iv) For A ∈ LCAO, the functor V[a ,b] induces a functor from MF f ,[a ,b]
tor,Z�

⊗Z�
A to the

category of free finite rank A-modules with an A-linear GQ�
-action, which we

will also denote by V[a ,b]. Its essential image is given by Repcris,[−b ,−a]
free,A (GQ�

).
In fact, V[a ,b] gives an equivalence of categories between MF f ,[a ,b]

tor,Z�
⊗Z�

A and
Repcris,[−b ,−a]

free,A (GQ�
).

Remark 4.15

(1) Note that for M ∈ MF f ,[a ,b]
tor,Z�

, we have V[a+s ,b+s](M(s)) = V[a ,b](M)(−s).
(2) For I = [a, b] = [0, � − 2], the functor VI agrees with that of the functor V in [20,

p. 670] by [14, Proposition 3.2.1.7]
(3) For M ∈ MF f ,[a ,b]

tor,Z�
⊗Z�

A, the Hodge–Tate weights of VI(M) (in the sense of
Definition 4.9(3)) equal the negatives of the Fontaine–Laffaille weights of M,
defined in Definition 4.1(3), due to our convention that the Hodge–Tate weight
of the cyclotomic character is +1.

As an immediate consequence of the equivalence of categories in Theorem 4.14(iv),
we obtain the following corollary.

Corollary 4.16 For any M , N ∈ MF f ,I
tor,Z�

⊗Z�
A, there is an isomorphism of A-

modules

Ext1
MF f ,I

tor,Z�
⊗Z�

A(M , N) ≅ Ext1
Repcris,−I

A (GQ�
)
(VI(M), VI(N)).(4.3)

4.4 Local Selmer groups

Let I = [a, b] be an interval as in the previous section (so 0 ≤ b − a ≤ � − 2) but we
now also require that 0 ∈ I (so that 1 ∈ MF f ,I

Z�
, see Definition 4.3).

For an extension between two objects M , N in RepA(GQ�
)0 → M → E → N → 0,

we define the n-th Tate twist of the extension to be the extension 0 → M(n) → E(n) →
N(n) → 0. For a subgroup G of Ext1

RepA(GQ�
)(M , N), we define G(n) to consist of

extensions which are the n-th Tate twists of the elements of G.
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16 T. Berger, J. Brown, and K. Klosin

Given an extension E ∈ Ext1
MF f ,I

tor,Z�
⊗Z�

A
(M3 , M1) represented by an exact sequence

0 → M1 → M2 → M3 → 0

we will write VI(E) for the extension in Ext1
Repcris,−I

free,A (GQ�
)
(VI(M3), VI(M1)) repre-

sented by

0 → VI(M1) → VI(M2) → VI(M3) → 0.

This uses the exactness of the functor VI (cf. Theorem 4.14(i)). Since we defined
VI(M) = Tcris(M(−b))(−b) (see Equation (4.2)), we conclude the following lemma.

Lemma 4.17 For A ∈ LCAO and M ∈ MF f ,I
tor,Z�

⊗Z�
A, we have

VI(Ext1
MF f ,I

tor,Z�
⊗Z�

A(1A, M)) = Ext1
Repcris,−I

free,A (GQ�
)
(Tcris(M−b ,A)(−b), Tcris(M(−b))(−b))

≅ Ext1
Repcris,[0,�−2]

free,A (GQ�
)
(A(b), Tcris(M(−b)))(−b).

Note that the latter is naturally isomorphic to
Ext1

Repcris,[0,�−2]
free,A (GQ�

)
(A(b), Tcris(M(−b))) and they give rise to the same subgroup of

H1(Q� , VI(M)), see Definition 4.18.

Definition 4.18 For M ∈ MF f ,I
tor,Z�

⊗Z�
A, let H1

f ,I(Q� , VI(M)) =
VI(Ext1

MF f ,I
tor,Z�

⊗Z�
A
(1A, M)) ⊂ H1(Q� , VI(M)).

Remark 4.19 This is a more precise version of the definition made in [6, Section
5.2.1] (where the prime � was denoted by p). In [6] we worked (implicitly) with I =
[0, p − 2], but the results in [6, Section 5] (in particular, Corollary 5.4 and Proposition
5.8 restated below) carry over to H1

f ,I defined here for general I.
T.B. and K.K. would like to clarify how certain definitions and results in some of our

papers fit in with this more precise description of the groups H1
f ,I : In [8] the relevant

interval I is I = [1 − k, k − 1] for Section 5, and p should satisfy p − 1 > 2k − 2. The
examples in Section 6 of [loc. cit] satisfy this stronger condition. Similarly, in [9] one
has I = [3 − 2k, 2k − 3] (p − 1 > 4k − 6). In [6, Section 6] the suitable interval I is such
that HomO(ρ̃2 , ρ̃1) has Hodge–Tate weights in I. For i , j ∈ {1, 2}, the local condition
at v ∣ p for the Selmer groups H1

Σ(F , HomF(ρ i , ρ j)) is H1
f ,I(Fv , HomF(ρ̃ i , ρ̃ j)). In

[loc.cit.] Section 9, one has I = [−1, 1] (p − 1 > 2), in Section 10, I = [1 − k, k − 1] (p −
1 > 2k − 2). In [7, Sections 7 and 8] the same comment applies as for [6, Section 9]

In J.B.’s paper [16] the argument in Sections 8 and 9 to show the splitting at � of

(εk−2 ∗
0 εk−1) by relating it to H1

f (Q� , F(−1)) = 0 requires an interval I containing −1

and 2k − 3, so would need p − 1 > 2k − 2. However, one could instead not twist and
invoke Proposition 4.7.

Similar comments apply to other results in the literature, e.g., in [20, Corollary
2.3] the expression H1

f (Q� , ad0
κL) is only indirectly defined by H1

f (Q� , adκL) =
H1

f (Q� , ad0
κL) ⊕ H1

f (Q� ,κ). To define the Selmer group for the trace zero endo-
morphisms and prove this identity requires ad0

κ to lie in the essential image of the
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Fontaine–Laffaille functor, and therefore I = [1 − k, k − 1] should be specified, rather
than I = [0, � − 2] as in [20, Section 1.1.2]

If M , N ∈ Repcris,I
free,A(GQ�

), then M ⊕ N ∈ Repcris,I
free,A(GQ�

) and it is clear that

H1
f ,I(Q� , M ⊕ N) = H1

f ,I(Q� , M) ⊕ H1
f ,I(Q� , N)(4.4)

because the extension groups as well as the functor VI commute with direct sums.

Proposition 4.20 For any n ∈ [2 − �, � − 2] such that 0,−n ∈ I, the group
H1

f ,I(Q� , VI(M−n ,F)) is independent of I. In fact, we have

H1
f ,I(Q� , F(n)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 n < 0
H1

un(Q� , F) n = 0
H1

fl(Q� , μ�) n = 1
H1(Q� , F(n)) n > 1,

where

H1
un(Q� , F) ∶= ker(H1(Q� , F) → H1(I� , F)) ≅ Hom(GQ�

/I� , F)

and H1
fl(Q� , μ�) denotes the peu ramifiée classes, namely, those classes cor-

responding to Z×� /(Z×� )� ⊂ Q×� /(Q×� )� ≅ H1(Q� , F(1)). For n ≥ 0, we note that
dimF H1

f ,I(Q� , F(n)) = 1.

Remark 4.21
(1) Proposition 4.20 justifies writing H1

Σ(Q� , VI(Mn)) as we did in [8], without
specifying the interval I, as long as I contains −n. Under the conditions of
Proposition 4.23 (see comment after Proposition 5.1), once we have fixed a suitable
interval I, we will also drop the subscript I in this article.

