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Abstract

Let G be an infinite, locally finite, connected graph with bounded degree. We show that
G supports phase transition in all or none of the following five models: bond percolation,
site percolation, the Ising model, the Widom—Rowlinson model and the beach model.
Some, but not all, of these implications hold without the bounded degree assumption.
We finally give two examples of (random) unbounded degree graphs in which phase
transition in all five models can be established: supercritical Galton—Watson trees, and
Poisson—Voronoi tessellations of R¥ for d > 2.
Keywords: Percolation; Ising model; Widom—Rowlinson model; beach model; Galton—
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1. Introduction

Over the last few decades, it has become increasingly clear that there are important
connections between percolation theory on one hand, and the issue of Gibbs state multiplicity
in Markov random fields on the other. Examples of such connections are the Fortuin—Kasteleyn
representation of Ising and Potts models [1, 16, 20, 23], the disagreement percolation technique
for establishing Gibbsian uniqueness [5, 6], and the equivalence between spin percolation and
Gibbs state multiplicity for Ising and Potts models on the square lattice [12, 15]; see also [18]
for a general introduction to such ideas. Here we shall focus on the two basic percolation
models (bond percolation and site percolation) and on three different Markov random field
models (the Ising model, the Widom—Rowlinson model, and the beach model). Suppose for
the moment that the graph structure on which the models live is taken to be the integer lattice
74, with edges connecting (Euclidean) nearest neighbors. It is well known that all five models
exhibit interesting phase transition phenomena for d > 2, whereas none of them do ford = 1.
The purpose of this paper is to investigate to what extent such a dichotomy can be extended to
the setting of general graphs.

Let § denote the class of all infinite, locally finite, connected graphs, and let §” be the class
of all such graphs with bounded degree. Let Gpp (or Gsp) be the class of graphs in § whose
critical value p2°™ (or pgit) for bond (or site) percolation is less than 1; careful definitions
will be given in the next section. Furthermore write §; for the class of graphs G € § which
exhibit phase transition in the Ising model, in the sense that there exist some parameter values
for which the Ising model on G has more than one Gibbs measure. Similarly, we write Gwr (or
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FIGURE 1: Implications and non-implications for graphs in the class §. Dotted arrows are the remaining
implications which we have been able neither to prove nor disprove.

gsm) for the class of graphs in § which exhibit phase transition for the Widom—Rowlinson (or
beach) model. Finally, set 9{’3]3 = 6% N gpp, and define ng’P, 9{’, %R and ggM analogously.
Our first main result says that if G is a bounded degree graph, then either

(i) G has p>d < 1, psi® < 1, and exhibits phase transition for all three Markov random
field models, or

(ii) G has p2™ = psi® — [, and does not exhibit phase transition for any of the three
Markov random field models.

This admits a slick formulation as follows.

Theorem 1.1. §5, = 92, = 6 = g4 = 9o

Without the bounded degree assumption, the situation is less clear-cut, as indicated in the
next theorem.

Theorem 1.2.
(i) Gwr C Gsp C §Bp = G1;
(ii) §Bm € Gsp;
(iii) gsp Z GBwm.

Perhaps this result is best visualized in the diagram of implications (and non-implications)
given in Figure 1.

Some of the implications of the above results are known from previous work. The inclusion
gsp C Gpp is immediate from the relation p?"“d < pf,“e, which is due to Hammersley [28].
The equivalence $pp = § is clear from the work of Aizenman et al. [1], although they stated
their results only in a Z¢ setting. An example of a graph which is in §sp but not in Gwr can
be found in Brightwell ef al. [8].

It would of course be desirable to obtain a more explicit structural characterization, for
instance of graphs with p?"“d < 1. However, a general result of this kind appears to be fairly
remote. For trees, p2°"d = psi and Lyons [36] characterized the critical value in terms of
a rather explicit quantity known as the branching number of the tree; in particular, pf,“e <1
if and only if the branching number is strictly greater than 1. Benjamini and Schramm [2]
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conjectured that a Cayley graph of an infinite finitely generated group has pf,“e

is a finite extension of Z. Theorem 1.1 stresses the importance of this conjecture.

The rest of this paper is organized as follows. In Section 2 we give careful definitions of
all models under consideration. In Section 3 we recall the random-cluster representations
of the Markov random field models; these will play a key role in the following sections.
The proof of Theorem 1.2 is split into two sections: the positive implications are proved in
Section 4, whereas the non-implications are demonstrated in Section 5. Theorem 1.1 is proved
in Section 6. In Section 7 we provide a sufficient condition on unbounded degree graphs for
the conclusions of Theorem 1.1, and give two examples of (random) graphs which satisfy
this condition: supercritical Galton—Watson trees, and Poisson—Voronoi tessellations of R4
for d > 2. Some final remarks, concerning possible extensions to other models, are given in
Section 8.

< 1 unless it

2. The models

2.1. Bond percolation

In standard bond percolation on a graph G = (V, E) € § with parameter p € [0, 1],
each edge e € E is independently assigned value 1 (open) with probability p, or value O
(closed) with probability 1 — p. We write ,ufép for the corresponding product probability
measure on {0, 1}¥ (note that we are suppressing the dependence on G in the notation). A
cluster is a (maximal) connected component of open edges. The primary focus of percolation
theory is on the possible occurence of infinite clusters. The existence of at least one infinite
cluster is not influenced by changing the status of any finite set of edges, so by Kolmogorov’s
0-1 law the ,ugp—probability of having some infinite cluster must be 0 or 1. An obvious
coupling argument shows that the probability of having some infinite cluster cannot decrease
as p increases. Combining these two observations, we have the existence of a critical value
pPond — pbond(Gy € [0, 1] such that
if p < pgond

1 if p > pbond,

pho(3 some infinite cluster) =
(At p = pEO“d, the probability of existence of some infinite cluster may be either O or 1,
depending on the choice of G.) We define

gep = (G € § : p2"(G) < 1.

By far the most studied choice of G is the integer lattice Z¢ in d > 2 dimensions; see
[19] for an introduction to percolation theory with emphasis on the 7Z¢ case. Recently, there
has been an upsurge of interest in percolation beyond this setting; see e.g. [4, 2, 26], where
the focus is mainly on Cayley graphs and other quasi-transitive graphs, which still have some
structure that can be exploited in various ways. In this paper we basically drop all such struc-
ture. The obvious cost of doing so is that we are able to say much less about the percolation
behavior.

2.2. Site percolation

Site percolation on G = (V, E) € § with parameter p € [0, 1] is similar to bond percola-
tion, except that the randomness is in the vertices rather than the edges: each vertex v € V is
independently assigned value 1 (open) with probability p, or 0 (closed) with probability 1 — p.
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Write ,ugp for the resulting probability measure on {0, 1}V. Clusters are defined as for bond
percolation, and in the same way as in the bond case we get the existence of a critical value
pite = pSie(G) such that

site
¢
site
e -

0 if
uEp (3 some infinite cluster) = ) p=r
1 ifp>p

We set
Gsp=1{G € §: pi(G) < 1}.

2.3. Markov random fields

Let S be a finite set, and let G = (V, E) be some finite or infinite graph. Let X be some
SV -valued random object, and let r be the corresponding probability measure on SY. For a
vertex set A C V, we define its boundary 9 A as

oA ={x eV \A:3ye Asuchthat x ~ y},

where x ~ y denotes the existence of an edge e € E connecting x and y. The random object
X (or the measure ) is said to be a Markov random field if w admits conditional probabilities
such that for all finite A C V, all € € S, and all n € §V\* we have

n(X(A) =& [ X(VNA)=n) =uX(A) =& X@OA) =n@A)).

In other words, the Markov random field property says that the conditional distribution of what
we see on A given everything else only depends on what we see on the boundary 9 A.

