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On the Bound of the C∗ Exponential Length

Qingfei Pan and Kun Wang

Abstract. Let X be a compact Hausdorff space. In this paper, we give an example to show that there is
u ∈ C(X) ⊗ Mn with det(u(x)) = 1 for all x ∈ X and u ∼h 1 such that the C∗ exponential length
of u (denoted by cel(u)) cannot be controlled by π. Moreover, in simple inductive limit C∗-algebras,
similar examples also exist.

1 Introduction

Exponential rank was introduced by Phillips and Ringrose [18], and, subsequently,
exponential length was introduced by Ringrose [19]. These invariants have been
fundamental in the structure and classification of C∗-algebras. Among other things,
they have played important roles in factorization and approximation properties for
C∗-algebras e.g., the weak FU property [13], Weyl-von Neumann Theorems [10, 11]
(which in turn have been important in various generalizations of BDF Theory be-
yond the Calkin algebra case), and the uniqueness theorems of classification the-
ory [3, 12]. The C∗ exponential length and rank have been extensively studied (see
[4, 8, 9, 13–19, 21, 23–25], etc., an incomplete list).

In [15], N. C. Phillips calculates the exponential rank of simple C∗-algebra B with

representation B = lim→ Bi , where Bi =
⊕s(i)

t=1 C(Xit )
⊗

Mn(i,t), and Xit are compact
metric spaces such that supi,t dim(Xit ) < ∞. He also studies the exponential length
for unitary u ∈

⋃∞
i=1 Bi . In particular, he mentions that (see the paragraph [15,

Proposition 7.9, p. 851]), “We believe that suitable modifications of Lemma 5.2 and
5.3 will show that if u ∼h 1 and det(u) = 1, then cel(u) ≤ π (even though, for general
u, cel(u) can be arbitrarily large).” However, in this paper we provide a method for
constructing counterexamples to this conjecture. In fact, for any ε > 0, we can
find a simple inductive limit C∗-algebra (simple AH algebra), say A, and a unitary
u ∈ CU (A) with u ∼h 1 and cel(u) ≥ 2π − ε (see Corollary 3.17 and Theorem
3.18). Note that for unital real rank zero C∗-algebras, π is an upper bound for the
C∗ exponential length (see [8]). In the process of our proof, we show that there are
unitaries ui ∈ Ai with ui ∼h 1 and det(ui) = 1 whose C∗ exponential lengths are
close to 2π (see Theorem 3.16 and the proof of 3.17). Finally, we conclude that for the
C∗-algebra A we constructed, celCU (A) = 2π (see Theorem 3.19 and Remark 3.20).

H. Lin, in a recent paper [9], gets a result similar to Theorem 3.13 using a different
method. He also provides examples that compare to our Theorem 3.18 with lower
bound π but not 2π (see [9, 5.12]). Therefore, by our results, 2π is an optimal bound

Received by the editors July 30, 2013; revised May 15, 2014.
Published electronically October 1, 2014.
AMS subject classification: 46L05.
Keywords: exponential length.

853

https://doi.org/10.4153/CMB-2014-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-044-8


854 Q. Pan and K. Wang

of celCU (A) for unital separable simple C∗-algebra A with tracial rank less than or
equal to 1 (cf. [9, Lemma 4.5]).

2 Preliminaries

For the convenience of the reader, we recall some definitions and lemmas (see [7, 19]
for more details).

Definition 2.1 Let X be a compact metric space and B = C(X) ⊗ Mn. For u ∈
U (B)(unitary group of B), let det(u) be a function from X to S1 whose value at x is
det(u(x)).

Definition 2.2 Let A be a unital C∗-algebra and let u be a unitary element that lies
in the connected component of the identity 1 in A. Define the C∗ exponential length
of u (denoted by cel(u)) as follows:

cel(u) = inf
{ k∑

i=1
‖hi‖ : u = exp(ih1) exp(ih2) · · · exp(ihk)

}
.

Definition 2.3 For a unital C∗-algebra A, let U0(A) be the connected component
of U (A) containing the identity 1 and CU (A) be the closure of the commutator sub-
group of U0(A). Define

celCU (A) = sup{cel(u) : u ∈ CU (A)}.

Remark 2.4 Recall from [19] that if u ∈ U0(A), then the C∗ exponential length
cel(u) is equal to the infimum of the lengths of rectifiable paths from u to 1 in U (A).

The following lemma is an easy example for calculating the C∗ exponential length.

Lemma 2.5 Let α ∈ R and u ∈ C[0, 1] be defined by u(t) = exp (itα). Then

cel(u) = min
k∈Z

max
t∈[0,1]

|αt − 2kπ|.

Moreover, if |α| ≤ 2π, then cel(u) = |α|.