(2) Note that the definition of H1
f ,I(Q� , VI(Mn)) depends on n ∈ Z, even though the

coefficients VI(Mn) = F(n) only depend on n mod � − 1.
(3) [41, Section 9.3] states a version of this result for the local crystalline cohomology

of unramified extensions of Q� and with Z�/�m(n) coefficients for m ∈ Z>0.

Proof We first note that H1(Q� , F(n)) is one-dimensional for n ≠ 0, 1, which follows
from local Tate duality and the Euler characteristic formula (see, e.g., [58, Theorem 1
and Proposition 3]

For n = 0, we refer the reader to [18, Corollary 2.4.4] for identifying
H1

f ,I(Q� , F(n)) with H1
un(Q� , F). That H1

un(Q� , F) is one-dimensional follows
since #H1(GQ�

/I� , F) = #H0(Q� , F). Recall that

H1
f ,I(Q� , F(n)) = H1

f ,I(Q� , VI(M−n ,F)) = VI(Ext1
MF f ,I

tor,Z�
⊗Z�

F(M0,F , M−n ,F)).

If n < 0 then by Proposition 4.7(ii) Ext1
MF f ,I

tor,Z�
⊗Z�

F
(M0,F , M−n ,F) = 0 since the

Fontaine–Laffaille weights satisfy the inequality −n > 0.
On the other hand, if n > 0 then H1

f ,I(Q� , VI(M−n)) is one-dimensional by Propo-
sition 4.7(i). For n > 1, this equals H1(Q� , F(n)) by our observation at the start of the
proof.

Downloaded from https://www.cambridge.org/core. 13 Oct 2025 at 21:33:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


18 T. Berger, J. Brown, and K. Klosin

For n = 1, we have H1(Q� , F(1)) ≅ Q×� /(Q×� )� is two-dimensional, and one can
identify the Fontaine–Laffaille extensions with the peu ramifiée classes (see, e.g., [15,
Lemma 8.1.3] ∎

Remark 4.22 Note that [2 − �, 0] contains both 0 and 2 − � (and is the only interval
of this length that contains both). Then, since F(−1) = F(� − 2) = V[2−�,0](M2−�), we
get

H1
f ,[2−�,0](Q� , F(−1)) = H1

f ,[2−�,0](Q� , F(� − 2))
= H1

f ,[2−�,0](Q� , V[2−�,0](M2−�,F))
≠ 0,

corresponding to the crystalline non-split extension (ε�−2 ∗
0 1). Note that 1 ∉ [2 −

�, 0].
However, for all other intervals I ⊂ [2 − �, � − 2] of length � − 2, we have 1 ∈ I and

so

H1
f ,I(Q� , F(−1)) = VI(Ext1

MF f ,[a ,b]
tor,Z�

(M0,F , M1,F))

= Tcris(Ext1
MF f ,[2−�,0]

tor,Z�

(M−b ,F , M1−b ,F))(−b)

= 0

by Proposition 4.20. This demonstrates that H1
f ,I(Q� , F(n)) is only independent of I

for I containing −n.

Following [12] for a Q�[GQ�
]-module V define H1

f (Q� , V) =
ker (H1(Q� , V) → H1(Q� , V ⊗Q�

Bcris)) . Let V be a finite-dimensional
E-vector space and T ⊂ V be a GQ�

-stable O-lattice, i.e., T is a free O-
submodule of V that spans V as a vector space over E. We set W = V/T and
W[λm] = {w ∈ W ∶ λmw = 0} ≅ T/λm T for any m ∈ Z>0. Note that W[λm] lies in
Repcris,−I

O/λm (GQ�
) if V is crystalline with Hodge–Tate weights in −I. We let H1

f (Q� , W)
be the image of H1

f (Q� , V) under the natural map H1(Q� , V) → H1(Q� , W).

Proposition 4.23 [20, Proposition 2.2] Assume V is a crystalline E[GQ�
]-module as

above with Hodge–Tate weights in −I = [−b,−a] (and 0 ∈ I). For T ⊂ V and W = V/T
as above, we then have H1

f (Q� , W) = limA→
m

H1
f ,I(Q� , W[λm]).

Proof We note that the proof of [20, Proposition 2.2] carries over from [0, � − 2] to
general I (in particular, one has Proposition 4.6) and apply the argument with (in their
notation) V1 the trivial GQ�

-representation and V2 = V . ∎

Corollary 4.24 [20, (33)] and [6, Corollary 5.4] For every m ∈ Z>0, we have an exact
sequence of O-modules

0 → H0(Q� , W)/λm → H1
f ,I(Q� , W[λm]) → H1

f (Q� , W)[λm] → 0.
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Corollary 4.25 For n ∈ Z with 0, n ∈ I ⊂ [2 − �, � − 2] and n ≠ 0, we have

H1
f ,I(Q� , VI(M−n ,F)) = H1

f (Q� , E/O(n))[λ].

Proof Note that H0(Q� , E/O(n)[λ]) = 0 since n /≡ 0 mod � − 1. This implies
H0(Q� , E/O(n)) = 0, hence, we are done by Corollary 4.24. ∎

5 Selmer groups

5.1 Definitions

For M a topological Z�[GQ]-module set

H1
un(Qp , M) ∶= ker (H1(Qp , M) → H1(Ip , M))

for every prime p. Let E/Q� be a finite extension with valuation ring O, uniformizer
λ, and residue field F. Let V be a finite-dimensional E-vector space on which one has
a continuous E-linear GQ action. For finite primes p with p ≠ �, we set

H1
f (Qp , V) = H1

un(Qp , V).

For p = �, we recall from Section 4 that

H1
f (Q� , V) = ker (H1(Q� , V) → H1(Q� , V ⊗Q�

Bcris)) .

Let T ⊂ V be a GQ-stable O-lattice. We set W = V/T and W[λn] = {w ∈ W ∶
λnw = 0} ≅ T/λn T . For every p, we let H1

f (Qp , W) be the image of H1
f (Qp , V) under

the natural map H1(Qp , V) → H1(Qp , W). We have H1
f (Qp , W) = H1

un(Qp , W) for
all p ≠ �, as long as V is unramified at p, which for us will always be the case.

We define the global Selmer group of W as

H1
f (Q, W) = ker

⎧⎪⎪⎨⎪⎪⎩
H1(Q, W) →⊕

p

H1(Qp , W)
H1

f (Qp , W)

⎫⎪⎪⎬⎪⎪⎭
.

We note that as H1
f (Q� , W) commutes with direct sums and so clearly does

H1
un(Q� , W), we get that H1

f (Q, W) does as well.
Let I = [a, b]with a, b ∈ Z and b − a ≤ � − 2 and assume that 0 ∈ I. If V is crystalline

with Hodge–Tate weights in −I, we define

H1
f ,I(Q, W[λn])

= ker
⎧⎪⎪⎨⎪⎪⎩

H1(Q, W[λn]) →⊕
p≠�

H1(Qp , W[λn])
H1

un(Qp , W[λn]) ⊕
H1(Q� , W[λn])

H1
f ,I(Q� , W[λn])

⎫⎪⎪⎬⎪⎪⎭
.

As noted in (4.4), H1
f (Q� , W[λn]) also commutes with direct sums and so we get

that H1
f ,I(Q, W[λn]) does as well.

Proposition 5.1 Assume that the interval I = [a, b] contains 0 and V is E[GQ]-module,
which is finite-dimensional as an E-vector space and a crystalline GQ�

-module with
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Hodge–Tate weights in −I. If H0(Q, W[λ]) = 0 then we have

H1
f (Q, W)[λn] ≅ H1

f ,I(Q, W[λn]).