Now take G € §. A consistent set of conditional distributions for all finite A and all
boundary conditions 7 as above is called a specification, denoted @. The specification is said
to be Markovian if

QXN =E1XV\N = =AXA)=§ XV \A) =1)

for all A, all & € S™ and all n,n" € SY\A such that n(dA) = n/(dA). A probability
measure 4 on SV satisfying the prescribed conditional distributions for such a specification
@ is called a Gibbs measure for @. Such measures are automatically Markov random fields,
and the existence of Gibbs measures for a given such specification follows from a standard
compactness argument. In contrast, uniqueness does not always hold. This possible non-
uniqueness of Gibbs measure is of central interest in statistical mechanics, and is also of
primary interest in this paper. All three Markov random field models to be discussed here
(Ising, Widom—Rowlinson and beach) exhibit non-uniqueness of Gibbs measures for certain
G and certain parameter values. For such a parameterized Markov random field model and a
given graph G, we reserve the term phase transition to denote the existence of some parameter
values for which the model, living on G, has more than one Gibbs measure. (For bond or
site percolation, phase transition means simply that the critical value is strictly less than 1.)
The three Markov random field models considered here all possess a =1 symmetry, and
share the feature that phase transition is characterized by a breaking of this symmetry; see
Propositions 2.1, 2.3 and 2.4 later.
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2.4. Ising model

The Ising model on a graph G is a certain random assignment of 41’s and —1’s to the
vertices of G. It was introduced in the 1920s as a model for ferromagnetism, and is today the
most studied of all Markov random field models; see e.g. [17, 31] for introductions and some
history. Take G = (V, E) € §. A probability measure 7 on {—1, 1}V is said to be a Gibbs
measure for the (ferromagnetic) Ising model on G at inverse temperature § > 0 if it is Markov
and for all finite A C V and all n € {—1, 1}?4, & € {—1, 1} we have

XM = XON =n=Z"exp|B| Y s+ Y. E@nm | |. M)

(x,y) (x, )
X, yeA xeA,yedA

Here Z is a normalizing constant which depends on 8, A and n but not on &, and (x, y) means
that we sum only over x and y that have an edge in common, and that each such nearest-
neighbor pair is counted only once.

The study of phase transition in the Ising model is greatly facilitated by the existence of

Bt p.- that are extreme in the sense of stochastic

ordering (the precise meaning of this is given in Section 3.4 below). The ‘plus measure’ nlﬂ +

is constructed as follows; the ‘minus measure’ is obtained analogously.
Let {An},2 | be aincreasing sequence of finite subsets of V converging to V in the sense that

each v € V isin all but finitely many of the A,’s. We refer to such a sequence as an exhaustion

of G. Fix a vertex o € A called the origin. For each n, let nlﬂ "% be the probability measure

on {—1, 1}V corresponding to picking X € {—1, 1} by setting X (V \ A,) = +1 and picking
X (Ay) according to (1) with A = A, and n = +1. Standard monotonicity arguments based

on Holley’s Theorem (Theorem 3.7 below) show that the measures nlﬂ mE converge to a Gibbs

measure /" which is independent of the choice of exhaustion, and that the following result

holds; see e.g. [23] or [18] for details.

two particular probability measures 7r; * ' and &

Proposition 2.1. For the Ising model on G € G at inverse temperature B, the following
statements are equivalent.

(1) There is more than one Gibbs measure;
.. + —
(i) nlﬂ # nlﬂ N

i) 7 T (X (0) = +1) > 1

(iv) de > 0 such that nlﬂ’n’Jr(X(o) =41) > % + ¢ for all n.

It is also well known that the existence of more than one Gibbs measure is increasing in .
This was originally proved using so-called Griffiths inequalities (see, e.g., [33]); the modern
approach based on the random-cluster model will be indicated in Section 3.4. The following
result is an immediate consequence.

Theorem 2.2. For any G € §, there exists a critical value B, = B.(G) € [0, oco] such that
for B < B. we have that the Ising model on G at inverse temperature 8 has a unique Gibbs
measure whereas for B > B, there are multiple Gibbs measures.
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The graph G supports phase transition for the Ising model if and only if 8. < oo, and we
define

G1=1{G € § : c(G) < o0}, 2

2.5. Widom-Rowlinson model

The Widom—Rowlinson [44] model was originally introduced as a (two-type) point process
inR4. The following discrete variant was studied soon afterwards in [43] and [32]. Each vertex
of a graph G = (V, E) takes values in {—1, 0, 1}, where —1 and 1 should be thought of as two
types of particles with a mutual hard-core exclusion, and O as an empty location. For A C V,
we say that a configuration n € {—1,0, 1}A is WR-feasible if, for all nearest-neighbor pairs
(x, y) in A we have n(x)n(y) # —1. For disjoint vertex sets A and A" and two configurations
nef{=1,0,1}*and n' € {—1,0, l}A/, we write (n vV ) for the configuration on A U A" which
agrees with n on A and with n" on A’.

Take G = (V, E) € §, and fix the so-called activity parameter . > 0. A probability
measure 77 on {—1, 0, 1}V is said to be a Gibbs measure for the Widom—Rowlinson model on
G with activity A, if it is Markov and for all finite A C V, all WR-feasible n € {—1, 0, 1}"’A
and all £ € {—1, 0, 1}* we have

T(X(A) =& | X@OA) = 1) = Z7" WO+ O 1 60, WRfeasible)

where n_(§) and n(§) are the number of —1’s and +1’s in &, and 1{(¢v;)WR-feasible) 1S the
indicator function of the event that (£ Vv n) is a WR-feasible configuration.

Let {A,,};’lo=l be an exhaustion of G, and fix 0 € Aj. Define the measures n\),‘v’l'{’Jr on
B.n

{—1,0, 1}V analogously to T "+ for the Ising model. The same arguments as for the Ising
model give existence of the limiting Gibbs measure

An . A,n,+
Twr = lim myy’
wr = I Twr
A— . . . . ..
and the analogous measure 7y, obtained with minus instead of plus boundary conditions. We

also get the following analogue of Proposition 2.1.

Proposition 2.3. For the Widom—Rowlinson model on G € § with activity parameter A, the
following statements are equivalent.

(1) There is more than one Gibbs measure;
(if) 7Ty # T
(iii) my (X (0) = +1) > 7y (X (0) = —1);
(iv) Je > 0 such that iy (X (0) = +1) = wyp T (X (0) = —1) + ¢ for all n.

On the other hand, the existence of more than one Gibbs measure may fail to be increasing in
A, so there is no Widom—Rowlinson analogue of Theorem 2.2 (see Section 3.4). We therefore
have to settle for a definition of Gwr which is slightly less elegant than (2): Gwr is the set of
graphs G € § with the property that there exists some A > 0 for which the Widom—Rowlinson
model on G has more than one Gibbs measure.
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2.6. Beach model

The beach model was introduced by Burton and Steif [9] as an example of a so-called
subshift of finite type which has more than one measure of maximal entropy despite having
strong irreducibility properties. The following formulation is slightly different from, but
(essentially) equivalent to that of Burton and Steif.

Take G = (V, E) € §. Each vertex will be assigned a value from {—2, —1,1,2}. A
configuration n € {—2, —1, 1, 2} with A C V is said to be BM-feasible if for each nearest
neighbor pair (x, y) we have n(x)n(y) > —1. In other words, two spins with different
signs may not sit next to each other unless they are both 1. A probability measure 7 on
{—2, —1, 1,2}V is said to be a Gibbs measure for the beach model on G with parameter M > 1
if for all finite A C V, w-ae. n € {—2, —1, 1,2} and all £ € {2, —1, 1, 2}* we have

TX(A) =& | X@OA) =n) = 27" (M — 1)'2OT 2@ 1 B feasible) - 3)

Here n_»(¢) and n42(¢) are the number of —2’s and +2’s in £&. The reason why we use
the quantifier ‘w-a.e’ rather than ‘all BM-feasible’ for the set of boundary conditions is that
certain BM-feasible boundary conditions n may cause (§ V 1) to be not BM-feasible for all
£ € {—2,—1,1,2}". (Compared to the original formulation of the model in [9], the present
formulation has the advantages of a smaller state space and a real-valued (rather than integer-
valued) parameter.)

