A SPECIAL SIMPLEX[†] SAHIB RAM MANDAN * (Received 1 July 1960) #### 1. Preliminaries Let $S = A_0 \cdots A_n$ be an *n*-simplex and A_{ih} the foot of its altitude from its vertex A_i to its opposite prime face S_i ; O, G the circumcentre and centroid of S and O_i , G_i of S_i . Representing the position vector of a point P, referred to O, by P, Coxeter [2] defines the *Monge point* M of S collinear with O and G by the relation (1) $$(n-1)m = (n+1)g = ng_i + a_i,$$ so that the Monge point M_i of S_i is given by $$(2) (n-2)m_i = ng_i - 2o_i.$$ If the n+1 vectors a_i are related by $$\sum u_i a_i = 0, \quad \sum u_i = u,$$ and o, be given by (4) $$\mathbf{o}_i = \sum c_j \mathbf{a}_j \quad (j \neq i), \quad \sum c_j = 1,$$ A_{ih} is given by (5) $$u_{i}(\boldsymbol{a}_{ih}-\boldsymbol{a}_{i}) = p_{i}o_{i}, \text{ i.e. } u_{i}\boldsymbol{a}_{ih} = u_{i}\boldsymbol{a}_{i}+p_{i}o_{i}$$ $$= -\sum u_{j}\boldsymbol{a}_{j}+p_{i}\sum c_{j}\boldsymbol{a}_{j}$$ $$= \sum (p_{i}c_{j}-u_{j})\boldsymbol{a}_{j}.$$ Since A_{ih} lies in S_{i} , (6) $$u_i = p_i \sum c_j - \sum u_j = p_i - (u - u_i)$$, i.e. $p_i = u$. If T_i be a point on M_iA_{ih} such that [†] The former editor wishes to apologise for the delay in publication of this paper. ^{*} This paper was written at the Indian Institute of Technology, Kharagpur, but revised at the University to Sydney under the direction of Professor T. G. Room. The treatment by vectors is all due to him. i,e. (8) $$(n-1)(m-t_i) = (2-v_i)o_i$$ That is, MT_i is parallel to oo_i or normal to S_i at T_i . Or, the normals to the prime faces S_i of S at their points T_i concur at M. In fact, this property of M has been used to prove by induction [3] that an S-point S of S lies at M. Thus $M = S_i$ or $$(9) m=s, m_i=s_i.$$ # 2. Special simplex If the diametric opposite B_i of a vertex A_i of the simplex S lie in its prime face S_i , S is said to be special [1], and denoted by (S_i) , with A_i , S_i , A_iA_{ih} as its special vertex, face and altitude. From (3) then follows that (10) $$u_i b_i = u_i (-a_i) = \sum u_i a_i, u_i = \sum u_i = u - u_i = u/2.$$ Hence, from the relations (1), (5)—(9), we get (11) $$(n-1)s = ng_i - (-a_i) = ng_i - b_i,$$ (12) $$\mathbf{a}_{ih} - \mathbf{a}_i = \mathbf{a}_{ih} + \mathbf{b}_i = 2\mathbf{o}_i,$$ $$(13) s=t_i,$$ $$(n-1)s = (n-2)s_i + a_{ih}.$$ Thus follows THEOREM 1 (see Figure). An n-simplex S becomes special, (S_i) , if and only if (i) its special altitude is twice the distance of its circumcentre from its special face S_i and (ii) the foot A_{ih} of the same lies on its circumhypersphere as the symmetric of the diametric opposite B_i of its special vertex A_i w.r.t. the circumcentre O_i of S_i ; an alternative condition is that (iii) its S-point lies in S_i on the join of the centroid G_i of S_i to B_i and on that of the S-point of S_i to A_{ih} dividing them in the ratios -1:n,1:(n-2) respectively. ## 3. 3(n+1)-point-sphere (a) With every simplex S is associated its 3(n+1)-point-sphere (O') homothetic to its circumhypersphere (O) w.r.t. its centroid G[3] and its S-point S, the homothetic ratios being -1:n and 1:n respectively. (O') passes through the n+1 centroids G_i of its prime faces S_i through the n+1 points P_i on the joins of S to its vertices A_i such that $$n\mathbf{p}_{i} = (n-1)\mathbf{s} + \mathbf{a}_{i},$$ and through their n+1 projections Q_i in S_i . $G_iO'P_i$ is a diameter of (O'), O' being its centre, such that $$(16) no' = (n-1)s.