Proof [6, Proposition 5.8] proves the claim under the assumption H0(Q, W) = 0.
Suppose we have α ∈ H0(Q, W). We know every element of W is annihilated by

some power of λ, so if α ≠ 0 there is an integer m so that λm α = 0 but λn α ≠ 0 for all
0 < n < m. However, this gives λm−1α ∈ H0(Q, W[λ]) = 0, so it must be that α = 0.
Thus, H0(Q, W) = 0 as desired. ∎

After a suitable interval, I has been fixed, we will therefore also drop the subscript
I and write H1

f (Q, W[λn]).
Let G be a group, R a commutative ring with identity, and M i finitely generated

free R-modules with R-linear action given by ρ i ∶ G → GLR(M i) for i = 1, 2. The
action of G on HomR(ρ2 , ρ1) is given by (g ⋅ φ)(v) = ρ1(v)φ(ρ2(g−1)v). In particular,
if ρ1 = ρ2 = ρ, we define the adjoint representation of ρ to be the R[G]-module
ad ρ = HomR(ρ, ρ). We write ad0 ρ for the R[G]-submodule of ad ρ consisting of
endomorphisms of trace zero.

If ρ is of rank n and 2n ∈ R× then we have an isomorphism of R[G]-modules

ad ρ ≅ ad0 ρ ⊕ R.(5.1)

5.2 Non-vanishing of a Selmer group

In this section, we explain how the congruence of a Siegel cusp form to the Klingen
Eisenstein series in Section 3 leads to a non-zero element of H1

f (Q, ad0(ρϕ ,λ)(2 −
k) ⊗ E/O).

From now on, we fix the weight k ≥ 12 even and the prime � satisfying � > 4k −
5 and impose Assumption 3.1 on the field E/Q�. Let ϕ ∈ Sk(Γ1) be a normalized
eigenform. Let ρϕ be the λ-adic Galois representation associated with ϕ and assume ρϕ
is irreducible. Let f ∈ Sk(Γ2) be an eigenform with irreducible Galois representation
ρ f so that f is eigenvalue congruent to E2,1

ϕ modulo λ.
The following result shows we can choose a lattice so that the residual Galois

representation gives rise to a non-split extension.

Lemma 5.2 There exists a GQ-stable lattice in the space of ρ f such that with respect to
this lattice

ρ f = [
ρϕ ∗

ρϕ(k − 2)] /≅ ρϕ ⊕ ρϕ(k − 2).

Proof Using the compactness of GQ, one can show that there exists a GQ-stable
lattice Λ′ in the space of ρ f . One uses Brauer–Nesbitt Theorem together with the
Chebotarev Density Theorem to conclude that ρss

f ,Λ′ = ρϕ ⊕ ρϕ(k − 2). Now, the exis-
tence of the desired lattice which gives the non-split extension follows from Theorem
4.1 in [9]. ∎

From now on, whenever we write ρ f , we assume we have made a choice of lattice
as in Lemma 5.2, so we consider ρ f as a map from GQ to GL4(O).
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We now choose the interval I = [3 − 2k, 2k − 3] so that it contains all the Hodge–
Tate weights of ρ f , ρϕ , ρϕ(k − 2), ad ρϕ(2 − k), and ad ρϕ(k − 2). Note that −I = I.
We assume that � − 2 ≥ 4k − 6. When we write H1

f from now on, this refers to H1
f ,I as

defined in Section 5.1.
Let ρ be any of the representations above and write V for the representation space

of ρ. We choose a GQ-stable lattice T ⊂ V and recall that the isomorphism class of the
semi-simplification of the F[GQ]-representation T/λT is independent of the choice
of T. It is well-known that if T/λT is irreducible then the O-length of H1

f (Q, W) is
independent of T, where as before W = V/T . By Proposition 5.1, we then conclude
that also the O-length of H1

f (Q, W[λn]) is independent of the choice of T as long as
H0(Q, W) = 0.

Lemma 5.3 Under our assumptions (in particular, ρϕ irreducible and � > 4k − 5), the
modulo λ reduction of ad0 ρϕ is irreducible.

Proof Assume the three-dimensional representation ad0 ρϕ is reducible. Then, it
either has a one-dimensional GQ-stable subspace or quotient. Since ad ρϕ and 1 are
self-dual, so is ad0 ρϕ . Hence, we can assume without loss of generality that ad0 ρϕ has
a GQ-stable line. Write ψ for the character by which GQ acts on the line.

As ρϕ is unramified away from � and the order of ψ is prime to �, we have
ψ = εa for some integer a ∈ I. This would require H0(Q, ad0 ρϕ(−a)) ≠ 0. Note that
H0(Q, ad ρϕ(−a)) = HomGQ(ρϕ(a), ρϕ). If a ≡ 0 (mod (� − 1)), then this space is
one-dimensional by Schur’s Lemma since ρϕ is irreducible. So, H0(Q, ad0 ρϕ) = 0,
contradiction.

If a /≡ 0 (mod (� − 1)), then H0(Q, ad ρϕ(−a)) = H0(Q, ad0 ρϕ(−a)) ≠ 0. This
means that ρϕ is isomorphic to ρϕ(a). Considering the determinant, εa must be the
trivial character or the quadratic character ε(�−1)/2. Both are ruled out since a ∈ I =
[3 − 2k, 2k − 3] by our assumption that � > 4k − 5. ∎

Remark 5.4 From Lemma 5.3, we conclude that when ρ ∈ {ρϕ , ρϕ(k −
2), ad0 ρϕ(2 − k), ad0 ρϕ(k − 2)}, the O-lengths of H1

f (Q, W) and H1
f (Q, W[λn])

are independent of the choice of T. As we will ever only be interested in
the order of these groups, the choice of T is immaterial and we will simply
assume that such a choice was made. So, for example, we will use the notation
H1

f (Q, ad0 ρϕ ,λ(k − 2) ⊗ E/O), thus assuming that when we write ad0 ρϕ ,λ(k − 2),
we have made a choice of a lattice for this representation. Likewise any one-
dimensional representation ρ is irreducible, so the O-length of H1

f (Q, ρ ⊗ E/O) is
independent of the choice of T.

For the representation ad ρ(m), m ∈ {k − 2, 2 − k} (which is reducible), we choose
a lattice which is a direct sum of a lattice inside ad0 ρ(m) and a lattice inside E(m). So,
from now on, whenever we write ad ρ(m)we mean such a lattice. Since the formation
of Selmer groups commutes with direct sums, we then get

H1
f (Q, ad ρϕ(m) ⊗ E/O) = H1

f (Q, ad0 ρϕ(m) ⊗ E/O) ⊕ H1
f (Q, E/O(m))(5.2)
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for m ∈ {k − 2, 2 − k}. Note that the O-length (and in particular, the non-triviality) of
H1

f (Q, ad ρ(m) ⊗ E/O) is independent of the choice of a lattice inside ad ρϕ(m) as
long as it is the direct sum of lattices in ad0 ρϕ(m) and E(m).

Theorem 5.5 With the set-up as above, we have H1
f (Q, ad ρϕ(2 − k) ⊗ E/O) ≠ 0.