Again fix an exhaustion {A,}7° | and 0 € Aj. Let ng]\;["’Jr be the probability measure on
{2, —1, 1,2}V corresponding to taking X (V \ A,) = 2 and picking X (A,) according to (3)
with A = A, and n = 2. As usual, we get a limiting ‘plus measure’

an analogous ‘minus measure’ né{;{ (obtained with boundary condition —2 rather than 2), and
the following result.

Proposition 2.4. For the beach model on G € § with parameter M, the following statements
are equivalent.

(i) There is more than one Gibbs measure;
(i) gy # Ty
(iil) gy (X(0) = 1) > L;
(iv) Je > 0 such that né/l]\;["’Jr(X(o) >1)> % + ¢ for all n.

Unlike the Widom—Rowlinson model, the beach model has sufficient monotonicity proper-
ties to imply the following analogue of Theorem 2.2.

Theorem 2.5. For any G € §, there exists a critical value M. = M.(G) € [1, oo] such
that for M < M. we have that the beach model on G with parameter M has a unique Gibbs
measure whereas for M > M, there are multiple Gibbs measures.

For G = 7¢, this result was first obtained by Higgstrém [21]; in Section 3.4 we shall prove
the full result using the random-cluster approach. We define

gem ={G € § : Mc(G) < oo}

In this language, the main result in [9] says that 74 e gpmMm for d > 2. Alternative proofs of
this result were later given in [21] and in [23].
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2.7. The other end of the parameter space

Our main results (Theorems 1.1 and 1.2) concern the ‘top end’ of the parameter space for
the five models under consideration, i.e. what happens when p, B, A and M are sufficiently
large. One can of course consider the analogous problem at the other end of the parameter
space, where p, B8, A and M are small. For instance, does there exist a p > 0 such that
php (3 some infinite cluster) = 0?

For bounded degree graphs, the answer is yes, because it is well known (and easy to prove)
that pEO“d(G) > 1/(A — 1) when all vertices in G have degree at most A, and the same bound
holds for site percolation. The random-cluster methods in Sections 3, 4 and 6 can then be used
to show that 8.(G) > 0 and M.(G) > 1, and also that the Widom—Rowlinson model on G has
a unique Gibbs measure for sufficiently small A > 0.

For unbounded degree graphs the situation is less clear-cut. If pf,“e(G) > 0, then we can
use random-cluster methods (or disagreement percolation [6]) to show that B.(G) > 0 and
that the Widom—Rowlinson model on G has Gibbsian uniqueness for small . We do not see
how to conclude similarly that M.(G) > 1 in this situation.

3. The random-cluster representations

In this section we recall the random-cluster representations of the three Markov random
field models under consideration. In the final subsection we also recall a key result on stochastic
domination (Holley’s theorem), and use it to demonstrate the monotonicities needed in Theor-
ems 2.2 and 2.5.

3.1. FK representation of the Ising model

It is today widely recognized that the random-cluster model, originally introduced by
Fortuin and Kasteleyn [16], is one of the most important tools for studying the Ising model. It
is customary to start by defining the random-cluster model on a finite graph, but we shall go
directly to the context of an infinite graph G € § with an exhaustion {A,}° . (For gentler
introductions, the reader may turn to [20] or [23].)

Define E5, C E as the set of edges that have at least one endpointin V \ A,. The ‘wired’
random-cluster measure ¢;"”"? for A, with parameters p € [0, 1]and g > 0 is defined as the
probability measure on {0, 1}¥ which to each & € {0, 1}F assigns probability

o7 E) =27 MO = p) O g O e ) foran e€E\Ep, )

where ng (or n1) is the number of edges in E 4, taking value O (or 1), and k(§) is the number
of connected components in £ (including isolated vertices) that do not intersect V \ A,. Note
that 1ig(e)=1forall ce£\E,,} takes value 1 for only finitely many &, so that in particular the
normalizing factor Z~! is well-defined.

The usefulness of the random-cluster model for studying the Ising model should be clear
from the following two results.

Proposition 3.1. Let X be the {—1, 1}V -valued random spin configuration defined as follows.
First, pick an edge configuration Y € {0, 1}F according to the random-cluster measure ¢>In’p’q
with p = 1 —e 2P and g = 2. Second, obtain X from 'Y by assigning spins to V in such a way
that:

(1) two vertices in the same connected component of Y always get the same spin,

(ii) any connected component of Y intersecting V \ A, gets spin +1, and
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(ii1) all other connected components independently get spin —1 or +1 with probability %
each.
The distribution of X is then given by nlﬂ’"’Jr.
Proof. This follows from a standard counting argument; see e.g. [23].

Let (0 <+ V' \ A,) denote the event that there is some path of open edges connecting o to some
vertex in V \ A,.

Corollary 3.2. Withp =1 — e %#, we have
2
" (X (0) = +1) = J(U+ ¢ "0 < VA Aw)).
Proof. Immediate from Proposition 3.1.

3.2. Random-cluster representation of the Widom—Rowlinson model

The so-called site-random-cluster model, discussed e.g. in [18], plays a similar role with
respect to the Widom—Rowlinson model as the Fortuin—Kasteleyn random-cluster model does
with respect to the Ising model. The site-random-cluster can also be seen as a lattice analogue
of the (somewhat less elementary) continuum random-cluster model which was discovered
independently by several different research groups and which arises as a random-cluster rep-
resentation of the original continuum model of Widom and Rowlinson [44]; see e.g. Chayes et
al. [13].

Let G = (V, E) and let {A,}72 | be as before. The wired site-random-cluster model ¢(’,{,’é’q

for A, with parameters p € [0, 1]and ¢ > 0 is defined as the probability measure on {0, 1}V
which to each & € {0, 1}V assigns probability

dwr? &) =27 PO = p) D¢ O o)2 forall vevia,)»

where ng (or n1) is the number of vertices in A, taking value O (or 1), and k(§) is again the
number of connected components in £ that do not intersect V \ A,,.

The following analogues of Proposition 3.1 and Corollary 3.2 are well-known and easy to
prove; see e.g. [18].

Proposition 3.3. Let X be the {—1,0, 1}V -valued random object defined as follows. First,
pick Y € {0, 1}V according to the site-random-cluster measure ¢>(,l(,§’q with p = A/(A+ 1)
and g = 2. Second, obtain X from Y by letting X (v) = 0 for each v such that Y (v) = 0, and
assigning +1’s and —1°s to the connected components of 1’s in Y in such a way that:

(1) two vertices in the same connected component of Y always get the same spin,
(ii) any connected component of Y intersecting V \ A, gets spin +1, and

(ii1) all other connected components independently get spin —1 or +1 with probability %
each.

The distribution of X is then given by n\);v’g’Jr.
Corollary 3.4. With p = /(A 4 1), we have

AEIE (X (0) = +1) — T T (X (0) = —1) = ¢iL2 (0 < V \ Ap)).
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3.3. Random-cluster representation of the beach model

The beach model also has a random-cluster representation, introduced in [23]. For lack of
a better name, we call it the beach-random-cluster model.

The random-cluster representation is defined as follows. Again, let G = (V, E) and let
{An};2 | be as before. For a site configuration & € {0, 1}V, define the bond configuration
£* € {0, 1}F by letting

£*(e) = 1 if at least one of its endpoints take value 1 in &

0 otherwise,

for each ¢ € E. The wired beach-random-cluster model ¢§’]\’/7[’q for A, with parameters
p € [0, 1]1and ¢ > 0is defined as the probability measure on {0, 1} which toeach £ € {0, 1}V
assigns probability

dam €)= Z7' PO = p) g Ol forallvevia,)»

where ng (or np) is the number of vertices in A, taking value O (or 1), and £* (&) is the number
of connected components in £* (including isolated vertices) that do not intersect V \ A,.
As in the previous subsections, the following two results are easily established.

Proposition 3.5. Let X bethe {(—2, —1, 1, 2}V—valued random object defined as follows. First,
pickY € {0, 1}V according to the beach-random-cluster measure ¢§’]\1/7[’q withp=M-—-1)/M
and g =2, and let Y* € {0, 1}F be the corresponding edge configuration. Second, obtain the
absolute values of X from Y by letting | X (v)| = Y (v) + 1 for each v € V. Third, assign signs
(4 or —) to X in such a way that:

(1) two vertices in the same connected component of Y* always get the same sign,
(ii) any connected component of Y* intersecting V \ A, gets sign +, and
(ii1) all other connected components independently get sign — or + with probability % each.
The distribution of X is then given by né/l]\;["’Jr.