$$ Thus G_i and the S-point S_i are the pair of homothetic centres of the (n-2)-sphere section (O_i) of (O) by S_i (circumscribing S_i) and the (3n)-point-sphere (N_i) of S_i , the homothetic ratios being 1:(1-n) and 1:(n-1) respectively, so that (17) $$(n-1)\mathbf{n}_{i} = (n-2)s_{i} + o_{i},$$ where N_i is the centre of (N_i) . Now, if S becomes special, (S_i) , the foot A_{ih} of its special altitude lies on (O_i) by Theorem 1 (ii) and therefore S lies on (N_i) by the relation (14). Thus follows THEOREM 2. The S-point of a special simplex lies on the (3n)point-sphere of its special face. (b) If O_{ih} be the projection of O' in S_i , $Q_iO_{ih}G_i$ is a diameter of the (n-2)-sphere section (O_{ih}) of (O') by S_i such that $$2o_{ih} = \mathbf{g}_i + \mathbf{q}_i,$$ and from (16) we have $$no_{ih} = (n-1)s + o_i.$$ Now from (11), (14)-(19) we have $$n(\mathbf{p}_i - \mathbf{o}') = \mathbf{a}_i$$ $$(21) (n-1)(s-n_i) = a_{ih}-o_i$$ $$no_{ih} = (n-1)n_i + a_{ih}$$ (23) $$n(q_i - o_{ih}) = no_{ih} - ng_i = o_i - a_i.$$ Thus follows THEOREM 3 (see Figure). The ratio of the radius of the (n-2)-sphere section (O_{ih}) of the 3(n+1)-point-sphere (O') of a special simplex (S_i) by its special face S_i to that of the (3n)-point-sphere (N_i) of S_i is equal to (n-1):n, and the foot A_{ih} of its special altitude lies at the external centre of similitude of (O_{ih}) and (N_i) . ### 4. Doubly special simplex (a) If the foot A_{jh} of the altitude of a special simplex (S_i) from its vertex A_j other than A_i also lie on its circumhypersphere (O), the simplex becomes doubly special, and is denoted by (S_{ij}) , with A_iA_j and its opposite (n-2)-face S_{ij} as its other special elements. If S be the S-point of (S_{ij}) , S_i of its special face S_i , and T_i a point on S_iA_{ih} such that (24) $$(n-1)t_{j} = (n-2)s_{j} + a_{jh},$$ we have, as in (13), $$(25) s = t_j.$$ Thus follows THEOREM 4. An n-simplex S becomes doubly special (S_{ij}) , if and only if the joins of the S-points M_i , M_j of its special faces S_i , S_j to the feet A_{in} , A_{jn} of its respectively special altitudes meet at its S-point in its special (n-2)-face in such a way that $A_{in}A_{jn}$ is parallel to M_iM_j , and equal to (n-2) times M_iM_j . (b) If A_{ihj} , A_{jhi} , T_{is} , T_{js} be the projections of A_{ih} , A_{jh} , S_i , S_j in S_{ij} and S_{ij} be its S-point, then A_{ihj} A_{jhi} are the feet of the altitudes of S_j , S_i to it, and, by Theorem 4, $T_{is}A_{ihj}$, $T_{js}A_{jhi}$ meet at the S-point S of (S_{ij}) . By definition of S-points (\S 1) we have $$(26) (n-3)s_{ij} = (n-2)t_{is} - a_{jhi} = (n-2)t_{js} - a_{ihj},$$ (27) $$(n-1)s = (n-2)t_{is} + a_{ihj} = (n-2)t_{js} + a_{jhi},$$ and therefore $$(28) (n-1)s = (n-3)s_{ij} + 2u_{ij}, 2u_{ij} = a_{ihj} + a_{jhi}.$$ Thus follows THEOREM 5. The S-point of a doubly special n-simplex (S_{ij}) lies on the join of the S-point of its special (n-2)-face S_{ij} to the midpoint of the segment between the feet of the altitudes of its special faces to S_{ij} and divides the same in the ratio 2:(n-3). (c) If G_{ij} , O_{ij} be the centroid and circumcentre of S_{ij} , and G^{ij} the midpoint of A_iA_j , we have by Coxeter's definition of Monge point (§ 1) (29) $$(n-1)s = (n+1)g = (n-1)g_{ij} + 2g^{ij},$$ (30) $$(n-3)s_{ij} = (n-1)g_{ij} - 2o_{ij}.$$ From (28)-(30) we have (31) $$2(u_{ij}-o_{ij})=(n-1)(s-g_{ij})=2g^{ij}.$$ Here we may observe that O, G^{ij} project in S_{ij} into O_{ij} , U_{ij} . Thus follows THEOREM 6. The join of the midpoint of the special edge of a doubly special n-simplex (S_{ij}) to its circumcentre projects in its special (n-2)-face S_{ij} into the same length parallel and equal to (n-1)/2 times that of its s-point to the centroid of S_{ij} . (d) If A_iA_j of (S_{ij}) be normal to S_{ij} , (S_{ij}) becomes biorthocentric [3] with biorthocentre H_{ij} (say); at this point its two special altitudes concur with its special bialtitude h_{ij} to A_iA_j in such a way that h_{ij} meets S_{ij} at $$(32) A_{ihi} = U_{ii} = A_{ihi}.