Proof We have via Lemma 5.2 that there is a lattice Tf ⊂ Vf so that the residual
representation ρ f ∶ GQ → GL4(F) has the form

ρ f = [
ρϕ ψ
0 ρϕ(k − 2)](5.3)

and is not semisimple. The fact that ψ as in (5.3) gives a non-trivial class [ψ] in
H1(Q, HomF(ρ2 , ρ1)) = H1(Q, ad ρϕ(2 − k) ⊗ E/O[λ]) is clear. We need to show
that [ψ] lies in H1

f (Q, ad ρϕ(2 − k) ⊗ E/O[λ]) and that the latter group injects into
H1

f (Q, ad ρϕ(2 − k) ⊗ E/O).
We first show that [ψ] satisfies the conditions to be in H1

f (Q, ad ρϕ(2 − k) ⊗
E/O[λ]). We have that ρ f is unramified at all primes p ≠ �, so the local conditions
are satisfied for all primes p ≠ �.

Since f has level one and weight k, ρ f ∣D�
is crystalline with Hodge–Tate

weights in [0, 2k − 3] ⊂ I = −I. Hence, ρ f (considered as a GQ�
-module) belongs

to Repcris,I
free,F(GQ�

) and gives rise to an element of Ext1
Repcris,I

free,F(GQ�
)
(ρϕ(k − 2), ρϕ) ⊂

Ext1
F[GQ�

](ρϕ(k − 2) ⊗ E/O[λ], ρϕ ⊗ E/O[λ]). By our choice of I, we can use (4.3)
and Proposition 4.8 to get a non-zero element in

Ext1
Repcris,I

free,F(GQ�
)
(F, ad ρϕ(2 − k) ⊗ E/O[λ]) ⊂ Ext1

F[GQ�
](F, ad ρϕ(2 − k) ⊗ E/O[λ]).

As this extension maps to [ψ∣GQ�
] in H1(Q� , ad ρϕ(2 − k) ⊗ E/O[λ])

under the canonical isomorphism Ext1
F[GQ�

](F, ad ρϕ(2 − k) ⊗ E/O[λ]) ≅
H1(Q� , ad ρϕ(2 − k) ⊗ E/O[λ]), we conclude that

[ψ∣GQ�
] ∈ H1

f (Q� , ad ρϕ(2 − k) ⊗ E/O[λ]) ⊂ H1(Q� , ad ρϕ(2 − k) ⊗ E/O[λ]).

Therefore, we have established that [ψ] ∈ H1
f (Q, ad ρϕ(2 − k) ⊗ E/O[λ]). By

Proposition 5.1, this group is isomorphic to H1
f (Q, ad ρϕ(2 − k) ⊗ E/O)[λ] if

H0(Q, ad ρϕ(2 − k) ⊗ E/O[λ]) = 0. The latter holds since

ad ρϕ(2 − k) ⊗ E/O[λ]GQ = HomGQ(ρϕ(k − 2), ρϕ) = 0(5.4)

as ρϕ and ρϕ(k − 2) are absolutely irreducible (by assumption) and non-isomorphic
since k − 2 /≡ 0, �−1

2 (mod � − 1) as � > 4k − 5 and k ≠ 2 (cf. the proof of Lemma 5.3).
∎

Lemma 5.6 Let n be an even integer satisfying 3 − 2k < n ≤ 0. Assuming � ∤
# Clεn

Q(ζ�)+
, one has H1

f (Q, F(n)) = 0 and, if additionally n ≠ 0, H1
f (Q, E/O(n)) = 0.

Proof We see from Proposition 4.20 that any cohomology class in H1
f (Q, F(n))

must vanish when restricted to I�. As all classes in H1
f (Q, F(n)) are unramified
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away from �, we get that they are unramified everywhere. Using inflation-restriction
sequence where H = Gal(Q(ζ�)+/Q), we see that

H1(Q, F(n)) ≅ H1(Q(ζ�)+, F(n))H = HomH(GQ(ζ�)+ , F(n)).

Note that everywhere unramified classes map to homomorphisms that kill all the
inertia groups. Hence, the image of H1

f (Q, F(n)) lands inside Hom(Clεn

Q(ζ�)+
, F) = 0.

Note that a torsion O-module M is zero if and only if M[λ] = 0. There-
fore, the vanishing of H1

f (Q, E/O(n)) follows from Proposition 5.1, which tells
us that H1

f (Q, E/O(n))[λ] = H1
f (Q, F(n)) if H0(Q, E/O(n)) = 0. We know that

H0(Q� , E/O(n)[λ]) = H0(Q, F(n)) = 0 for n ≠ 0 since n /≡ 0 (mod � − 1) under our
assumption � > 4k − 5. ∎

Corollary 5.7 Let ϕ ∈ Sk(Γ1) be as in Theorem 3.5 and assume the hypotheses of
Theorem 3.5 are satisfied. Assuming � ∤ # Clε2−k

Q(ζ�)+
, one has H1

f (Q, ad0 ρϕ(2 − k) ⊗
E/O) ≠ 0.

Proof This follows from Theorem 5.5, Lemma 5.6, and isomorphism (5.2). ∎

Remark 5.8 If we assume Vandiver’s conjecture for the prime �, this gives that � ∤
# Clε2−k

Q(ζ�)+
.

6 Modularity

We begin with the following commutative algebra result that will be useful in this
section.

Lemma 6.1 If J is an ideal of F[[X1 , . . . , Xn]] that is strictly contained in the maximal
ideal, then F[[X1 , . . . , Xn]]/J admits an F-algebra surjection to F[T]/T2.

Proof For a positive integer k, let Ik be the ideal of F[[X1 , . . . , Xk]] generated
by all the monomials of degree at least 2. Set Sk ∶= F[[X1 , . . . , Xk]]/Ik and write
ϕk ∶ F[[X1 , . . . , Xk]] → Sk for the canonical F-algebra surjection. If ϕn(J) = 0, then
composing ϕn with the map Sn → F[[T]]/T2 sending X1 to T and X i for i > 1 to zero
gives the desired surjection.

Now suppose ϕn(J) ≠ 0. Without loss of generality (renumbering the variables if
necessary), we may assume then that J contains an element of the form u ∶= Xn +
f (X1 , . . . , Xn−1) + g(X1 , . . . , Xn), where f is homogeneous of degree one and all the
terms in g have degree at least 2. Note that we can assume without loss of generality
that some power of Xn appears in g. (Indeed, if g contains no Xn then we replace
u by u + u2 ∈ J.) By Theorem 7.16(a) in [23] there is a unique F-algebra map from
F[[X1 , . . . , Xn]] to itself sending Xn to− f − g and X i to itself for i < n. In other words,
for any power series h(X1 , . . . , Xn), the element h(X1 , . . . , Xn−1 ,− f − g) also lives in
F[[X1 , . . . , Xn]] and we denote it by h′(X1 , . . . , Xn). Clearly, h − h′ ∈ J.

Thus, for any power series h, where the smallest total degree of any term containing
Xn is s, we have

h ≡ h′ (mod J)
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for some power series h′with the smallest total degree of any term containing Xn equal
to s′ > s. By the same process, we get an h′′ such that h′ ≡ h′′ mod J and the smallest
total degree of any term Xn in h′′ is strictly greater than s′. This way, we can construct a
sequence of power series hs where for every s, we have the smallest total degree of any
term containing Xn being greater than or equal to s and such that h − hs ∈ J for every
s. We note that hs is a Cauchy sequence with respect to the (X1 , . . . , Xn)-adic topology
(indeed, for t, u > s, we see that ht − hu lies in (X1 , . . . , Xn)s). Set h0 = lims→∞ hs . As
J is a closed ideal, we get that h0 − h ∈ J. For every s, we have

h0 ≡ hs ≡ ws mod X s
n ,

for some ws ∈ F[[X1 , . . . , Xn−1]]. Note that the ws also form a Cauchy sequence since
hs does. Set w ∶= lims→∞ws ∈ F[[X1 , . . . , Xn−1]]. Thus, h0 ≡ w modulo ⋂s(X s

n) ⊂
⋂s(X1 , . . . , Xn)s = 0, so h0 ∈ F[[X1 , . . . , Xn−1]].