Corollary 3.6. Withp = (M — 1)/ M, we have
i (X(0) = 1) = 5(1+ gy (0 <> V\ Ap)).

Here <— refers to connectivity in the edge configuration Y*.

3.4. Stochastic domination

For a (finite or infinite) set V and a finite set S of reals, we equip S with the usual
coordinatewise partial order, denoted by <. A function f : S V _s B is said to be increasing if
f(&) < f(n) whenever £ < 1. For two probability measures 1 and i/ on SV, we say that j is
stochastically dominated by |/, writing u <o ', if for all increasing f we have

/fdus/fdu’-

If « <o @ and X and X’ are SV -valued random elements with distributions w and 1’ then we
also write X <gp X’'. By Strassen’s Theorem (see e.g. [33]), this is equivalent to the existence
of a coupling P of X and X’ such that P(X < X') = 1.
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A probability measure 1 on SV is said to be irreducible if, for any &, n € SV such that both
& and n have positive p-probability, we can move from £ to n through single-site flips without
passing through any element of zero p-probability.

The following result, essentially due to Holley [29], will play a key role in most of the rest
of this paper. The proof is the same as Holley’s original proof (which he gave under slightly
stronger conditions); see e.g. [18].

Theorem 3.7 (Holley) Let X and X' be SV -valued random elements with irreducible distri-

butions w and 1', and assume that |1/ assigns positive probability to the maximal element of
SV. Ifforallv e V,alls € S, p-a.e. € € S\ and p/-a.e. n € S\ such that £ < n we
have

pX@) =s | XV \{v) =& </ X'() =5 | X'(V\{v}) =n),
then u <o 1.

The power of the random-cluster method in conjunction with Holley’s Theorem is well
illustrated by considering the problems of monotonicity in parameter values mentioned in
Sections 2.4-2.6.

Consider first the Ising model on G € § at two different parameter values 81 < B>. We want
to show that if the Ising model on G at inverse temperature §; has multiple Gibbs measures,
then the same is true for the Ising model on G at inverse temperature f>. To do this, we use
the random-cluster approach devised in [1]. Set p; = 1 — e 281 and p2=1- e 282 and
consider the random-cluster measures ¢>I" P12 and ¢>I" P22 A direct calculation shows that the

conditional ¢>I" P ’z—probability that an edge e € E,, is open given everything else, is given by

p if the endpoints x and y of e are either
5 connected by an open path in &, or are both
P (Y () =1|Y(E\{e}=§) = in open clusters of & that intersect V \ A,

otherwise.

4)

Since this conditional probability is increasing both in p and in &, we may directly apply
Theorem 3.7 to ¢! 2 and d)f”pz’z, and deduce that

1,2 2,2
¢ <0 ¢ (5)
(More precisely, we apply Theorem 3.7 to the projections of ¢>;”p‘ 2 and ¢>I"’p2’2 on {0, 1}Ean,
to get stochastic domination between the projected measures. The full stochastic domination
(5) follows easily. We will frequently commit this kind of abuse of language.) In particular,
P70 o VAL <%0 < V\ Ay,

whence, by Corollary 3.2,

2 (X (0) = +1) < 7> (X (0) = +1).
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Hence, if the statement in Proposition 2.1(iv) holds with § = B, then the same is true with
B = po. Proposition 2.1 then gives the desired conclusion: if there are multiple Gibbs
measures at § = B, then the same thing holds at 8 = f».

Let us next use the same technique to prove the monotonicity claim for the beach model,
made in Theorem 2.5. We need to show, for M; < M>, that if the beach model on G with
parameter M; has multiple Gibbs measures, then the same is true for the beach model on G
with parameter M. This we do by comparison between the beach-random-cluster measures
PrITZ and ¢l with py = (M) — 1)/ M) and py = (Ms — 1)/ Ma. Single-site conditional
probabilities for v € A, under ¢g,]\,/7[,2 can be calculated directly from the definition of beach-
random-cluster measures. We get

pzlflc*(v,é)

n,p,2 =5)=
b Y () =1|Y(V\{v}) =§) = pl=k*@wd 41— p

(6)

where «* (v, &) is the number of connected components containing either v or some vertex
incident to v, in the edge configuration £* corresponding to £. A moment’s thought reveals
that this conditional distribution is increasing both in p and in &, whence by Theorem 3.7 we
have

n,pi,2 n,p2,2
bt <o P (7

The desired conclusion now follows using Corollary 3.6 and Proposition 2.4 (in the same way
that we applied Corollary 3.2 and Proposition 2.1 to the Ising model above).

Finally, we may try to apply the same method to the Widom—Rowlinson model. Single-site
conditional probabilities for v € A, under the site-random-cluster measure ¢(’,{,’é’2 turn out to

be

pzlflc(v,é)

n,p,2 _ _
dwk Y@ =1IYVAW) =8) = g,

®)

where « (v, &) is the number of connected components in & that intersect the neighborhood of
v. This conditional probability is increasing in p but not in &, so the use of Theorem 3.7 to
obtain a Widom—Rowlinson analogue of (5) and (7) is unwarranted. The crucial difference
between the models is that in both the FK random-cluster model and the beach-random-cluster
model, the number of connected components is decreasing in &, whereas in the site-random-
cluster model it is not. This, in turn, is a reflection of the fact that the former two models count
the number of connected components in an edge configuration, while the latter deals with a site
configuration: adding an open edge can never increase the number of connected components,
but adding an open vertex can.

One may ask whether this reflects a fundamental difference between the Widom—Rowlinson
model and the other models, or just a shortcoming of the random-cluster approach. The
(perhaps surprising) answer is that the desired monotonicity of the Gibbs measure multiplicity
phenomenon fails for the Widom—Rowlinson model on certain graphs. Examples of graphs
where the existence of more than one Gibbs measure varies nonmonotonically in A are given
in [8].
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4. Proof of Theorem 1.2 — positive implications

In this section we prove the positive parts of Theorem 1.2. These are:
Lemma 4.1. Gsp € $pp.
Lemma4.2. 4pp C §1.
Lemma 4.3. 41 C 4pp.
Lemma 4.4. Gwr C $sp.
In Section 5, we will then prove the following negative results.
Lemma 4.5. There exists a graph G which is in §pp but not in sp.
Lemma 4.6. There exists a graph G which is in §sp but not in Gwg.
Lemma 4.7. There exists a graph G which is in §sp but not in $am.
Lemma 4.8. There exists a graph G which is in §pm but not in Gsp.
It is clear that Theorem 1.2 follows once we have proved Lemmas 4.1-4.8.

Proof of Lemma 4.1. As mentioned already in the Introduction, this is immediate from the
old result of Hammersley [28] that pEO“d(G) < p*(G) forany G € §.

Proof of Lemma 4.2. Suppose that G € §pp, and pick p’ € (p2°"(G), 1). Let (0 <> 00)

denote the event that o is in an infinite cluster. Set o = ,ufé;)(o <> 00), and note that « > 0 by
the choice of p’. Set p = 2p’/(1 + p’) so that p’ = p/(2 — p). Consider the random-cluster
measure ¢>I" P ’2, and note that its single-edge conditional probabilities in (4) are bounded from
below by p’. Theorem 3.7 therefore implies that

n.p.2 I
o =D HUgp

whence
o170 < VA = pihpo & V\ A)
> php(0 <> 00)
=a,
so that by Corollary 3.2 we have

1
P (X (0) = +1) = —

for g = —% log(1 — p). Since this bound is independent of n, we have that the statement in
Proposition 2.1(iv) holds with ¢ = «. The Ising model on G with parameter § therefore has
more than one Gibbs measure by Proposition 2.1, so G € § as required.