Proof Since

cel(u) = inf
{

length(us) : us is a rectifiable path in U (C[0, 1]) from u to 1
}
,

let vs(t) be any rectifiable path from 1 to u, that is, v0(t) = 1, v1(t) = u(t). With-
out loss of generality, we can assume vs is piecewise smooth. Then length(vs) =∫ 1

0 ‖
dv
ds ‖ds. Since vs(t) can be considered as a map from [0, 1] × [0, 1] to S1 and R is

a covering space of S1, there exists a unique map ṽs(t) from [0, 1] × [0, 1] to R such
that

(2.1) vs(t) = π(ṽs(t)) and ṽ0(0) = 0,

where π(x) = eix. Therefore,

dv

ds
= π′(ṽs(t)) · dṽ

ds
,
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which implies ‖ dv
ds ‖ = ‖ dṽ

ds ‖.
By (2.1), π(ṽ0(t)) = v0(t) = 1. Hence, ṽ0(t) ∈ 2πZ for all t ∈ [0, 1]. Since

ṽ0(0) = 0 and ṽ0(t) is continuous, ṽ0(t) = 0 for all t ∈ [0, 1]. In addition, by (2.1),
we can also get π(ṽ1(t)) = v1(t) = exp(itα). Thus, ṽ1(t) − αt ∈ 2πZ for all t . By
continuity of ṽ1(t) − αt , there exists some integer k such that ṽ1(t) − αt = 2kπ for
all t ∈ [0, 1]. Therefore,∫ 1

0

∥∥∥ dṽ

ds

∥∥∥ds ≥
∥∥∥∫ 1

0

dṽ

ds
ds
∥∥∥ = max

t∈[0,1]
|ṽ1(t)− ṽ0(t)| ≥ min

k∈Z
max

t∈[0,1]
|αt − 2kπ|.

Let L = mink∈Z maxt∈[0,1] |αt−2kπ| and k0 ∈ Z such that L = maxt∈[0,1] |αt−2k0π|.
Fix

vs(t) = exp{is(αt − 2k0π)}.
Then v0(t) = exp{0} = 1 and v1(t) = exp{iαt − 2k0πi} = exp{iαt} and∫ 1

0

∥∥∥ dv

ds

∥∥∥ds =

∫ 1

0
‖αt − 2k0π‖ds =

∫ 1

0
max

t∈[0,1]
|αt − 2k0π|ds =

∫ 1

0
Lds = L.

Thus vs(t) is a path in U (C[0, 1]) connecting 1 and u(t) with length L. Therefore,
cel(u) = L.

Let us assume |α| ≤ 2π. For k = 0,

max
t∈[0,1]

|αt − 2kπ| = max
t∈[0,1]

|αt − 0| = |α|.

For k 6= 0,
max

t∈[0,1]
|αt − 2kπ| ≥ |0− 2kπ| = 2|k|π ≥ |α|.

Hence, mink∈Z maxt∈[0,1] |αt − 2kπ| = |α|, that is cel(u) = |α|.

3 Counterexamples

Lemma 3.1 ([13, Lemma 2.4]) The set of elements in SU (Mn(C)) with at least one
repeated eigenvalue is the union of finitely many submanifolds of SU (Mn(C)), all of
codimension at least three.

(Here, SU (Mn(C)) is the set of elements in U (Mn(C)) with determinant 1.)

Corollary 3.2 Let Z = {u ∈ U (Mn(C)) : u has repeated eigenvalues}. Then Z is the
union of finitely many submanifolds of U (Mn(C)), all of codimension at least three.

Proof We use the method of proof of Lemma 3.1 (see the proof of [13, Lemma 2.4,
pp. 136–137]). For the convenience of the reader, we quote Phillips’ proof in [13]
below and make suitable modification to fit for our setting. That is, in some places
(but not all places) we change SU (Mn(C)) to U (Mn(C)). All other notations are the
same as [13].

Let P be a partition of n, that is, a sequence (n1, . . . , nk) of positive integers such
that n1 + · · ·+ nk = n and n1 ≥ n2 ≥ · · · ≥ nk. Let MP be the set of all u ∈ U (Mn(C))
having exactly k distinct eigenvalues with multiplicities n1, . . . , nk. Let GP be the set
of sequences (V1, . . . ,Vk) of orthogonal subspaces of Cn such that dim(V j) = n j for
each j. Let WP be the set of k-tuples of distinct elements (λ1, . . . , λk) ∈ (S1)k, where
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S1 is the unit circle on the complex plane. Then WP and GP are smooth manifolds.
Define fP : GP ×WP → MP by sending (V1, . . . ,Vk, λ1, . . . , λk) to the unitary u ∈
U (Mn(C)) such that uξ = λ jξ for ξ ∈ V j . Then fP is a smooth surjective local
homeomorphism from GP ×WP to MP.

To show that MP is a smooth manifold, we must show that fP is a local diffeo-
morphism, that is, for each x ∈ GP ×WP there is a smooth map g from a neigh-
borhood of fP(x) in U (Mn(C)) to GP ×WP such that g ◦ fP is the identity near x
and fP ◦ g is the identity on a neighborhood of fP(x) in MP. To construct g, let
x = (V1, . . . ,Vk, λ1, . . . , λk) and let u = fP(x). Choose ε > 0 such that the ε-disks
about λ1, . . . , λk in C are disjoint. For v close enough to u, let p j be the spectral
projection corresponding to {λ ∈ C : |λ−λ j | < ε} and let W j be the corresponding
subspace. Let µ j = det(p jvp j)1/n j , where p jvp j is regarded as an operator on W j and
the n j-th root is the branch going through λ j . Then g(v) = (W1, . . . ,Wk, µ1, . . . , µk)
will do. (Note that it is smooth because the projections p j can be obtained via holo-
morphic functional calculus.)