Hence, the natural F-algebra map ψn−1 ∶ F[[X1 , . . . , Xn−1]] → F[[X1 , . . . , Xn]]/J
given by h0 ↦ h0 + J is surjective. Thus, we get an F-algebra isomorphism
F[[X1 , . . . , Xn]]/J → F[[X1 , . . . , Xn−1]]/Jn−1, where Jn−1 = ker ψn−1.

If ϕn−1(Jn−1) ≠ 0, continue this way obtaining a sequence of ideals Jn−2 , Jn−3 , . . ..
If at any stage (1 ≤ r ≤ n − 2), we get ϕn−r(Jn−r) = 0, then we are done. Otherwise, we
can eliminate all but one variable and get F[[X1 , . . . , Xn]]/J ≅ F[[X1]]/J1 and now we
must have ϕ1(J1) = 0 as otherwise J1 and hence J is maximal. ∎

Recall that in the earlier sections we fixed the weight k ≥ 12 even and prime � >
4k − 5 and imposed Assumption 3.1 on the field E/Q�. We also fixed the Fontaine–
Laffaille interval I = [3 − 2k, 2k − 3]. Let ϕ ∈ Sk(Γ1) be a newform such that ρϕ is
irreducible. The goal of this section is to prove a modularity theorem under the
following assumption.

Assumption 6.2 For k and ϕ as above, we assume that:
(i) there exists f ∈ Sk(Γ2) such that f ≡ev E2,1

ϕ (mod λ), and
(ii) #H1

f (Q, ad0ρϕ(2 − k) ⊗O E/O) = #O/λ (recall that the left-hand side is indepen-
dent of the choice of lattice, see Remark 5.4), and

(iii) H1
f (Q, ad0 ρϕ) = 0.

Remark 6.3 Assumption 6.2 (i) is satisfied under the assumptions of Theorem 3.5,
and so is one inequality in Assumption 6.2 (ii) under the assumptions of Corollary 5.7.

We impose Assumption 6.2 and fix f as in Assumption 6.2 in what follows. We
will write G{�} for the Galois group of the maximal Galois extension of Q unramified
away from �. Let ρ f ∶ G{�} → GL4(E) be as in Theorem 2.1. Lemma 3.4 gives that ρ f is
irreducible. We will use Mazur’s deformation theory and refer the reader to standard
references, such as [19, 43] for the definitions and basic properties.

Definition 6.4 For B ∈ LCNO, we say that a representation ρ ∶ GQ�
→ GLn(B) is

Fontaine–Laffaille (with Hodge–Tate weights in −I) if ρ ⊗B A lies in Repcris,−I
free,A (GQ�

)
(see Definition 4.9(v)) for every Artinian quotient A of B. By Theorem 4.14(iv), this is
equivalent to requiring ρ ⊗B A to lie in the essential image of the Fontaine–Laffaille
functor.
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Remark 6.5 We know that any choice ofO-lattice ρL in ρϕ or ρ f is Fontaine–Laffaille
in this sense, since their restrictions to GQ�

lie in Repcris,−I
Z�

(GQ�
) and therefore in

the essential image of the Fontaine–Laffaille functor by Theorem 4.14(iii). Since they
are also free O-modules this implies by Theorem 4.14 (iii) and (iv) that ρL ⊗ B lies in
Repcris,−I

free,A (GQ�
) for every Artinian quotient B of O.

For any local complete Noetherian O-algebra A with residue field F by a defor-
mation of a residual Galois representation τ ∶ G{�} → GLn(F), we will mean a strict
equivalence class of lifts τ̃ ∶ G{�} → GLn(A) of τ that are Fontaine–Laffaille at �. This
deformation condition is introduced in [6, Section 5.3] and [18, p. 35]

As is customary, we will denote a strict equivalence class of deformations by
any of its members. If τ has scalar centralizer then this deformation problem is
representable by a local complete Noetherian O-algebra which we will denote by Rτ
[44]. In particular, the identity map in HomO−alg(Rτ , Rτ) furnishes what is called the
universal deformation τuniv ∶ G{�} → GLn(Rτ).

Lemma 6.6 One has Rρϕ
≅ Rρϕ(k−2) ≅ O. Furthermore, ρϕ (resp., ρϕ(k − 2)) is the

unique deformation of ρϕ (resp., ρϕ(k − 2)) to GL2(O).

Proof We have

# HomO−alg(Rρϕ
, F[X]/X2) = #H1

f (Q, ad ρϕ) = 0,(6.1)

where the first equality follows from the fact that our deformation condition is the
property of being Fontaine–Laffaille (see, e.g., [18, Section 2.4.1]), and the second one
holds since we have H1

f (Q, ad ρϕ) = H1
f (Q, ad0 ρϕ) ⊕ H1

f (Q, F) = 0 and H1
f (Q, F) =

0 by Lemma 5.6 as we have imposed Assumption 6.2(iii).
By Theorem 7.16 in [23] we know that any local complete Noetherian O-algebra

with residue field F is a quotient of O[[X1 , . . . , Xn]] for some positive integer n.
Hence, S ∶= Rρϕ

/(λRρϕ
) ≅ F[[X1 , . . . , Xn]]/J for some ideal J. Suppose first that J is

not maximal. Then, by Lemma 6.1, we know that S admits a surjection φ to F[T]/T2.
This contradicts (6.1), hence S = F. We now use the complete version of Nakayama’s
Lemma to conclude that the structure map O→ Rρϕ

is surjective (cf. [23, Exercise
7.2] or [37, Theorem 8.4]). Let us briefly explain why this version applies here. As
Rρϕ

⊗O F ≠ 0, we see that λ ∈ m, where m is the maximal ideal of Rρϕ
. Hence,

⋂
n

λn Rρϕ
⊂ ⋂

n
m

n .(6.2)

The latter intersection is zero, since Rρϕ
is complete, so separated with respect to

m. Hence, (6.2) implies that Rρϕ
is separated with respect to λRρϕ

allowing for the
application of the complete version of Nakayama’s Lemma.

As ρϕ is a deformation to O, we conclude that Rρϕ
= O. This implies that if ρ ∶

G{�} → GL2(O) is any deformation of ρϕ , one has ρ ≅ ρϕ . Similarly, if ρ ∶ G{�} →
GL2(O) is a deformation of ρϕ(k − 2) then ρ(2 − k) is a deformation of ρϕ . Note that
our choice of I = [3 − 2k, 2k − 3] means that this twisting stays inside our category of
Fontaine–Laffaille representations. Hence, we get that ρ(2 − k) ≅ ρϕ , and so we are
done. ∎
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Remark 6.7 Note that the determinant of our deformations is automatically fixed as
H1

f (Q, ad ρϕ) = H1
f (Q, ad0 ρϕ) under our assumptions. This means that all deforma-

tions ρ of ρϕ (respectively, ρϕ(k − 2)) satisfy det ρ = εk−1 (respectively, det ρ = ε2k−3).

Remark 6.8 Regarding Assumption 6.2(iii), we note that if one additionally assumes
that ρϕ is absolutely irreducible when restricted to Gal(Q/Q(

√
(−1)(�−1)/2�) then

[20, Theorem 3.7] (see also [28, Theorem 5.20] relates H1
f (Q, ad0ρϕ ⊗ E/O) (via an

Rρϕ
= T theorem) to a congruence ideal η∅ϕ . One can use Proposition 5.1 to see that

H1
f (Q, ad0 ρϕ) = H1

f (Q, ad0ρϕ ⊗ E/O)[λ] = 0 if η∅ϕ is coprime to �.