Proof of Lemma 4.3. Suppose that G € § \ $pp; we need to show that G € § \ 1. Let
B > 0 be arbitrary, and set p = 1 — e 28, Since G ¢ g\ $Bp, wWe have ,ufép(o <~ o0) =0,
whence

lim ub,(0 < V\ A,) =0. 9)
n—oQ
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By Theorem 3.7 and the fact that the conditional ¢>I" P ’2—probability in (4) is bounded above

by p, we have that the projection on {0, 1}£a of ¢/ is stochastically dominated by the
projection on {0, 1}£4n of b, In particular,

P20 o V\ Ap) < ubplo < V\ Ay,
so that by (9) we have

lim ¢/""*(0 < V \ A,) =0.

n— oo

Corollary 3.2 then implies that

lim 7" (X(0) =+1) =1
n—oQ

so that, by Proposition 2.1, the Ising model on G with parameter 8 has a unique Gibbs measure.
But 8 was arbitrary,so G € § \ 91.

Proof of Lemma 4.4. We proceed similarly to the proof of Lemma 4.3: we assume that
G € G\ Gsp, and need to show that G € § \ $wr. Let A > O be arbitrary, set p = A/(A + 1)
and p’ = 21/(21 + 1), and note that 2p/(p + 1) = p’. By the choice of G, we have

,u,gp(o < 00) = 0, so that
lim ulp(0 <> V\ Ay) = 0. (10)
n—o0

The conditional d)(’,\’,’é’z—probability in (8) is bounded above by 2p(p + 1), i.e. by p’. Theorem
3.7 therefore implies that the projection on {0, 1}4n of d)(’,{,’é’z is stochastically dominated by

the projection on {0, 1}£4n of ,u,gl;. Hence,
Pl (0 < V\ Ay) < ulp(o < V\ Ap),
which in conjunction with (10) implies that
. n,p,2 _
nl;n&)d)WR (o< VA, =0.
Corollary 3.4 then implies that
lim (i (X (0) = +1) = myr T (X (0) = ~1) =0

whence by Proposition 2.3 the Widom—Rowlinson model on G with parameter A has a unique
Gibbs measure. Since A was arbitrary, we have G € § \ §wr as desired.

5. Proof of Theorem 1.2 — counterexamples

In this section we finish the proof of Theorem 1.2 by providing the counterexamples needed
to demonstrate Lemmas 4.5-4.8. All examples will explicitly contain a sequence of vertices
whose degree tends to oo (this is no surprise in view of Theorem 1.1).
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Proof of Lemma 4.5. Construct G = (V, E) as follows. For some sequence {k;}7°, of
positive integers, let

V={w.v1.... ) Ufvij i €{0,1,...}je{l,....k})
and
E={{v,v;}:ie{0,1,...}, jell,.... k}}
Uf{vij,vig1y:ief0,1,...}, jell, ..., k}}

Pictorially, G consists of the vertex sequence vg, vy, ... in which each pair (v;, vi4+1) is
connected by k; parallel paths of length 2. For site percolation on G, it is clear that vy fails to
be in an infinite cluster if any of the vertices vg, v1, ... is closed. Hence, ,u,gp(vo < 00)=0
forany p < 1,50 G € § \ sp (regardless of the choice of {k; }7°).

On the other hand, consider bond percolation on G. We have

1hpi # vigr) = (1 — pHli
so that

php (o < 00) = uhp(N2ofvi < vit1})

o
= l—[ﬂgp(vi < vit1),

i=0
which is positive if and only if
o0
Z(l — pHki < 0.
i=0

For instance, taking k; = logi/log?2 rounded up to the nearest integer, we get pEO“d(G) =
1/4/2, so that G € §gp.

Proof of Lemma 4.6. The counterexample G € sp \ $wr will be constructed by ‘decorat-
ing’ another graph G’ with ‘dead ends’. G’ can be taken to be any graph whose critical value
for site percolation is strictly between 0 and 1; for concreteness we take G’ = (V', E’) to
be the usual square lattice, i.e. V' = 72 and E’ consists of all pairs of vertices at Euclidean
distance 1 from each other. It is well known that pf,“e(G’ ) is strictly between 0 and 1; see e.g.
[19].

To obtain G = (V, E) from G’, we add a number of edges coming out of each v € V', and
each of these edges ends up in a single new vertex which has no further edges incident to it.
More precisely, let {k, },cy+ be positive integers associated with the vertices in G’, and set

V=V U veV,ie{l,...,k}}
and
E=EU{{v,w}:veV,ie{l,...,k}}.

The only assumption we need to make on {k, },cy- is that k,, tends to infinity as we move away
from the origin in V", i.e. that for any M there are at most finitely many v € V' withk, < M.
To show that G € Gsp \ $wr, what we need to do is to show
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(i) pi(G) < 1, and

(i1) forany A > 0, the Widom—Rowlinson model on G with parameter A has a unique Gibbs
measure.

Since G’ is a subgraph of G, we obviously have
pgite(G) < pgite(G/)’ (11)

so (i) is immediate (in fact, (11) holds with equality).

It remains to prove (ii). Fix A > 0. Let {A,};2 | be an exhaustion of G with the property
that for all w} and all n we have w! € A, if and only if v € A,. Alsoset A), = A, NV’
for each n. Consider the measure n\),‘v’g’Jr and its projection on {—1, 0, 1 (although here and
throughout the proof, all processes live on G rather than on G’). For any v € A/,, we have

0 if £(u) = —1 for some
TR (X@) =1] XA, \{v) =§) e A withu ~ v
miR (X@) =01 XA \h =8 | (AeN
20+ 1 ’

this follows easily by summing the conditional probabilities of all possible configurations
ne(—1,0, [Jvwi "} A similar formula holds for

TR T (X @) = =1 XA\ o) =)
TR T (X () =0 X(A,\ {vh =)

and it follows that

A1k
An+
TWR (X(v)e{—l,l}IX(Aﬁ,\{v})=$)52k<2k+1> . 12)
Translating this to the random-cluster representation using Proposition 3.3, we get, with
p=2r/G+1),
ky
n,p,2 _ _ A+1
Pwr Y (@) =1]Y(A,\{v) =n) <24 <2k m 1) . 13)

Fix p’ € (0, pS®(G’)). Note that the right-hand side of (13) tends to 0 as k, — co. By
Theorem 3.7 and the assumption made on {k,},cy’, we can therefore find an m such that

for any n > m, the projection on {0, 1A\ of d)(’,{,’é’z is stochastically dominated by the

corresponding projection of ,ugl;. Since p’ < pSi®(G’), we have
i (A, < VI\ AL =0,
so that
. n,p,2 / / . n,p,2 / / /
nl;ngo dwr (0= VA < nl;ngo dwr (N < VINAY)

< up(Ay, < V/\ A}
—0. (14)
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By Corollary 3.4 and Proposition 2.3, we have that the Widom—Rowlinson model on G with
parameter A has a unique Gibbs measure. Since A was arbitrary, we have (ii), and the proof is
complete.

Remark. The example in the above proof is essentially the same as the one used by Brightwell
et al. [8] to show that for two graphs G and G’, we can have that G is ‘larger’ than another
graph G, yet G € G\ $wr, G’ € $wr. The significance of graphs with this kind of ‘dead end
decorations’ was first discovered by Schonmann and Tanaka [42].

Proof of Lemma 4.7. Let G be as in the proof of Lemma 4.6; we need to show that for any
M the beach model on G with parameter M has a unique Gibbs measure. The proof proceeds
similarly to the proof of Lemma 4.6: a calculation shows that in place of (12), we get

Aon,+ , M ky
T (X () € (=2,2) | X(A,\ () =) < (M — 1) <M_+1>

so that in place of (13) we get (with p = (M — 1)/ M)

Sy =1 YA ) =m < M- 1 (M)
BM = n =n= M1

which tends to 0 as k, — oo. In the remainder of the proof we just need to make one more
modification compared to the Widom—Rowlinson case: the relevant connectivity in the beach

model analogue of (14) is <% rather than <>. We therefore have to pick

p €0, pi*(G")) (15)

where G” is the graph obtained from G’ by adding an edge between any pair of vertices
u,v € 7* whose graph-theoretic distance in G’ is 2. The proof then goes through as for the
Widom-Rowlinson case, although it remains to show that we can pick p’ as in (15), i.e. to
show that pf,“e(G’ "y > 0. This, however, is immediate from Hammersley’s result [27] that any
graph whose degree is bounded by some A has pSi® > 1/(A — 1); we get pfi® > 1/11.

