
AXIOMS FOR ABSOLUTE GEOMETRY. II 

J. F. RIGBY 

Introduction. In this paper I continue the process, begun in (2), of 
reducing and weakening the axioms of congruence needed for absolute geo­
metry. The congruence axioms Cl*-C4*, C4**, and C5a-C5c (frequently 
referred to below) can all be found in (2) and will not be quoted again here. 
(This paper should be read in conjunction with (2); any attempt to make it 
self-contained would result in the repetition of large parts of (2).) The notation 
of (2) will be used throughout the paper. 

The main result here is that axiom C5c is unnecessary. This is shown in § 1. 
In § 2 I discuss three other points arising from (2). 

Note added in proof. Since writing this paper, I have constructed examples of 
(a) Archimedean planes satisfying Cl*-C4* in which not all points are 
isometric, (b) non-Archimedean planes satisfying Cl*-C4* but not C4**, and 
(c) one-dimensional geometries in which 2.1 (with "plane" replaced by "line") 
is false. These examples are relevant to various remarks in § 2. The various 
examples of planes will appear in (3), and the remaining examples at a later 
date. 

1. The existence and construction of perpendicular lines. Throughout 
this section (which replaces part of (2, §5)) we shall consider an absolute 
plane T satisfying the axioms of order and axioms Cl*-C4*, C4**, C5a, C5b. 
All the points and lines referred to lie in w. We shall show, without using axiom 
C5c, that perpendicular lines exist and can be constructed. 

Let Z be a line. If, through every point, either on I or not on /, there exists a 
line perpendicular to /, we shall say that all perpendiculars to I exist. 

1.1. If there exists a line perpendicular to a line /, then all perpendiculars to I 
exist. 

This is not an exact re-statement of (2, 4.5 (i) and 4.7). We do not 
assume here that we can construct a line perpendicular to I, but the proofs of 
(2, 4.5 (i) and 4.7) can be used to prove 1.1. 

1.2. If there exists a line perpendicular to a line I, and if m is a line that meets 
/, then all perpendiculars to m exist. 

Proof (see Figure 1A). Let I C\ m = 0. If w 1 I, then I J_ m; hence all 
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perpendiculars to m exist (1.1). If not, let P G m, P ^ 0, and let PQ be the 
perpendicular from P to / (1.1), where Q G I. Then Q 9^0. There exists R G / 
such that Q bisects OR. There exists X G ray OQ such that OP = OX and 
there exist F, Z G ray OP such that OÇ = 0 F, OR = OZ (so that F bisects OZ). 
Then XZ = PR (C5b) = PO (by the definition of perpendicularity) = XO. 
Hence X Y JL m (2, 4.1). Hence all perpendiculars to m exist (1.1). 

FIGURE 1A 

1.3. / / there exists a pair of perpendicular lines, then all perpendiculars to all 
lines exist. 

Proof. Let I be one of the pair of perpendicular lines. Then all perpendiculars 
to I exist (1.1). Let n be any other line, and let m be any line joining a point of / 
to a point of n. Then m meets /, so that all perpendiculars to m exist (1.2), and n 
meets m, so that all perpendiculars to n exist (1.2). 

COROLLARY. Either all perpendiculars to all lines exist, or there exists no pair 
of perpendicular lines. 

1.4. If there exists no pair of perpendicular lines, then there exists no pair of 
congruent triangles ABC and ABC with C, C on opposite sides of AB. 

Proof (see Figure IB). Suppose that such a pair of triangles exists. Let 
CC Pi AB = X, and suppose, without loss of generality, that X ?£ A. Then 
XC s XC (C5a). A l so^C = AC; thus^lX 1 CC (2, 4.1), a contradiction. 

1.5. All perpendiculars to all lines exist. 

Proof (see Figure 1C). Suppose the contrary; then there exists no pair of 
perpendicular lines (1.3, Corollary). Let A, M be distinct points. There exists 
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FIGURE IB 

Q 6 line A M such that M bisects A Q. Let 0 be any point not on line A M. Then 
OA jâ OQ, for otherwise OM J. AQ, a contradiction. There exists P 6 ray OA 
such that OQ = OP, and there exists B Ç ray OQ such that 0,4 s OB. Then 
p ^ ^ Q ^ ^ , and either [OPA] and [0QJ3] (as shown) or [OAP] and [OJBÇ]. 

In either case, seg AQ meets seg PB a t 5, say. The points A, Q, B, P are all 
isometric; hence AP = BQ = QJ3. Also 4<2 = £ P (C5b). 