Then U (Mn(C)) is the disjoint union of the manifolds MP as P runs through all
partitions. So the corollary is proved if we can show that codim(MP) ≥ 3 for P 6=
(1, . . . , 1). Using the notations above, since v[( fP ◦ g)(v)]∗ =

∑k
i=1 µ

−1
i pivpi , it is

easily seen that the map g above extends to a local diffeomorphism

v 7→ (W1, . . . ,Wk, µ1, . . . , µk, µ
−1
1 p1vp1, . . . , µ

−1
k pkvpk)

to a manifold locally diffeomorphic to GP×WP×SU (Mn1 (C))× · · ·×SU (Mnk (C)),
and the dimension of the last part is at least 3 if some n j 6= 1.

Lemma 3.3 Let f (s, t) : X , [0, 1] × [0, 1] → U (Mn(C)) be a smooth map. For
any δ > 0, there is a smooth map g(s, t) : [0, 1]× [0, 1]→ U (Mn(C)) such that

(i) ‖ f − g‖ < δ, ‖ ∂ f
∂s (s, t)− ∂g

∂s (s, t)‖ < δ, ‖ ∂ f
∂t (s, t)− ∂g

∂t (s, t)‖ < δ;
(ii) g(s, t) has no repeated eigenvalues for all (s, t) ∈ [0, 1]× [0, 1].

Proof This is a standard transversal argument. See, for example, [6, pp. 70–71].
We note that although the statement in [6] (see the Transversality Homotopy The-
orem on page 70) does not assert that the derivatives are close, the proof shows it
nonetheless. For the convenience of the reader, we repeat the construction here for
our special case.

By smoothly extending f to an open neighborhood of [0, 1] × [0, 1], we can as-
sume f is defined on an open manifold without boundary. Let Z be a subspace of
U (Mn(C)) defined by

Z = {u ∈ U (Mn(C)) : u has repeated eigenvalues}.

Since U (Mn(C)) is a subspace of Mn(C) and the latter can be identified with R2n2

as
a topological space, f is a smooth map from X to R2n2

. Let B be the open unit ball
of R2n2

(with Euclidean metric). Then B corresponds to some open ball (contained
in the unit ball of Mn(C)) in Mn(C) with the matrix norm, for which we still use the
notation B. Let 0 < ε < 1/2. For x ∈ X, r ∈ B, define

F(x, r) = π[ f (x) + εr],
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where π : Gln(C) → U (Mn(C)) is defined by the polar decomposition, which serves
as the map π in [6, p. 69] from the tubular neighborhood of U (Mn(C)) (which is Y in
the notation of [6, p. 70]) to U (Mn(C)). Notice that Gln(C) is an open submanifold
of Mn(C). Thus, π can be considered as a map from an open submanifold of R2n2

to
R2n2

. Even though all the scalars here are complex, the objects are being viewed as
real manifolds. Note that for A ∈ Gln(C), π(A) = A · (A∗A)−

1
2 . The matrix square

root on positive definite Hermitian matrices can be defined using the holomorphic
functional calculus of the branch of the square root on the right open half plane of C.

Thus, π : Gln(C)(⊆ R2n2

) → R2n2

is C∞, since π is a composition of smooth maps.
Hence

F : [0, 1]× [0, 1]× B (⊆ R2n2+2)→ R2n2

is a C∞ map.
Define fr : X → U (Mn(C)) by

fr(x) = F(x, r).

Since π restricts to the identity on U (Mn(C)),

f0(x) = F(x, 0) = π( f (x)) = f (x).

For fixed x, r → f (x) + εr is certainly a submersion of B into U (Mn(C)). As
the composition of two submersions is another, r → F(x, r) is a submersion. By
Corollary 3.2, Z is a finite union of submanifolds of U (Mn(C)), say {N1, . . . ,NL}.
So F is transversal to each N j for 1 ≤ j ≤ L. Then by applying the Transversality
Theorem (see [6, p. 68]), we have that fr is transversal to N j for all j = 1, . . . , L and
for almost all r ∈ B. Since each N j is of codimension at least 3,

dim(X) + dim(N j) < dim
(

U (Mn(C))

So fr transversal to N j implies Im fr
⋂

N j = ∅. Therefore, Im fr
⋂

Z = ∅ for almost
all r ∈ B.

Since F is smooth, ∂F
∂s and ∂F

∂t are continuous with respect to r. Therefore, for any
δ > 0, there exists η > 0 such that for all r ∈ B with ‖r‖ ≤ η, we have∥∥∥ ∂F

∂s
(s, t, r)− ∂F

∂s
(s, t, 0)

∥∥∥ ≤ δ, ∥∥∥ ∂F

∂t
(s, t, r)− ∂F

∂t
(s, t, 0)

∥∥∥ ≤ δ.
Thus, ∥∥∥ ∂ fr

∂s
(s, t)− ∂ f

∂s
(s, t)

∥∥∥ =
∥∥∥ ∂F

∂s
(s, t, r)− ∂F

∂s
(s, t, 0)

∣∣∣ ≤ δ,∥∥∥ ∂ fr

∂t
(s, t)− ∂ f

∂t
(s, t)

∥∥∥ =
∥∥∥ ∂F

∂t
(s, t, r)− ∂F

∂t
(s, t, 0)

∥∥∥ ≤ δ.
Finally, by taking r appropriately, we can get that fr satisfies properties (i) and (ii).

Setting g = fr completes the proof.