Proof of Lemma 4.8. Let G = (V, E) be as in the proof of Lemma 4.5, with k; = logi/log?2
rounded up to the nearest integer. We know from that proof that pf,“e(G) = 1, so we are done
if we can find an M such that the beach model on G with parameter M has multiple Gibbs
measures. Take M = 6 for concreteness (actually, any M > 5 suffices for our argument),
so that the corresponding parameter p = (M — 1)/M for the beach-random-cluster model is

given by p = 5/6. Define the exhaustion {A,}7° , of G by setting
Ap=A{vo,..., v} Ufvij:ief0,...,n—=1}, jell,....k}}

Each v; ; has just two nearest neighbors, whence for v; ; € A, we have that the conditional

pmil-probability in (6) is at least p272/(p272 4+ 1 — p) = 5/9. We can therefore apply
Theorem 3.7 to get that

n,p,2 ~
oM =D M

for each n, where fi is the probability measure on {0, 1}V where each v; takes value 0 a.s., and
each v; ; independently takes value 1 with probability 5/9, and 0 with probability 4/9. To have
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(Vo <—> V \ Ay), it is enough that for all i € {0,...,n — 1}, there is some j € {1, ..., k;}
such that v; ; takes value 1. Since Z;’il (1—-5/9% < oo by the choice of {k; }7°,, we have

Pl vy <> V\ Ay) > ji(vg <= V\ Ap) > ji(vg <> 00)

o0 o0 5 ki
~ *
= H)M(Ui < Vit1) = 1—!) (§> > 0.
1= 1=

This shows that ¢§’]\’/7[’2(v0 s v \ A,) is bounded away from O uniformly in 7, so we can
apply Corollary 3.6 and Proposition 2.4 to deduce that the beach model on G with parameter
M = 6 has multiple Gibbs measures, as desired.

6. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In view of Theorem 1.2, it is enough
to prove the following four lemmas.

Lemma 6.1. §5, € §2..
Lemma 6.2. §%, € 95
Lemma 6.3. %’P - ggM.
Lemma 6.4. g5, C 65..

The proofs of Lemmas 6.1 and 6.4 use the following result of Liggett et al. [34]. For
G = (V,E) € §, consider some probability measure v on {0, 1}V, and a corresponding
{0, 1}V-valued random element X. We say that v is 1-dependent if X(A) and X (B) are
independent for all finite disjoint edge sets A, B C E such that no pair (vy, v2) with v; € A,
vy € B, share an edge.

Theorem 6.5. (Liggett et al..) Suppose that G = (V, E) € §b. For each p < 1, there exists
some p' < 1 such that the following holds: for all 1-dependent probability measures v on
{0, 1}V with the property that
v(X()=1)>p' forallveV,

we have v >p ,u,gp.

Next, let v be a probability measure on {0, l}E, and let Y be the corresponding {0, l}E—
valued random element. We say that v is 1-dependent if X (A) and X (B) are independent for
all finite disjoint edge sets A, B C E with the property that no pair (e, e2) with e; € A,

e» € B, share an endpoint. The following edge version of Theorem 6.5 follows immediately
from the original vertex result by applying it to the graph G’ = (V’, E’) with V/ = E and

E' ={{e1,e2} € E x E : e1 and e, share an endpoint in V}
(note that if G has bounded degree, then so has G).

Corollary 6.6. Suppose that G = (V, E) € §P. For each p < 1, there exists some p' < 1
such that the following holds. For all 1-dependent probability measures v on {0, 1}£ with the
property that

v(X(e) =1)>p' foralle € E,

we have v >p ,u,gp.
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Proof of Lemma 6.1. Fix G € 9{’3]3 and p € (pEO“d(G), 1). Then pick p’ < 1 as in
Corollary 6.6, and set p” = \/p’. Let X be a {0, 1} -valued random element with distribution
p,gl;/, and let Y be the {0, 1} -valued random element obtained by setting

Y(e) 1 if X(u) = X(v) = 1 for the two endpoints # and v of e
e) =
0 otherwise,

and write v for the distribution of Y. It is clear that v is 1-dependent, and moreover
v(Y() =1 =" =p

for each e € E. By the choice of p’, we have from Theorem 6.5 that v >p ukp, so that by
the choice of p we have v(o <> 00) > 0. However, it is easy to see that the set of vertices that
can be reached from o through open paths in X coincides with the set of vertices that can be

reached from o through open paths in Y. Hence ,bLgl/;:(O < 00) > 0, so that pf,“e(G) < p” and
G € §%p.

In the remaining proofs in this section, A(G) will denote the maximum degree of vertices
in the graph G € /.

Proof of Lemma 6.2. First fix G € %’P and p’ € (pS(G), 1). Thenset p = p'/[p' +
21=AG) (1 — p)]. The quantity « (v, &) in (8) is bounded by A(G), and therefore the condi-
tional ¢{y2% -probability in (8) is bounded from below by p2!=A(@) /(p21=2G) 41— p) = p'.
Theorem 3.7 thus ensures that

n.p.2 r
dwr~ =D Hgps

so that

liminfglh? (0 < V\ Ay) = lim puZ(0 < V\ A,) > 0. (16)
n—oQ n—o0

By applying Corollary 3.4 and Proposition 2.3 in the usual way, we get that the Widom—
Rowlinson model on G with parameter A = p/(1 — p) has multiple Gibbs measures, so that

G € $%r-

Proof of Lemma 6.3. This is similar to the proof of Lemma 6.2. Fix G € %’P and p’ €
(pSe(G), 1), and set p = p'/[p’ + 272G (1 — p')]. The conditional ¢f-probability in
(6) is always at least p2! =2 /(p21=2(G) 1 — p) = p’, so that by Theorem 3.7 we have

n,p,2 .4
M~ ZD Mgp-

Hence (16) holds with ¢(’,{,’é’2 replaced by ¢§’]\’/7[’2. Corollary 3.6 and Proposition 2.4 then allow
us to deduce that the beach model on G with parameter M = 1/(1 — p) has multiple Gibbs
measures, and G € ggM.

Proof of Lemma 6.4. Fix G € ggM and M > M.(G), and set p = (M — 1)/M. The
single-site conditional d)ﬁ’l\fl’z—probability in (6) is bounded by 2p/(p+1). Hence, Theorem 3.7
implies that

the projection on A, of ¢§’]\’/7[’2 is stochastically a7
dominated by the corresponding projection of ,ué’P,

where p' =2p/(p + 1).
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For some (not yet specified) p < 1, gonsider the {0, l}V—Valued random element X obtained
by picking Y € {0, 1}¥ according to ,ufép, and then setting

X () 1 ifY(e) = 1 for all edges e incident to v
V) =
0 otherwise,

for each v € V. Write v? for the distribution of X. Clearly, v? is 1-dependent, and satisfies
V(X@) =1 = p*9, (18)

for each v € V. Note that the right-hand side of (18) tends to 1 as p — 1, so that Theorem 6.5
guarantees that
p »
VY Z=p Ugp (19)

if p is sufficiently close to 1. We choose p in such a way that (19) holds. By combining the
stochastic dominations in (17) and (19), we get that

whp(0 < V\ An) = il (0 <> V \ Ay). (20)

Using Proposition 2.4, Corollary 3.6 and the choice of M, we get that the right-hand side of
(20) is bounded away from 0 as n — oo. Hence,

p,’gM(o <~ 00) >0

and G € §5p as desired.

7. A sufficient condition for phase transition in unbounded degree graphs

The counterexamples in Section 5, used to show that Theorem 1.1 does not extend to arbit-
rary unbounded degree graphs, are all somewhat artificial. This raises the question of whether
there are natural ways to weaken the bounded degree assumption and still have equivalence
between phase transition in the five models under consideration. In this section we provide
such a condition, and then demonstrate its usefulness by applying it to supercritical Galton—
Watson trees and to Poisson—Voronoi tessellations.