There exists X Ç ray SA such that 5J5 = SX. Now 5,4 ^ 5 ^ , for otherwise 
AOSA = AOSB, contradicting 1.4; hence X ^ ,4. Suppose [5X^] ; the proof is 
easily adapted if [&4X]. There exists F £ ray Q/A such that AX = QY. Since 
X and Fa re isometric to A, B, P, and <2, we easily see that XY = AQ. Hence 
XY = BP. Also SX = SB; thus 5 Y = SP. Hence 

PX s F £ (C5b) S J B F . 

Hence A.4XP = AQYB. 
There exists F ' € AQ such that 4 bisects XY'. Then M bisects F F . Let B' 

be the reflection of B in Jlf, and let B" be the reflection of B' in A. The reflec­
tions in ikfand A are isometries (2, 3.5) ; thus AQFJ3 = A A Y'B' =AAXB". 
Hence AAXP = AAXB". However, P , B" lie on opposite sides of AX. This 
contradicts 1.4. Hence our supposition is incorrect. Hence all perpendiculars to 
all lines exist. 
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FIGURE 1C 

1.6. The reflection in every line exists and is an isometry. 

Proof. The existence of the reflection follows from 1.5. For the rest of the 
proof, see (2, 4.6). 

1.7. If OA and OB are distinct congruent segments, then (i) the mid-point of AB 
exists, and (ii) the mid-point is constructible. 

Proof (i) (seeFigure ID) . If 0 , ; ! , and J3 are collinear, then Ois the mid-point 
of AB. If not, then there exists a line through 0 perpendicular to AB (1.5) 
meeting AB at P , say. Let 0* be the reflection of 0 in AB. Then 
AO' = AO s BO s BO'. UP = A, then the collinear points 0, 4 , and 0' are 
congruent to the triangle 0B01. This contradicts (2, 3.2); thus P p̂  A. 
Similarly, P ^B. Hence A 0 0 0 1 = AOO'B. Hence P 4 = PB (C5a) ; thus P 
is the mid-point of AB. 

(ii) (see Figure IE) . If 0, A, and JB are collinear, then there is nothing more to 
construct. If not, let F be a point between 0 and A, and construct Z G ray OB 
such that OY == OZ. Let Af be the mid-point of AB, and let Oikf Pi AZ = 5. 
Since Oikf JL ^45 by the proof of (i), the reflection in OM interchanges A and B. 
Hence this reflection maps Z onto Y (1.6 and 2, 3.4). However, A, S, and Z are 
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O' 
FIGURE ID 

collinear, therefore their reflections B, 5, and Y are collinear (1.6 and 2, 3.4). 
Hence S = AZ Pi BY; thus 5 is constructible. Therefore M = OS H AB is 
constructible. 

We can now prove (2, 5.3, 5.4 and 5.6), on the construction of perpendiculars. 
We can also prove C5c, though this is unnecessary, on the same lines as the 
proof of 1.7(H). 

O 

A M B 
FIGURE I E 
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2. Further remarks. 

Remark (a). In the comments on the proof of (2, 6.5), I stated that 
theorem 2.1 below was easily proved. This is not so; the simple proof that 
holds when all points are isometric cannot be used. I do not know whether 2.1 
is true in a one-dimensional geometry. 

2.1. If A, B, and C are collinear points in an absolute plane, and if AB and BC 
have mid-points, then AC has a mid-point {unless A = C). 

Proof (see Figure 2A). Let M and N be the mid-points of AB and BC, and 
assume that A ^ C. Denote the reflections in M, B, and N by pMl pBl p^, and 
write PMPBPN = P- Then Ap = C. Also p maps seg A C onto seg CA', say, where 
AC = CA' and AC, CA' have opposite senses (1, p. 75 etseq.). However, A and 
C are isometric, therefore AC = CA ; hence A' = A. Hence Cp = A. 

FIGURE 2A 

Let P and Q be points on the perpendiculars to ABC at A and C such that 
P and Q lie on opposite sides of ABC and AP = CQ. Then Pp = Q and 
Qp = P since p is an isometry (using 2; 4.8). 

Let PQ r\ A C = X. Then Zp = (PQ)P H (4 C)p = <2^ Pi CA = X. Hence 
XA = (XA)p = XC\ thus X is the mid-point of AC. 

Remark (b). I am still unable to deduce axiom C4** from the previous axioms 
alone, but it can be deduced if we also assume the axiom of Archimedes 
(1, p. 221) suitably reworded in terms of isometric points. Thus, to show that 
C4** cannot be deduced from the previous axioms we should have to produce a 
non-Archimedean counterexample. 