Lemma 6.9 Let G be a group and F be a field. For i ∈ {1, 2}, let n i ∈ Z+ and ρ i ∶ G →
GLn i (F) be an irreducible representation with ρ1 /≅ ρ2. Let ρ ∶ G → GLn1+n2(F) be a
representation such that

ρ = [ρ1 a
ρ2
] /≅ ρ1 ⊕ ρ2 .

Then, ρ has scalar centralizer.

Proof This is a simple consequence of Schur’s Lemma and the fact that ã ∶ g →
ρ2(g)−1a(g) defines a cocycle from G to Hom(ρ2 , ρ1)which is not a coboundary. ∎

Fix a lattice in the space of ρ f as in Lemma 5.2, i.e., such that ρ f =

[
ρϕ ∗

ρϕ(k − 2)] ∶ G{�} → GL4(F) is non-semisimple. For simplicity, we will write

R for the universal deformation ring Rρ f
of ρ f and ρuniv ∶ G{�} → GL4(R) for the

universal deformation. Note that the deformation problem is representable because ρ f
is non-semisimple with irreducible, mutually non-isomorphic Jordan–Holder factors,
hence by Lemma 6.9, the centralizer of ρ f consists of only scalar matrices. We say that
a deformation ρ̃ is upper-triangular if ρ̃ is strictly equivalent to a deformation of ρ f of

the form [∗ ∗
0 ∗] with the stars representing 2 × 2 blocks.

Lemma 6.10 There do not exist any non-trivial deformations of ρ f into
GL4(F[X]/X2) that are upper-triangular.

Proof We use Proposition 7.2 in [6] noting that Assumption 6.1(i) in [loc.cit.] is
satisfied because we impose the current Assumption 6.2(ii). On the other hand,
Assumption 6.1(ii) in [loc.cit.] is satisfied because of Lemma 6.6. ∎

Definition 6.11 The smallest ideal I of R such that tr ρuniv is the sum of two
pseudocharacters mod I will be called the reducibility ideal of R. We will denote this
ideal by Ire.

Proposition 6.12 Let I ⊂ R be an ideal such that R/I is an Artin ring. Then, I ⊃ Ire if
and only if ρuniv (mod I) is upper-triangular.

Proof This is proved as Corollary 7.8 in [6]. ∎
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Corollary 6.13 The structure map O→ R/Ire is surjective and descends to an isomor-
phism O/λs → R/Ire for some s ∈ Z≥0 ∪ {∞}. In fact, one has

R/Ire ≅ O/λ.

Proof By Theorem 7.16 in [23] we know that any local complete Noetherian O-
algebra with residue field F is a quotient of O[[X1 , . . . , Xn]] for some positive integer
n. Hence, S ∶= R/(Ire + λR) ≅ F[[X1 , . . . , Xn]]/J for some ideal J. Suppose first that J
is not maximal. Then, by Lemma 6.1, we know that S admits a surjection φ to F[T]/T2.
This means that there exists a non-trivial (because the image of φ is not contained in F)
deformation of ρ to F[T]/T2 which is upper-triangular (by Proposition 6.12), which
contradicts Lemma 6.10. Thus, indeed, S = F.

Hence, the structure map O→ R/Ire is surjective by the complete version of
Nakayama’s Lemma (see the proof of Lemma 6.6). So, R/Ire ≅ O/λs for some s ∈
Z≥0 ∪ {∞}.

The composition of ρuniv with the map R → R/Ire gives rise to a deformation
ρre ∶ G{�} → GL4(R/Ire) = GL4(O/λs). By Proposition 6.12, this deformation is upper

triangular, i.e., one has ρre = [
∗1 ∗2

∗3
] . As the property of being Fontaine–Laffaille is

preserved by subobjects and quotients, we see that ∗1 and ∗3 are Fontaine–Laffaille
representations with values in GL2(R/Ire) = GL2(O/λs). Thus, by Lemma 6.6, we can
conclude that ∗1 = ρϕ , ∗3 = ρϕ(k − 2)mod λs . Hence, by (5.4) and Proposition 5.1, ∗2
gives rise to a class in H1

f (Q, ad0ρϕ(2 − k) ⊗O E/O) as ρre is Fontaine–Laffaille. As ρ
is non-semi-simple, we conclude that ∗2 is not annihilated by λs−1, i.e., the class of ∗2
gives rise to a subgroup of H1

f (Q, ad0ρϕ(2 − k) ⊗O E/O) isomorphic to O/λs . Thus,
s ≤ 1 as #H1

f (Q, ad0ρϕ(2 − k) ⊗O E/O) ≤ #O/λ by Assumption 6.2(ii). Finally, s > 0
as ρ f itself is reducible. This concludes the proof. ∎

The following proposition does not use Assumption 6.2(ii).

Proposition 6.14 Assume that dim H1
f (Q, ad ρϕ(k − 2)) ≤ 1. Then, the ideal Ire is a

principal ideal.

Proof Since ρuniv is a trace representation in the sense of Section 1.3.3 of [4] Lemma
1.3.7 in [loc.cit.] tells us that we can conjugate ρuniv by a matrix P ∈ GL2(R) (here
we use that every finite type projective R-module is free since R is local) to get ρuniv

adapted to a data of GMA idempotents for R[G{�}]/ker ρuniv. By [4, Lemma 1.3.8] we
then get an isomorphism of R-modules

R[G{�}]/ker ρuniv ≅ [Mat2(R) Mat2(B)
Mat2(C) Mat2(R)]

for ideals B, C ⊂ R. By [4, Proposition 1.5.1] we further know that Ire = BC.
[4, Theorem 1.5.5] proves that there are injections HomR(B, F) ↪

H1(G{�}, ad ρϕ(2 − k)) and HomR(C , F) ↪ H1(G{�}, ad ρϕ(k − 2)). Arguing
as in [1, Proposition 4.2] (see also [55, Theorem 4.3.5 and Remark 4.3.6] one
sees that the images are contained in the Selmer groups H1

f (Q, ad ρϕ(2 − k))
and H1

f (Q, ad ρϕ(k − 2)), respectively. From Assumption 6.2 (ii) and
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Proposition 5.1, we see that H1(Q, ad ρϕ(2 − k)) ≅ F. Together with the assumption
dim H1

f (Q, ad ρϕ(k − 2)) ≤ 1, we deduce by Nakayama’s Lemma that both B and C,
and therefore also Ire are principal ideals of R. Note that Nakayama’s Lemma applies
since B and C are ideals in R, which is Noetherian, hence they are finitely generated
over R. ∎

Remark 6.15 [1, Proposition 3.10] proves the principality of the reducibility ideal of
the reduced Fontaine–Laffaille deformation ring Rred for any residual representations
with two Jordan-Hölder factors. Our argument (while relying on [1, Proposition 4.2]
is slightly more general as it allows us to treat the case of non-reduced deformation
rings.

Remark 6.16 By (5.2), we have

H1
f (Q, ad ρϕ(k − 2)) = H1

f (Q, ad0 ρϕ(k − 2)) ⊕ H1
f (Q, F(k − 2)).

However, as opposed to the case of the (2 − k)-twist of the trivial representation (cf.
proof of Lemma 5.6), there is no simple relation between H1

f (Q, F(k − 2)) and part
of a class group except for the case k = 2 by Proposition 4.20. By the same proposition
for 2 < k ≤ �, the group H1

f (Q, F(k − 2)) requires no ramification condition at �, so
equals H1(G{�}, F(k − 2)).