Remark 3.4 In [13, Lemma 2.5], N. C. Phillips proves that any continuous map,
say f , from a 2-dimensional space X to SU (Mn(C)) can be approximated arbitrarily
well by a continuous map, say g, from X to SU (Mn(C)) such that g(x) has no re-
peated eigenvalues for all x ∈ X. The similar case for self-adjoint matrices (instead
of unitaries) has been proved in [2, p. 77].
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Corollary 3.5 Let F̃s be a rectifiable path in U (Mk(C[0, 1])). For any ε > 0, there
exists a path Fs in U (Mk(C[0, 1])) such that

(i) ‖F − F̃‖ < ε;
(ii) Fs(t) has no repeated eigenvalues for all (s, t) ∈ [0, 1]× [0, 1];
(iii) | length(F̃)− length(F)| < ε.

Moreover, if for each t ∈ [0, 1] F̃1(t) has no repeated eigenvalues, then F can be chosen
to be such that F1(t) = F̃1(t) for all t ∈ [0, 1].

Proof Let ε1 be a small number to be determined later, and let δ0 be such that
|1− eiθ| ≤ δ0 implies |θ| ≤ (1 + ε1)|1 − eiθ| for θ ∈ (−π, π). For ε > 0, let
δ = min{δ0, ε/6, 1/2}. By the definition of the length, there exist 0 = s0 < s1 <
s2 < · · · < sn = 1 such that

‖F̃s j+1 − F̃s j‖ < δ/2, for j = 0, 1, . . . , n− 1,

and
n−1∑
j=0
‖F̃s j+1 − F̃s j‖ ≤ length(F̃s) ≤

n−1∑
j=0
‖F̃s j+1 − F̃s j‖ + ε/4.

Note that for each j, F̃s j (t) is a continuous map from [0, 1] to U (Mk(C)). There exist
smooth maps Gs j (t) : [0, 1]→ U (Mk(C)), such that

‖Gs j − F̃s j‖ = sup
t∈[0,1]

‖Gs j (t)− F̃s j (t)‖ < δ

4n
, j = 0, 1, . . . , n.

Then

‖Gs j+1 − Gs j‖ = ‖Gs j+1 − F̃s j+1 + F̃s j+1 − F̃s j + F̃s j − Gs j‖

≤ ‖F̃s j+1 − F̃s j‖ +
δ

2n
≤ δ.

And by the first equality, we can also get

‖Gs j+1 − Gs j‖ ≥ ‖F̃s j+1 − F̃s j‖ −
δ

2n
.

Therefore, ∣∣‖Gs j+1 − Gs j‖ − ‖F̃s j+1 − F̃s j‖
∣∣ ≤ δ

2n
,∣∣∣ n−1∑

j=0
‖Gs j+1 − Gs j‖ −

n−1∑
j=0
‖F̃s j+1 − F̃s j‖

∣∣∣ ≤ δ

2
.

Thus,
n−1∑
j=0
‖Gs j+1 − Gs j‖ −

δ

2
≤ length(F̃s) ≤

n−1∑
j=0
‖Gs j+1 − Gs j‖ +

δ

2
+ ε/4,

n−1∑
j=0
‖Gs j+1 − Gs j‖ −

ε

8
≤ length(F̃s) ≤

n−1∑
j=0
‖Gs j+1 − Gs j‖ + ε/2.(3.1)

Now we want to define a smooth function

G̃s(t) : [0, 1]× [0, 1]→ U (Mk(C))
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such that G̃s j (t) = Gs j (t) for j = 0, 1, . . . , n, t ∈ [0, 1]. We will define it piece by
piece on each subinterval [s j , s j+1] ( j = 0, 1, . . . , n− 1).

Suppose

G∗s j
Gs j+1 = U j


eiα1(t) 0 · · · 0

0 eiα2(t) · · · 0
...

...
. . .

...
0 0 · · · eiαk(t)

U ∗j .

Since ‖G∗s j
Gs j+1 − I‖ = ‖Gs j − Gs j+1‖ ≤ δ < 1, there exists a self-adjoint element

H j(t) in Mk(C[0, 1]) with ‖H j‖ < 2π such that G∗s j
Gs j+1 (t) = eiH j (t). (Here H j(t) =

−i log[G∗s j
(t)Gs j+1 (t)], which is a smooth function.) Define

G̃s(t) = Gs j (t)e
i

s−s j
s j+1−s j

H j for s j ≤ s ≤ s j+1, t ∈ [0, 1], j = 0, 1, . . . , n− 1.

Then G̃s(t) (s j ≤ s ≤ s j+1) is a path in U (Mk(C[0, 1])) from Gs j to Gs j+1 and G̃s(t) is
smooth for (s, t) ∈ [s j , s j+1]× [0, 1]. Moreover,

length(G̃s|s j≤s≤s j+1 )

=

∫ s j+1

s j

‖∂G̃s

∂s
‖ds ≤

∫ s j+1

s j

1

s j+1 − s j
‖Gs j (t)H j(t)‖ds

≤ (1 + ε1)

∥∥∥∥∥∥∥∥∥Gs jU j


1− eiα1(t) 0 · · · 0

0 1− eiα2(t) · · · 0
...

...
. . .

...
0 0 · · · 1− eiαk(t)

U ∗j

∥∥∥∥∥∥∥∥∥
= (1 + ε1)

∥∥∥∥∥∥∥∥∥Gs j

I −U j


eiα1(t) 0 · · · 0

0 eiα2(t) · · · 0
...