$$ Thus Theorem 5 becomes THEOREM 7. If the simplex (S_{ij}) be also biorthocentric, with the common perpendicular secant h_{ij} of its special edge and (n-2)-face S_{ij} as its special bialtitude, its S-point lies on the join of the S-point of S_{ij} to the foot therein of h_{ij} and divides the same in the ratio 2: (n-3). # 5. (n-1)ply special simplex (a) We may consider an r-ply special simplex having r special vertices and therefore r special faces opposite them in the above manner for all values of r > 2. But r = n-1 (n > 3) forms an interesting case and we develop its theory as follows. Let the n-1 vertices of an n-simplex S other than A_k , A_l be all special, let S be denoted by (S^{kl}) , and let A_kA_l and its opposite (n-2)-face S_{kl} be called its *principal* elements. Thus, from Theorem 1 (iii) follows THEOREM 8. An n-simplex S is (n-1) ply special (S^{kl}) , if and only if its S-point lies on its principal edge; the n-1 joins of the feet of its n-1 special altitudes to the S-points of its corresponding special faces then concur on the principal edge (b) If G_{kl} be the centroid of S_{kl} , from (3), (10) we have for (S^{kl}) (33) $$2(u_k a_k + u_l a_l) + (n-1)g_{kl} = 0,$$ (34) $$2(u_k+u_l)+(n-1)u=2u$$, or $2(u_k+u_l)=(3-n)u$, and therefore $$(35) (n-3)\mathbf{r}_{kl} = (n-1)\mathbf{g}_{kl},$$ where $$(u_k+u_l)\boldsymbol{r}_{kl}=u_k\boldsymbol{a}_k+u_l\boldsymbol{a}_l.$$ Again, similar to (30) we have (37) $$(n-3)s_{kl} = (n-1)g_{kl} - 2o_{kl}.$$ Hence follows THEOREM 9. The join of the circumcentre 0 of an (n-1)-ply special n-simplex (S^{kl}) to the centroid G_{kl} of its principal (n-2)-face S_{kl} meets its principal edge A_kA_l in a point R_{kl} such that G_{kl} divides OR_{kl} in the ratio (n-3):2 and R_{kl} projects into the S-point S_{kl} of S_{kl} which then lies on the projection of A_kA_l in S_{kl} . COROLLARY. The circumcentre of an (n-1)-ply special n-simplex lies in its principal (n-2)-face, if and only if n=3. (That is, a tetrahedron is doubly special, if and only if one of its principal edges is a circum-diameter, and consequently its Monge point lies at the midpoint of its opposite principal edge [1].) (c) By relation of the type (31), the join of the S-point S of any simplex to the centroid G_{kl} of any (n-2)-face S_{kl} is always parallel to that of the midpoint of its opposite edge $A_k A_l$ to its circumcentre O and therefore perpendicular to $A_k A_l$. That is $$(\mathbf{a}_k - \mathbf{a}_l) \cdot (\mathbf{s} - \mathbf{g}_{kl}) = 0.$$ Now let (S^{kl}) be biorthcentric (§ 4d) such that $A_k A_l$ is perpendicular to S_{kl} and therefore to every line therein, in particular to the join of G_{kl} to its S-point S_{kl} . That is, $$(\mathbf{a}_{k}-\mathbf{a}_{l})\cdot(\mathbf{s}_{kl}-\mathbf{g}_{kl})=0.$$ Through $A_k A_l$ then passes a unique plane normal to S_{kl} meeting it in a point U_{kl} (say). That is, every point on $A_k A_l$ projects in S_{kl} into U_{kl} which then coincides with S_{kl} by Theorem 9, so that SS_{kl} is normal to S_{kl} . Again from (38) – (39) we have $$(\mathbf{a}_{k}-\mathbf{a}_{l})\cdot(\mathbf{s}-\mathbf{s}_{kl})=0.$$ Hence follows THEOREM 10. If the (n-1)-ply special n-simplex (S^{kl}) be also biorthocentric with its principal edge A_kA_l perpendicular to its principal (n-2)-face S_{kl} , its S-point and that of S_{kl} lie at the feet of its special bialtitude h_{kl} to A_kA_l , and consequently the S-points of its 2 non-special faces lie on their respective altitudes to S_{kl} . Thanks are due to Professor T. G. Room for his kind directions, and to Mr. R. K. Datta (student at the Indian Institute of Technology, Kharagpur) for tracing the figure. #### References - [1] N. A. Court, A special tetrahedron, Amer. Math. Monthly 56 (1949), 312-315; 57(1950), 176-177. - [2] H. S. M. Coxeter, Editorial note to the solution of the problem 4049, ibid, 50 (1943), 576—578. - [3] S. R. Mandan, Altitudes of a simplex in an n-space, J. Australian Math. Soc. 2 (1962), 403—424. Indian Institute of Technology Kharagpur, India