For a graph G = (V, E) € § and a vertex v € V, we write deg;(v) for the number of
nearest neighbors of v in G. By a subgraph of G, we here mean a connected graph H =
(Vu, Eg) whose vertex set Vi is a subset of V, and whose edge set Ey is the set of edges in
E that have both endpoints in Vg .

Theorem 7.1. Suppose that the graph G € §, has a subgraph H = (Vg , Ep) satisfying
(i) p>d(H) < 1, and
(i) sup,ey,, degs(v) < oo.

Then G € 8P N Gsp N G1 N GwR N $BM-
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(Note that condition (ii) is stronger than just assuming that H has bounded degree, because we
are taking the supremum of deg (v) rather than degy (v).)

Proof. Condition (i) says that H € §pp. Since H has bounded degree, we have by
Theorem 1.1 that H € Gsp. Since p?°" and p5i® are non-increasing in the graph structure (in
the obvious sense) we get that G € §pp and G € Gsp. By Theorem 1.2, we then also have
G € §1. It remains to show that G € $wr and G € Gpm; we will show only G € Gwr, as the
proof of G € §pwm is completely analogous.

Pick 0 € Vpy and let {A,};2 | be an exhaustion of G such that 0 € Aj. Also set A, =
Ap N Vg for each n. Pick p’ > pf,“e(H ), and consider site percolation on G with parameter
p’. By the choice of p’, we have that

lim ulp(0 <> V\ Ay) > 0,
n—oo

where (o dy \ A,) denotes the existence of an open path from o to some vertex in V' \ A,
using only vertices in V. Write A for the supremum in (ii). Set p = p’/[p’ +2' =21 — p")],
and consider the site-random-cluster model on G. For v € A}, we have as in the proof of
Lemma 6.2 that the conditional ¢(’,{,’é’2—probability in (8) is bounded from below by p’. By
Theorem 3.7, we therefore have the projection of ¢(’,{,’é’2 on {0, 1} stochastically dominates

the same projection of ,ugl;. Hence,
lim ¢%2%0 < V\ A > lim ¢%220 <5 v\ A
b PWR = 2 Pwr

> lim ulp(o < V\ Ay

n— oo

> 0.

The proof is now finished by the same application of Corollary 3.4 and Proposition 2.3 as in
the proof of Lemma 6.2.

7.1. Galton—-Watson trees

A tree is a graph with no cycles. A Galton—Watson tree is a random tree T = (Vr, ET)
obtained as follows (see e.g. [37, 40] for more extensive discussions). Let L be a non-negative
integer-valued random variable, and set px = P(L = k) for each k. We call {pi}72, the
offspring distribution for 7. The so-called root p € V7 has L neighbors vy, ..., vy called
the children of p. For each v € {vy,...,vr}, we let L, be an independent copy of L, and
introduce L, vertices, adjacent to v, called the children of v, and continue inductively in the
same way. We consider the supercritical case, i.e. the case where E[L] = Z/?io kpr > 1;
except for the trivial case p; = 1, it is precisely for supercritical Galton—Watson trees that we
have P(T is infinite) > 0. Using Theorem 7.1, we shall prove the following.

Theorem 7.2. If T is a supercritical Galton—Watson tree, then
P(T € gep NGsp N G1NGwr N GaMm | T is infinite) = 1.

Note that if L is unbounded, then P(T has unbounded degree | T in infinite) = 1; this is an
easy application of [37, Chapter 3, Prop. 6].
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We remark that it is only the inclusions T € Gwr and T € §pm that are new results; the
other inclusions T € Gpp, T € $sp and T € § are clear from the work of Lyons [35-37].

One may ask whether T € 4ppNGspNG1NGwr N GeMm holds for any tree 7 with branching
number greater than 1 (see any of [36, 37, 40] for the definition of branching number), but the
answer is no. A counterexample arises by, for example, replacing G’ by an infinite binary tree
in the proof of Lemma 4.6.

Proof of Theorem 7.2. Let $g00d be the set of graphs G that contain a subgraph H satisfying
(1) and (ii) in Theorem 7.1. We are done if we can show that

P(T € Ggo0od | T is infinite) = 1.

A tree may or may not be an element of $go0d, and the property of not being an element of
Geo0d 18 inherited, in the sense of Lyons and Peres [37]. By [37, Chap. 3, Prop. 6], we therefore
have that

P(T € Ggood | T is infinite) € {0, 1},
so it suffices to show that
P(T € $g00d) > 0. (21)

Since Y p2gkpx > 1, we can find an n < oo such that Y j_okpx > 1. Define {pr}52,, by
setting

o
po + ij fork =0
Pk = j=n+1
Dk fork=1,...,n
0 for k > n.

Define a subgraph T of T by deleting all vertices with at least n siblings, and all their ancestors.
Also define the subgraph T* by further deleting all vertices that had at least n + 1 children in
T. A moment’s reflection reveals that the distribution of T is that of a Galton—Watson tree
with offspring distribution { px};2 . Hence P(T is infinite) > 0, and furthermore pgite(f) <1
almost surely on the event that 7 is infinite (this is a general property of supercritical Galton—
Watson trees; see e.g. [36, 37]). Next, note that T only differs from 7* by having a (possibly
infinite) number of dead ends. These dead ends influence neither the (in)finiteness of the tree,
nor the site percolation critical value. Hence,

P(T* is infinite and has pf,ite(f*) <1)>0.
Note also that

sup degr(v) <n+1

veT*

by construction. In summary, we have positive probability for the event that T* satisfies (i)
and (ii) in Theorem 7.1, and (21) follows.
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7.2. Poisson—Voronoi tessellations

Here we consider a random graph related to Poisson—Voronoi tessellations in IR¢ with
d > 2. We restrict the discussion to a quick definition and our main result. An extensive
discussion of Poisson—Voronoi tessellations can be found in [38]; see also [3] for a treatment
of percolation on such tessellations.

Let X1, X», ... be the points of a homogeneous Poisson process in R4 with intensity A > 0.
These points will be the nuclei in a Voronoi tessellation of [R¢. More precisely: each X; is
associated with a tile t; defined as

T=f{xeR?: |x — X;| < |x — X;| forall j # i}

where | - | denotes Euclidean distance. Boundaries between different tiles are flat (d — 1)-
dimensional surfaces. We let G be the random graph with vertex set V = {X1, X», ...} and
edge set E consisting of the pairs of points (nuclei) in V whose tiles share such a boundary.
Equivalently, we may define

E={{X; X;}:3x € R such that lx — Xi| =1|x — Xj| < |x — Xi| forallk &{i, j}}.

We remark that for d = 2, a straight-line representation of this graph would form a so-called
Delaunay triangulation; see [38]. For any d > 2, it is easy too see that G a.s. has unbounded
degree.

Theorem 7.3. If G is the random graph constructed as above from a homogeneous Poisson
process in R4 d > 2, with intensity . > 0, then

P(G € 4pNGspNGINGwrR N GaMm) = 1. (22)

Proof. For simplicity and concreteness, we give the proof for d = 2 only; it will be evident
how to generalize it to higher dimensions. The key ingredient (besides Theorem 7.1) of the
proof is a simple renormalization argument, similar to one used by Haggstrom and Meester
[24] in a different context. Note first that by scaling, the probability in (22) is independent of
the choice of A, so we are free to choose A > 0 as we wish. Set ¢ = [1 — p.(G')]/3, where
G’ is the square lattice considered in the proof of Lemma 4.6, and note that since p.(G’) < 1,
we have ¢ > (. Pick the Poisson intensity A large enough so that the probability of seeing no
nucleus in the square [0, 1/9]2 satisfies

172 e
P<Vﬂ[0, 5} =®) 5@ (23)

and then pick M large enough so that

2
P<#=Vﬂ[0,l] }>M)5i. (24)
9 162

Let Ag 0 be the event that for i, j = 0, ..., 8 we have at least 1 and at most M nuclei in the
square

i i+1 j j+1

-, X | =, —1.