...
. . .

...
0 0 · · · eiαk(t)

U ∗j


∥∥∥∥∥∥∥∥∥

= (1 + ε1)‖Gs j [I − G∗s j
Gs j+1 ]‖ = (1 + ε1)‖Gs j − Gs j+1‖.

Therefore, G̃s (0 ≤ s ≤ 1) is a piecewise smooth path in U (Mk(C[0, 1])) and

n−1∑
j=0
‖Gs j+1 − Gs j‖ ≤ length(G̃s) ≤ (1 + ε1)

n−1∑
j=0
‖Gs j+1 − Gs j‖.

Thus, by (3.1) we have

length(G̃s)(1 + ε1)−1 − ε

8
≤ length(F̃s) ≤ length(G̃s) + ε/2.

Finally, pick any smooth monotone function ξ : [0, 1]→ [0, 1] with

ξ(0) = 0, ξ(1) = 1,
dnξ

dsn
|s=0= 0,

dnξ

dsn
|s=1= 0 for all n ≥ 1.

Let

G̃′s(t) = Gs j (t)e
iξ(

s−s j
s j+1−s j

)H j for s j ≤ s ≤ s j+1, t ∈ [0, 1], j = 0, 1, . . . , n− 1.
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Then G̃′s(t) is smooth for all (s, t) ∈ [0, 1]× [0, 1] (since (∂G̃′s(t))/(∂s)|s=s j = 0 from

both left and right for all j = 1, 2, . . . , n− 1) and length(G̃′s) = length(G̃s). And for
each (s, t) ∈ [0, 1]× [0, 1],

‖G̃′s(t)− F̃s(t)‖ = ‖G̃′s(t)− G̃′s j
(t) + G̃′s j

(t)− F̃s j (t) + F̃s j (t)− F̃s(t)‖

≤ ‖G̃s j+1 (t)− G̃s j (t)‖ + ‖G̃s j (t)− F̃s j (t)‖ + ‖F̃s j (t)− F̃s(t)‖

≤ δ +
δ

4n
+
ε

4
≤ ε/2,

where s j satisfies s j ≤ s ≤ s j+1.
Thus, by choosing ε1 appropriately, we have

| length(G̃′s)− length(F̃s)| < ε/2 and ‖G̃′ − F̃‖ < ε/2.

Since G̃′s can be seen as a smooth map from [0, 1] × [0, 1] to U (Mk(C)), by
Lemma 3.3, there exists F such that ‖F − G̃′‖ < ε/2 and Fs(t) has no repeated
eigenvalues for all (s, t) ∈ [0, 1]× [0, 1]. Moreover,

| length(Fs)− length(G̃′s)| =
∣∣∣∫ 1

0

∥∥∥ ∂F

∂s

∥∥∥ds−
∫ 1

0

∥∥∥ ∂G̃′

∂s

∥∥∥ds
∣∣∣ < ε/2.

Thus F satisfies properties (i)–(iii), which is what we want.
Moreover, if F̃1(t) has no repeated eigenvalues for all t ∈ [0, 1], then there exists

η > 0 such that ‖u(t) − F̃1(t)‖ < η implies u(t) has no repeated eigenvalues for all
t ∈ [0, 1]. For ε = η/2, by previous arguments of this proof, we can find a path
Fs satisfying properties (i)–(iii). Let s0 ∈ [sn−1, 1) be such that ‖Fs0 (t) − F1(t)‖ ≤
η/4 (where sn−1 is a point of the partition of [0, 1] for which we mentioned in the
previous arguments of this proof). Then

‖Fs0 (t)− F̃1(t)‖ = ‖Fs0 (t)− F1(t) + F1(t)− F̃1(t)‖ ≤ 3η/4.

Now let us redefine Fs(t) on the subinterval [s0, 1] (still using the notation Fs(t)) in a
similar way as above:

Fs(t) = Fs0 (t)ei
s−s0
1−s0

Hn(t)
, for s0 ≤ s ≤ 1,

where Hn(t) = −i log[F∗s0
(t)F̃1(t)]. Since this newly defined path Fs lies in the η

neighborhood of F1, Fs(t) has no repeated eigenvalues for all (s, t) ∈ [0, 1] × [0, 1].
Thus, this Fs is what we want.

Definition 3.6 For a metric space (Y, d), let

PkY := {(y1, y2, . . . , yk) : yi ∈ Y}/ ∼,

where (y1, y2, . . . , yk) ∼ ( ỹ1, ỹ2, . . . , ỹk) if there exists σ ∈ Sk such that yσ(i) =
ỹi for all 1 ≤ i ≤ k. Let [y1, y2, . . . , yk] denote the equivalent class of (y1, y2, . . . , yk)
in PkY . Also define the metric of PkY as

dist([y1, y2, . . . , yk], [ ỹ1, ỹ2, . . . , ỹk]) = min
σ∈Sk

max
1≤i≤k

d(yi , ỹσ(i)).

The proof of the following lemma is straightforward.
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Lemma 3.7 Let (Y, d) be a metric space and let

π : Y × Y × · · · × Y︸ ︷︷ ︸
k

−→ PkY

be the quotient map. Let
X ⊂ Y × Y × · · · × Y︸ ︷︷ ︸

k

be the set consisting of those elements (y1, y2, . . . , yk) with yi 6= y j if i 6= j. Then the
restriction of π to X is a covering map.