A. (THE AXIOM OF ARCHIMEDES). If A and A\ are distinct isometric pointsy 

and if P Ç ray A A i, then there exists a positive integer n and a sequence of points 
A, Ai, A2, . . . , Anall isometric to A, such that [AAiA2 . . . An], 

AAi = A^2 s An—\An 

and [APAn]. 
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2.2. Assuming axioms Cl*-C4* and A, if AB and CD are segments and if 
AB = CD, then BA = DC. 

Proof (see Figure 2B). I t is clear that A, C, Ah G, A2l C2, . . . (as defined 
below) are isometric, and so are B, D. The notation "DC < BA" means that 
if X is the point on ray BA such that DC = BX, then [BXA]. 

Suppose that BA ^ DC, and suppose, without loss of generality, that 
DC < BA. Then there exists Ai such that [BAi^] and BAX = DC. Since 
AB = CD, there exists G such that [CCiD] and ,4,41 = CCX. Then 4 i 5 = CXD. 
Since 5,41 = Z>C, there exists A2 such that [-B42^i] and BA2 = DCi. Then 
A2Ai = CiC = AiA; hence AXA2 = AAX. Since AiB = CiD, there exists C2 

such that [GCVD] and AiA2 = C\C2. Then ,42i3 = C2D. Proceeding in this 

• • • o 
A A{ A2 B 

• • • o 
C Ci C2 D 

FIGURE 2B 

way, we obtain an infinite sequence A, A±, A2, . . . such that [AAnB] for every 
positive integer n. This contradicts A. Hence BA = DC. 

Remark (c). At the end of (2, § 1) I gave an example of a one-dimensional 
geometry satisfying axioms Cl*-C4* and C4**, in which not all points are 
isometric and not every segment has a mid-point. (See also the remarks at the 
end of 2, § 7.) This is an absolute geometry, since C5a is satisfied vacuously 
and C5b trivially. 

I have found no example of a plane satisfying Cl*-C4* in which not all 
points are isometric, but it is possible to construct examples in which not every 
segment has a mid-point, in the following way. 

Let the points of a plane T consist of all ordered pairs (a, b) of rational 
numbers, and let the lines of w consist of all points satisfying rational linear 
equations. We define geometrical order in the obvious way. To be more precise, 
if (&i, &i), (a2, b2), (a3, bz) are collinear, then (a2, b2) lies between the other two 
points if (i) ai < a2 < az or a±> a2> a3, or if (ii) ax = a2 = a3, and b± <b2< 63 
or bi > b2 > bz. I t is easily verified that the axioms of order (1, Chapter II) 
are satisfied. 

Let 5 denote the set of all rational numbers of the form p/3r, p an integer, r a 
non-negative integer (cf. the example at the end of 2, § 1). Then both S and Q 
(the set of all rational numbers) are countable and totally ordered. Neither has 
a least or a greatest element, and between any two distinct elements of S (or Q) 
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there lies another element of S (or Q). Hence there exists a one-to-one order-
preserving mapping from Q onto 5 (4, pp. 209, 202). If a G Q, denote the 
corresponding element of S by a!'. 

Define the distance between (ah bi) and (a2, b2) to be (i) \a,\ — a2\ if 
ci\ 9^ a2

f (i.e., if a! ^ a2), (ii) \bi — b*\\ia,\ — a2' (i.e.,ifai = a2). If we then 
define congruence in terms of distance in the obvious way, we find that axioms 
Cl*-C4* and C4** are satisfied. All points are isometric, and we need only 
discuss C3*, as the verification of the other axioms is simple. Suppose that we 
redefine the geometrical order in -K in the following way. If (ai, &i), (a2, b2), and 
(a3, 63) are collinear, then (a2, &2) lies between the other two points if 
(i) a,\ < a2' < a% or a{ > a2 > a3', or if (ii) a / = a2 = a3', and 6 / < b2 < b% 
or b\ > b2 > bz'. Then this definition yields the same geometrical order as 
before, because of the order-preserving mapping from Q onto S. If we think of 
geometrical order in terms of this new definition, it is clear that axiom C3* is 
satisfied. 

Since the line y = 0 is isomorphic to the line in the example at the end of 
(2, § 1), we see that not every segment has a mid-point. 

An alternative possible definition of the distance between (ai, bi) and (a2, b2) 
is max(\ai — a2'|, \bi — b2\). 

(The reader's attention is drawn again to the note at the end of the introduc­
tion.) 
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