We have the following results about H1(G{�}, F(n)) for n > 0.

Proposition 6.17 [8, Proposition 6.5] Suppose n ∈ Z>0 and n /≡ 1 mod � − 1. Assume
that � ∤ # Clεn

Q(ζ�)
. Then, dim H1(G{�}, F(n)) ≤ 1.

Proposition 6.18 Let n > 0 be an even integer. Assume � ∤ Bn (the n-th Bernoulli
number) and n /≡ 0 mod � − 1. Then, H1(G{�}, F(n)) = 0.

Proof Since n is even and H0(G{�}, F(n)) = 0 as n /≡ 0 mod � − 1 we know
dimF H1(G{�}, F(n)) = dimF H2(G{�}, F(n)) by [40, Corollary 8.7.5] (Euler Poincare
characteristic). [3, Proposition 1.3] (condition (ii , β)) proves that H2(G{�}, F(n)) = 0
if n /≡ 1 mod � − 1 (which is automatically satisfied for even n) and � ∤ # Clε1−n

Q(ζ�)
.

By Herbrand’s Theorem (see, e.g., [57, Theorem 6.17] the latter follows from our
assumption that � ∤ Bn (here we use again n /≡ 0 mod � − 1). ∎

Remark 6.19 Note that the assumption � ∤ Bn is stronger than � ∤ # Clεn

Q(ζ�)
in [8,

Proposition 6.5] As noted in the proof of Proposition 6.18, � ∤ Bn implies � ∤ # Clε�−n

Q(ζ�)

by Herbrand’s Theorem. By the “reflection theorem” [57, Theorem 10.9] this means
that also � ∤ Clεn

Q(ζ�)
.

This allows us to prove the following modularity theorem.

Theorem 6.20 Recall that we impose Assumptions 3.1 and 6.2. Furthermore, assume
that dim H1

f (Q, adρϕ(k − 2)) ≤ 1. Then, the structure map ι ∶ O→ R is an isomor-
phism. In particular, if τ ∶ GQ → GL4(E) is any continuous irreducible homomorphism
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unramified outside �, crystalline at � with Hodge–Tate weights in [3 − 2k, 2k − 3] and
such that

τss = ρϕ ⊕ ρϕ(k − 2),

then τ ≅ ρuniv ≅ ρ f , i.e., in particular, τ is modular.

Proof It follows from Corollary 6.13 that Ire is a maximal ideal of R. As the
deformation ρ f induces a surjective map j ∶ R → O, we get the following commutative
diagram of O-algebra maps:

O ι
��

id

��

��

R
j

��

��

O

��

O/λ ι ��

id

��R/Ire
j

�� O/λ.

(6.3)

As ι is an isomorphism, we get that so is j. So, using the fact that Ire is principal
(Proposition 6.14), we can now apply Theorem 6.9 in [5] to the right square to conclude
that j is an isomorphism.

Now, let τ be as in the statement of the theorem. Then, τ factors through a
representation of G{�}. Using that τ is irreducible, Theorem 4.1 in [9] allows us to
find a lattice in the space of τ such that with respect to that lattice, one has

τ = [
ρϕ ∗

ρϕ(k − 2)]

that is non-semi-simple. Using Remark 6.5, we see that this lattice is Fontaine–
Laffaille, so the star gives rise to a non-zero element in H1

f (Q, ad0ρϕ(2 − k) ⊗O E/O).
As the latter group has order #O/λ by Assumption 6.2(ii), we conclude that τ ≅ ρ. In
particular, τ is a deformation of ρ. Hence, τ gives rise to an O-algebra map R → O,
which must equal j by the first part of the theorem. ∎

Remark 6.21 We return to Example 3.6 and note that Assumption 6.2 (i) holds,
as discussed earlier. Since � = 163 or 187273 do not divide (2k − 1)(2k − 3)k! for
k = 26 and ρϕ is irreducible, [20, Lemma 2.5] proves that ρϕ stays irreducible
when restricted to Gal(Q/Q(

√
(−1)(�−1)/2�)). Via Remark 6.8, we can therefore

check that H1
f (Q, ad0 ρϕ) = 0 as ϕ is the only cusp form of weight 26 and level

1, so in particular, ϕ is not congruent mod � to other forms. Since, in addition,
Lalg(50, Sym2ϕ) has �-valuation 1 for both � = 163 and 187273, the Bloch–Kato con-
jecture for #H1

f (Q, ad0ρϕ(2 − k) ⊗ E/O) = #O/λ (see [22, Conjecture (5.2) and (5)]
would imply that Assumption (ii) holds.

We do not know how to check dim H1
f (Q, adρϕ(k − 2)) ≤ 1, as the correspond-

ing divisible Selmer group is not critical (in the sense of Deligne). Note that
dim H1

f (Q, adρϕ(k − 2)) = dim H1
f (Q, ad0ρϕ(k − 2)) by Proposition 6.18, since nei-

ther prime � divides B24.
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7 (Non-)principality of Eisenstein ideals

In this section, we formulate conditions when the Eisenstein ideal of the local Hecke
algebra acting on Sk(Γ2) is non-principal and dimF H1

f (Q, ad0 ρϕ(k − 2)) > 1. In
particular, in that case, R /≅ O.

Let T′ be as in Section 2. Let T denote the O-subalgebra of T′ ⊗Z O generated by
the operators T(2)(p) and T(2)1 (p2) for all primes p ∤ �. Since strong multiplicity, one
holds in the level one case, we can choose an orthogonal basis N′ of Sk(Γ2) consisting
of eigenforms for all the operators in T.

Each g ∈ N′ gives rise to ψg ∈ HomO−alg(T,O), where ψg(T) = λg(T), with λg(T)
the eigenvalue of the operator T corresponding to g. Thus, we get a map Ψ ∶ N′ →
HomO−alg(T,O) given by g ↦ λg , which by strong multiplicity, one is an injection.

Lemma 7.1 The natural O-algebra map

T → ∏
g∈N′

O given by T ↦ (ψg(T))g(7.1)

is injective and has finite cokernel, i.e., T can be viewed as a lattice in ∏g∈N′ O.

Proof The injectivity follows from the fact that the elements of N′ form a basis.
We will now show that the map has finite cokernel. Note that the (set) map Ψ ⊗

Q� ∶ N′ → HomQ�−alg(T⊗Q� , Q�) ↪ HomQ�
(T⊗Q� , Q�) given by g ↦ λg ⊗Q� is

injective (because Ψ is injective), and strong multiplicity one implies that no non-
trivial linear relation ∑g∈N′ cg λg = 0 can hold. Thus, the set {λg ∣ g ∈ N′} is a linearly
independent subset of HomQ�

(T⊗Q� , Q�). Hence,

dimQ�
T⊗Q� = dimQ�

HomQ�
(T⊗Q� , Q�) ≥ #N′ .(7.2)

Tensoring the map (7.1) with Q� we get a corresponding map T⊗Q� →∏g∈N′ Q�,
which is injective as (7.1) is. Thus, it must be surjective by (7.2). Hence, the map (7.1)
has finite cokernel. ∎

We now identify T with the image of the map (7.1) and note that T =
∏m∈MaxSpecT Tm , where Tm is the localization of T at the maximal ideal m. Let N
be the subset of N′ consisting of all the g ∈ N′ which satisfy

ψg(T) ≡ λE 1,2
ϕ
(T) (mod λ) for all T ∈ T.

We write m for the corresponding maximal ideal. Set J ⊂ T to be the Eisenstein
ideal, i.e., J is the ideal of T generated by the set {T(2)(p) − (tr ρϕ(Frobp) + tr ρϕ(k −
2)(Frobp)) ∣ p ≠ �}. Write Jm to be the image of J under the canonical map T → Tm.