We need the following easy lemma.

Lemma 3.8 Let F : [0, 1]× [0, 1]→ PkS1 be a continuous function. Suppose

F(s, t) = [x1(s, t), x2(s, t), . . . , xk(s, t)],

and for all (s, t) ∈ [0, 1]× [0, 1], xi(s, t) 6= x j(s, t) if i 6= j. Then there are continuous
functions f1, f2, . . . , fk : [0, 1]× [0, 1]→ S1 such that

F(s, t) =
[

f1(s, t), f2(s, t), . . . , fk(s, t)
]
.

Proof Let
π : S1 × S1 × · · · × S1︸ ︷︷ ︸

k

→ PkS1

denote the quotient map, and let

X ⊂ S1 × S1 × · · · × S1︸ ︷︷ ︸
k

be the set consisting of those elements (x1, x2, · · · , xk) with xi 6= x j if i 6= j. Then by
Lemma 3.7, π|X is a covering map from X to π(X) (which is a subset of PkS1).

Note from the assumption of the lemma, the image of F is contained in π(X).
Since [0, 1]× [0, 1] is simply connected, by the standard lifting theorem for covering
spaces, the map F : [0, 1]× [0, 1]→ π(X) ⊂ PkS1 can be lifted to a map

F1 : [0, 1]× [0, 1]→ X(⊂ S1 × S1 × · · · × S1︸ ︷︷ ︸
k

).

Let π j : S1 × S1 × · · · × S1 → S1 be the projection onto the j-th coordinate. For
1 ≤ j ≤ k, define functions f j : [0, 1] × [0, 1] → S1 by f j(s, t) = π j(F1(s, t)). Then
it is easy to see that the f j ’s satisfy the requirements.

Remark 3.9 Let Fs be a path in U (Mk(C[0, 1])) such that Fs(t) has no repeated
eigenvalues for all (s, t) ∈ [0, 1]× [0, 1]. Let Λ : [0, 1]× [0, 1]→ PkS1 be the eigen-
value map of Fs(t); i.e., Λ(s, t) = [x1(s, t), x2(s, t), . . . , xk(s, t)], where {xi(s, t)}k

i=1
are eigenvalues of the matrix Fs(t). By Lemma 3.8, there are continuous functions
f1, f2, . . . , fk : [0, 1]× [0, 1]→ S1 such that

Λ(s, t) =
[

f1(s, t), f2(s, t), . . . , fk(s, t)
]
.

For each fixed (s, t) ∈ [0, 1]× [0, 1], there is a unitary Us(t) such that

Fs(t) = Us(t) diag
[

f1(s, t), f2(s, t), . . . , fk(s, t)
]

Us(t)∗.
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Note that Us(t) can be chosen to be continuous, but in this paper we do not need this
property.

Proposition 3.10 ([1, lines 13–18, p. 71]) If U ,V ∈ Mn(C) are unitaries with
eigenvalues u1, u2, . . . , un and v1, v2, . . . , vn respectively, then

min
σ∈Sn

max
i
|ui − vσ(i)| ≤ ‖U −V‖.

The same result for a pair of Hermitian matrices is due to H. Weyl (called Weyl’s
Inequality see [22]).

Lemma 3.11 Let Fs be a path in U (Mn(C[0, 1])) and f 1
s (t), f 2

s (t), . . . , f n
s (t) be

continuous functions such that

Fs(t) = Us(t) diag[ f 1
s (t), f 2

s (t), . . . , f n
s (t)]Us(t)∗,

where Us(t) are unitaries. Suppose for any (s, t) ∈ [0, 1] × [0, 1], f i
s (t) 6= f j

s (t) if
i 6= j, then

length(Fs) ≥ max
1≤ j≤n

{length( f j
s )}.

(In this lemma, we assume that Fs(t) is continuous, but we do not assume Us(t) is con-
tinuous.)

Proof Let

ε = min
{
|( f i

s (t)− f j
s (t))| : i 6= j, 1 ≤ i, j ≤ n, s ∈ [0, 1], t ∈ [0, 1]

}
.

Since f j
s (t) is continuous with respect to s for each j, there exists δ > 0 such that for

any partition P = {s1, s2, . . . , sλ} with |P| < δ,

‖ f j
si

(t)− f j
si−1

(t)‖ < ε/2 for all 2 ≤ i ≤ λ, 1 ≤ j ≤ n.

Then by Proposition 3.10,

length(Fs) ≥
λ∑

i=2
‖Fsi − Fsi−1‖ =

λ∑
i=2

sup
t∈[0,1]

‖Fsi (t)− Fsi−1 (t)‖

≥
λ∑

i=2
sup

t∈[0,1]

[
min
σ∈Sn

max
1≤ j≤n

| f j
si

(t)− f σ( j)
si−1

(t)|
]
.

If σ( j) 6= j, then

| f j
si

(t)− f σ( j)
si−1

(t)| ≥

| f j
si

(t)− f σ( j)
si

(t)| − | f σ( j)
si

(t)− f σ( j)
si−1

(t)| > ε− ε/2 = ε/2.