9° 9 9° 9
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Note that Ag o depends only on the nuclei in the unit square [0, 112. Fork,l € Z,1let Ak, be the
obvious analogous event concerning the square [k, k 4 1] x [, [ 4 1]. The events {Ax; }x.1cz
are clearly i.i.d., and by (23) and (24) we have

€ €
P(Ar;) > 1 — 81 T 81 = 1—e.

Next, suppose that the event Ag o happens. By simple geometric considerations, we see that

the nucleus of any Voronoi tile intersecting [4/9, 5/9]> must then be contained in [2/9, 7/9]%,

and furthermore that the nucleus of any neighboring Voronoi tile must be contained in [0, 1].

Hence, a nucleus v of a Voronoi tile intersecting [4/9, 5/9]° has deg; (v) < 81M. Similarly,

if the events Ay ; and Ay, occur, then all nuclei v whose Voronoi tiles intersect

PR SEIEY 1) P
-, p— X -, p—
9 9 9" "9

have deg;(v) < 81M.
Now define the subgraph H = (Vy, Eg) of G by letting Vg be as follows. For all k, I € Z,
whenever the two events Ay ; and Ay occur, we include all nuclei v whose Voronoi tiles

intersect
k+4k+1+5 l—i-41—i-5
9’ ol *|'To e

Similarly, whenever the two events Ax; and Ay ;41 occur, we include all nuclei v whose

Voronoi tiles intersect
k+4k+5 l+4l+1+5
— —| x - —1.
9’ 9 9’ 9

No other nuclei are in V.

It follows from the construction that sup,.y, degi(v) < 81M. The set of all (k,[) € 7?2
for which Ay, happens can be seen as a site percolation process on G’, and by the choice of
& we have that this percolation process is supercritical. It follows that H contains an infinite
connected component with probability 1. By Theorem 7.1, we are done if we can show that
pf,“e(H) < 1 with probability 1. Set p = 1 — ¢/(81M), and do site percolation on G with
parameter p. Let By ; be the event that all nuclei in [k, k 4+ 1] x [, [ + 1] are open, and also
define Cy; = Ag; N By;. We see that the events {Cy } je7 are i.i.d., with each Cy; having
probability

P(Cr) = P(Ar,)P(Bi, | A1)
> (1—¢g)p*™
>1—2e> pAG)).

Hence the set of (k, [) € Z?for which Cy; happens, contains an infinite cluster with probability
1, when viewed as a site percolation process on G’. A moment’s thought reveals that the
existence of such an infinite cluster implies the existence of an infinite cluster in the site
percolation process on G restricted to H. Hence pf,“e(H ) <1 —¢/(81 M) with probability 1,
and we are done.
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8. Other models

There are of course many other Markov random field models, besides those discussed in the
previous sections, for which it is of interest to ask what kinds of extensions of Theorems 1.1
and 1.2 hold. In this section we will make some brief comments about such models.

Potts model

The Potts model (see e.g. [1, 17, 23]) is a much-studied generalization of the Ising model,
where each vertex can be in one of g different states (taking g yields the Ising model), and
the exponent in (1) is rewritten as 2 times the number of nearest neighbor pairs with dif-
ferent spins. The FK representation of the Potts model arises by replacing the random-cluster
measure ¢"”* by ¢{"#*  and everything we did for the Ising model goes through for the Potts
model, to show that for any ¢ > 2, phase transition in the g-state Potts model on G € § is
equivalent to having pEO“d(G) < 1. See for example the arguments in [1] and [23].

Ising model with external field

Another important generalization of the Ising model setup in Section 2.4 arises by intro-
ducing an external field parameter # € IR and an extra term Bk ), £(x) in the exponent in
(1). Of course, taking 7 = 0 takes us back to the setup in Section 2.4. One may ask for which
graphs there exist (8, h) with i # 0 giving multiple Gibbs measures; let us write §p,;, for the
class of such graphs. A result of Schonmann and Tanaka [42] shows that uniqueness of Gibbs
measures for & = 0 implies uniqueness for all 7 # 0, so that 1, € §1. This inclusion is
strict, also for bounded degree graphs, as examplified for example by the usual Z lattice with
d > 2. Jonasson and Steif [30] make interesting progress towards characterizing i .

Multitype Widom—Rowlinson model

Similarly to the Potts generalization of the Ising model, the Widom—Rowlinson model
has been extended to a model with state space {0, ..., g}, where 1, ..., g may be thought
of as g particle types with hard-core interaction between different types, and 0’s are empty
locations. A random-cluster representation arises by replacing 2 by ¢ in the site-random-
cluster model. An interesting difference between this extended Widom—Rowlinson model and
the other models considered so far is that the analogue of (i) in Proposition 2.3 does not imply
the corresponding analogues of (ii)—(iv); this is due to the existence of a ‘staggered’ regime of
the parameter space for the g-type Widom—Rowlinson model on Z¢ in which non-uniqueness
of Gibbs measures corresponds, not to a breakdown of the particle symmetry, but rather to a
breakdown of an even-odd lattice symmetry; see e.g. [41] and [14]. This is similar to what
happens in the hard-core model discussed later.

Nevertheless, for bounded or unbounded degree graphs, the disagreement percolation con-
dition of van den Berg [5] can be used to show that pf,ite(G) = 1 implies absence of phase
transition for the g-type Widom—Rowlinson model. The random-cluster representation may
then be exploited to show that for bounded degree graphs, phase transition in the g-type
Widom—-Rowlinson model is equivalent to the five other properties in Theorem 1.1.

Multitype beach model

A g-type variant of the beach model, analogous to the Potts model and the g-type Widom—
Rowlinson model, was introduced and studied in [10]. We get a random-cluster representation
of the extended model by replacing 2 by ¢ in the beach-random-cluster model. Using this,
and following the arguments in Sections 3.4, 4 and 6, we get the following for any ¢ > 3.
First, for bounded degree graphs, phase transition in the g-type beach model is equivalent to
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the other properties in Theorem 1.1. Second, for unbounded degree graphs, phase transition in
the g-type beach model implies phase transition in the usual (¢ = 2) beach model.

Hard-core model

The hard-core lattice gas model (hard-core model, for short) with activity parameter a >
0, can informally be described as letting all vertices independently take value O or 1 with
respective probabilities 1/(a + 1) and a/(a + 1), and then conditioning on the event that no
two 1’s appear on adjacent vertices. The most famous example of non-uniqueness of Gibbs
measures in the hard-core model is the Z< lattice for d > 2. In this case, the non-uniqueness
manifests itself as a breaking of the odd—even symmetry of the lattice. Results in [7] and
[22] suggest that the phase transition phenomenon is rather non-robust under modifications
of the graph structure, in the sense that even a relatively minor perturbation of this lattice
symmetry will be enough to remove the phase transition. It also follows from a result in
[7] that pf,“e(G) < 1 is a necessary condition for the hard-core model on G to have phase
transition; this is true for bounded as well as unbounded degree graphs. An example of a
bounded degree graph with pf,“e < 1 but no phase transition for the hard-core model can be
found in [8].

Rotor model

Let us finally mention a model with continuous state space: the rotor model. Here the
vertices take values in the [0, 2], and configurations appear with densities with respect to
Lebesgue measure that are proportional to exp(8 Y cos(§(u) — &(v)) where 8 > 0 is the
inverse temperature parameter, and the sum is as usual over nearest-neighbor pairs. Phase
transition in this model appears to be less common than, for example, in the Ising model.
For bounded degree graphs, it is strongly believed that transience of simple random walk is
necessary for phase transition in the rotor model; see e.g. [11]. Furthermore, still assuming
bounded degree, the disagreement percolation technique of van den Berg and Maes [6] can
be exploited to show that pf,ite < 1 is another necessary condition. Regarding sufficient
conditions, one may ask whether pf,“e < 1 and transience of simple random walk together
form a sufficient condition, but this is probably not the case; the graph considered in the final
section of [25] is almost certainly a counterexample. Y. Peres has conjectured that a somewhat
stronger property is necessary and sufficient, namely that there exists a p < 1 such that bond
percolation with parameter p produces an infinite cluster on which simple random walk is
transient; see [39].
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