Recall that we fixed in Section 5.2 the weight k ≥ 12 even and prime � > 4k − 5
and imposed Assumption 3.1 on the field E/Q�. We also fixed the Fontaine–Laffaille
interval I = [3 − 2k, 2k − 3]. Let ϕ ∈ Sk(Γ1) be a newform such that ρϕ is irreducible.

For the rest of this section, we also impose Assumption 6.2 and fix the correspond-
ing f ∈ Sk(Γ2). Then, f ∈ N, i.e., Tm/Jm ≠ 0. Let R = Rρ f

be the universal deformation
ring defined in Section 6.
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Theorem 7.2 Recall that we impose Assumptions 3.1 and 6.2. Then, there exists a
surjective O-algebra map φ ∶ R → Tm such that φ(Ire) = Jm and Jm is a maximal ideal
of Tm. If, in addition, dimF H1

f (Q, adρϕ(k − 2)) ≤ 1, then all of the following are true:
• the map φ is an isomorphism;
• the Hecke ring Tm is isomorphic to O;
• the Eisenstein ideal Jm is principal.

Proof Let g ∈ N. Then, by Lemma 5.2, there exists a GQ-stable lattice with respect to

which one has ρg = [
ρϕ ∗

ρϕ(k − 2)] and is not semi-simple. Hence, the ∗ gives rise

to an element in H1
f (Q, W[λ]), where W = ad0ρϕ(2 − k) ⊗O E/O.

By (5.4) and Proposition 5.1, we get H1
f (Q, W[λ]) = H1

f (Q, W)[λ]. The latter
group is cyclic by Assumption 6.2 (ii), so we must have that ρg ≅ ρ f , and so after
adjusting the basis, if necessary, we get that ρg is a deformation of ρ f .

This implies that for every g ∈ N, we get an O-algebra (hence continuous) map φg ∶
R → O with the property that tr ρuniv(Frobp) ↦ λg(T(2)(p)). This property com-
pletely determines φg because R is topologically generated by the set {tr ρuniv(Frobp) ∣
p ≠ �} by Proposition 7.13 in [6]. Putting these maps together we get anO-algebra map
φ ∶ R →∏g∈NO whose image is an O-subalgebra of ∏g∈NO generated by {T(2)(p) ∣
p ≠ �}. Note that φ(R) ⊂ Tm. To see the opposite inclusion consider the characteristic
polynomial fp(X) ∈ R[X] of ρuniv(Frobp) for p ≠ �. Combining Theorem 2.1 with
the definition of Lp(X , f ; spin), we see that the coefficient at X2 is mapped by φ to
T(2)(p)2 − T(2)(p2) − p2k−4 ∈ ∏g∈NO. As T(2)(p) and p2k−4 both belong to φ(R),
so therefore must T(2)(p2). We now use the fact [2, 3.3.38] and [30, p. 547] that

pT(2)1 (p2) = T(2)(p)2 − T(2)(p2) − p(p2 + p + 1)T(diag(p, p, p, p))

to conclude that T(2)1 (p2) ∈ φ(R). Hence, φ(R) contains all the Hecke operators away
from �, i.e., φ(R) = Tm. We denote the resulting O-algebra epimorphism R → Tm

again by φ. We claim that φ(Ire) ⊂ Jm.
Indeed, using the Chebotarev Density Theorem, one sees that

tr ρuniv ≡ tr ρϕ + tr ρϕ(k − 2) (mod φ−1(Jm)),

so Ire ⊂ φ−1(Jm). As φ is a surjection, this implies that φ(Ire) ⊂ Jm. Hence, φ gives
rise to a sequence ofO-algebra surjections R/Ire → Tm/φ(Ire) → Tm/Jm. As R/Ire = F
by Corollary 6.13 we conclude that all these surjections are isomorphisms (note that
Tm/Jm ≠ 0), hence φ(Ire) = Jm and Jm is maximal. This proves the first claim.

Now assume in addition that dim H1
f (Q, adρϕ(k − 2)) ≤ 1. Then, Theorem 6.20

gives us that R = O, so we get that φ is an isomorphism, and so R ≅ Tm ≅ O. Hence,
Jm is a principal ideal. ∎

Corollary 7.3 If Jm is not principal, then dimF H1
f (Q, ad ρϕ(k − 2)) > 1. If in addition

� ∤ Bk−2 then dimF H1
f (Q, ad0 ρϕ(k − 2)) > 1.

Proof The first inequality is just a restatement of one of the claims of Theorem 7.2.
The second follows from the first one and Proposition 6.18. ∎

Downloaded from https://www.cambridge.org/core. 13 Oct 2025 at 21:33:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


32 T. Berger, J. Brown, and K. Klosin

Proposition 7.4 For each g ∈ N, write mg for the largest positive integer m such that
g ≡ Eϕ

2,1 mod λm . If

val�(#Tm/Jm) < [F ∶ F�] ⋅ ∑
g∈N

mg(7.3)

then Jm is not principal.

Proof Set A = ∏g∈N Ag , where Ag = O for all g ∈ N. Let ϕg ∶ A → Ag be the canon-
ical projection. Since, by Lemma 7.1, T is a full rank O-submodule of ∏g∈N′ O,
we conclude that the local complete O-subalgebra Tm ⊂ A is of full rank as an O-
submodule and Jm ⊂ Tm is an ideal of finite index. Set Tg = ϕg(Tm) = Ag = O and
Jg = ϕg(Jm) = λmgO. Hence, we are in the setup of Section 2 of [11]. Assume Jm is
principal. Then, Proposition 2.3 in [11] gives us that

#Tm/Jm = ∏
g∈N

#Tg/Jg .(7.4)

Note that one has

val�
⎛
⎝∏g∈N

#Tg/Jg
⎞
⎠
= [F ∶ F�] ⋅ ∑

g∈N
mg .(7.5)

This equality, together with (7.4), contradicts the inequality (7.3). ∎

Corollary 7.5 Let mg be defined as in Proposition 7.4. If ∑g∈N mg > 1 then Jm
is not principal and dimF H1

f (Q, ad ρϕ(k − 2)) > 1. If in addition � ∤ Bk−2 then
dimF H1

f (Q, ad0 ρϕ(k − 2)) > 1.

Proof Note that from the proof of Theorem 7.2, we get that Tm/Jm = F, even without
assuming dimF H1

f (Q, ad ρϕ(k − 2)) ≤ 1. Assume that Jm is principal. Then, from (7.4)
and (7.5), we conclude that ∑g∈N mg = 1, which contradicts our assumption. Hence,
Jm is not principal. The Selmer group inequalities now follow from Corollary 7.3. ∎

Remark 7.6 Corollary 7.3 directly ties the cyclicity of the non-critical Selmer group
H1

f (Q, ad ρϕ(k − 2)) with the principality of the Eisenstein ideal Jm. We note that
Assumption 6.2(ii) implies the equality Tm/Jm = F. Contrary to what one might think,
the existence of several forms g ≡ Eϕ

2,1 mod λ does not preclude this equality. For
example, if there are exactly two linearly independent eigenforms g1 , g2 ∈ N with
mg1 = mg2 = 1 such that g1 /≡ g2 mod λ2 then Tm ≅ O ×F O = {(a, b) ∈ O ×O ∣ a ≡ b
mod λ} and in this case, Jm is the maximal ideal, i.e., Tm/Jm = F, so Corollary 7.5
applies and dimF H1

f (Q, ad ρϕ(k − 2)) > 1.
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