If σ( j) = j, then | f j
si (t)− f j

si−1 (t)| < ε/2. Therefore,

min
σ∈Sn

max
1≤ j≤n

| f j
si

(t)− f σ( j)
si−1

(t)| = max
1≤ j≤n

| f j
si

(t)− f j
si−1

(t)|,
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length(Fs) ≥
λ∑

i=2
sup

t∈[0,1]

[
min
σ∈Sn

max
1≤ j≤n

| f j
si

(t)− f σ( j)
si−1

(t)|
]

(3.2)

≥
λ∑

i=2
sup

t∈[0,1]
max

1≤ j≤n
| f j

si
(t)− f j

si−1
(t)|

≥
λ∑

i=2
max

1≤ j≤n
‖ f j

si
− f j

si−1
‖ ≥ max

1≤ j≤n

λ∑
i=2
‖ f j

si
− f j

si−1
‖.

Since (3.2) holds for any partition P with |P| < δ, we have

length(Fs) ≥ max
1≤ j≤n

length( f j
s ).

Example 3.12 Let A = M10(C[0, 1]). Define

u(t) =


e−2πit 9

10 0 · · · 0
0 e2πit 1

10 · · · 0
...

...
. . .

...
0 0 · · · e2πit 1

10


10×10

.

Then u is a unitary in A with det(u) = 1 and u ∼h 1.

Theorem 3.13 Let u ∈ M10(C[0, 1]) be defined as in 3.12. Then

cel(u) ≥ 2π · 9

10
.

Proof Let F̃s be a rectifiable path in U (M10(C[0, 1])) with F̃1(t) = u(t) and F̃0 =
1 ∈ M10(C[0, 1]). For any 0 < ε < 1/4, by Corollary 3.5 there is a path Fs in
U (M10(C[0, 1])) such that

(a) ‖F − F̃‖ < ε/2,
(b) Fs(t) has no repeated eigenvalues for all (s, t) ∈ [0, 1]× [0, 1], and
(c) | length(F̃)− length(F)| < ε/2.

By Lemma 3.8 and Remark 3.9, there are continuous maps

f 1, f 2, . . . , f 10 : [0, 1]× [0, 1]→ S1

and unitaries Us(t) such that

Fs(t) = Us(t) diag
[

f 1
s (t), f 2

s (t), . . . , f 10
s (t)

]
Us(t)∗.

By Lemma 3.11,

length(Fs) ≥ max
1≤i≤10

{length( f i
s )}.

Since ‖F − F̃‖ < ε/2, ‖ f j
0 − 1‖ < ε/2 for all 1 ≤ j ≤ 10.

Note that |e2πit 1
10 − e−2πit 9

10 | ≥ ε for each fixed t ∈ (ε, 1 − ε). Also note that
F̃1(t) = u(t) has one eigenvalue equal to e−2πit 9

10 and 9 eigenvalues equal to e2πit 1
10 .

Therefore, F1(t) has only one eigenvalue that is in the ε
2 -neighborhood of e−2πit 9

10 ;

all other eigenvalues are in the ε
2 -neighborhood of e2πit 1

10 . (Notice that those two
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neighborhoods, namely ε
2 -neighborhood of e−2πit 9

10 and ε
2 -neighborhood of e2πit 1

10 ,
are disjoint for each t ∈ (ε, 1− ε). Thus there exists one and only one j0 such that

| f j0

1 (t)− e−2πit 9
10 | < ε/2.

For other j 6= j0,

| f j
1 (t)− e2πit 1

10 | < ε/2.

Since all f j ’s are continuous, the index j0 should be the same for all t ∈ (ε, 1− ε).
Thus f j0

s is a path in U (C[0, 1]) connecting a point near 1 and a point near
e−2πit 9

10 . By Lemma 2.5, length( f j0
s ) ≥ 9

10 · 2π − ε. Therefore,

length(F̃s) ≥
9

10
· 2π − ε/2− ε ≥ 9

10
· 2π − 2ε.

Since ε is arbitrary, we have cel(u) ≥ 9
10 · 2π, which completes the proof.

Example 3.14 We give examples in some simple inductive limit C∗-algebras.
Let {x1, x2, . . . } be a countable distinct dense subset of [0, 1] and let {kn}∞n=2 be a

sequence of integers satisfying ∏
n

10kn − 1

10kn
>

11

12
.

Let

A1 = M10(C[0, 1]), A2 = M10k2 (A1), . . . , An = M10kn (An−1), . . . .

Let ϕn,n+1 : An → An+1 be defined by

ϕn,n+1( f ) =


f 0 · · · 0 0
0 f · · · 0 0
...

...
. . .

...
...

0 0 · · · f 0
0 0 · · · 0 f (xn)


10kn×10kn

and A = lim−→(Ai , ϕi,i+1) be the inductive limit C∗-algebra. Then A is simple.
Let u(t) ∈ A1 be defined as in Example 3.12. Then (see Theorem 3.16 and Corol-

lary 3.17)

cel(ϕ1,∞(u)) ≥ 9

10
· 2π.

Simple inductive limit C∗-algebras of such form for a general space X (instead of
[0,1]) were studied by Goodearl [5]. Its exponential rank was calculated by Gong
and Lin for the case of real rank zero such algebras [4], and by Phillips for the general
case [15].

Lemma 3.15 Let θ : PLR → (RL, dmax) be defined by

θ[x1, x2, . . . , xL] = (y1, y2, . . . , yL)

if and only if [x1, x2, . . . , xL] = [y1, y2, . . . , yL] and y1 ≤ y2 ≤ · · · ≤ yL. Then θ is
an isometry.
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Proof Let a = [a1, a2, . . . , aL], b = [b1, b2, . . . , bL] be any two elements in PLR.
Without loss of generality, we can assume that a1 ≤ a2 ≤ · · · ≤ aL and b1 ≤ b2 ≤
· · · ≤ bL. Thus,

dmax(θ(a), θ(b)) = max
1≤i≤L

|ai − bi |.

If dist(a, b) 6= max1≤i≤L |ai − bi |, then there exists a permutation σ ∈ SL such that

l , max
1≤i≤L

|ai − bσ(i)| < max
1≤i≤L

|ai − bi |.

Since l < max1≤i≤L |ai − bi |, there exists k such that |ak − bk| > l.
If ak < bk, then |ai − b j | > l for any i ≤ k, j ≥ k. Since the cardinality of the

set {σ(1), σ(2), . . . , σ(k)} is k, there is at least one element i0 ∈ {1, 2, . . . , k} with
σ(i0) ≥ k. Then |ai0 − bσ(i0)| > l. Therefore, max1≤i≤k |ai − bσ(i)| > l. Similarly,
if ak > bk, one can prove maxk≤i≤L |ai − bσ(i)| > l. In either case, it contradicts
l = max1≤i≤L |ai − bσ(i)|. Therefore,

dist(a, b) = max
1≤i≤L

|ai − bi | = dmax(θ(a), θ(b)),

which means θ is an isometry.

Theorem 3.16 Let Ai , ϕi,i+1, (i ∈ N) be defined as in Example 3.14, for any ε ∈
(0, 1

100 ), let uε ∈ A1 be defined by:

uε(t) =


e−2πit( 9

10−ε) 0 · · · 0
0 e2πit( 1

10−ε) · · · 0
...

...
. . .

...
0 0 · · · e2πit( 1

10−ε)


10×10

.

Then

cel(ϕ1,n(uε)) ≥ 2π
( 9

10
− ε
)
− 5ε for all n ∈ N.

Proof With easy calculations, we know that

ϕ1,n(uε) ∈ ML(C[0, 1]), where L = 10
n∏

i=2
10ki .

On the diagonal of ϕ1,n(uε), there are
∏n

i=2(10ki − 1) terms equal to e−2πit( 9
10−ε),

9 ·
∏n

i=2(10ki − 1) terms equal to e2πit( 1
10−ε), and the rest are constants. Let α, β, and

γ denote, respectively, the numbers of terms of the forms e−2πit( 9
10−ε), e2πit( 1

10−ε), and
constants on the diagonal of ϕ1,n(uε) (i.e. α =

∏n
i=2(10ki−1), β = 9 ·

∏n
i=2(10ki−1)

and γ = L− α− β). Therefore

α + β

L
=

n∏
i=2

10ki − 1

10ki
>

11

12
,

which implies α
γ >

11
10 .

For each t ∈ [0, 1], let E(t) be the set consisting of all eigenvalues of ϕ1,n(uε)(t)
(counting multiplicities). Define continuous functions yk(t) (1 ≤ k ≤ L) from [0, 1]
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to [− 9
10 + ε, 1

10 − ε] as follows:

yk(t) =


−
(

9
10 − ε

)
t, if 1 ≤ k ≤ α,(

1
10 − ε

)
t, if α + 1 ≤ k ≤ α + β,

−
(

9
10 − ε

)
x• or

(
1

10 − ε
)

x•, if α + β + 1 ≤ k ≤ L,

for x• ∈ {x1, x2, . . . , xn} such that for all t ∈ [0, 1],{
exp{2πi yk(t)

}
: 1 ≤ k ≤ L} = E(t).

Let θ be the map defined in Lemma 3.15 and pk (1 ≤ k ≤ L) be projections
from RL to R with respect to the k-th coordinate. Define functions yk(t) : [0, 1] →
[− 9

10 + ε, 1
10 − ε] for 1 ≤ k ≤ L as follows:

yk(t) = pkθ
[

y1(t), y2(t), . . . , yL(t)
]
.

Then yk(t) (1 ≤ k ≤ L) are continuous functions with y1(t) ≤ y2(t) ≤ · · · ≤ yL(t)
for all t ∈ [0, 1] and (counting multiplicities)

{y1(t), y2(t), . . . , yL(t)} = {y1(t), y2(t), . . . , yL(t)}.
For each fixed t ∈ [0, 1], there are at most γ terms (the constants referred to

above) in the set {yk(t)}L
k=1 that could be less than−( 9

10 − ε)t . Therefore,

yk(t) ≥ −
( 9

10
− ε
)

t, for k ≥ γ + 1.

Similarly, for each fixed t ∈ [0, 1] there are at most γ+β terms (the constants or terms
of the form ( 1

10 − ε)t) in the set {yk(t)}L
k=1 which could be greater than −( 9

10 − ε)t .
So

yk(t) ≤ −
( 9

10
− ε
)

t, for k ≤ L− γ − β = α.

Since α > γ,

yk(t) = −
( 9

10
− ε
)

t, for γ + 1 ≤ k ≤ α.

Let yk(t) = exp{2πi yk(t)} for 1 ≤ k ≤ L. Then it is obvious that

yk(t) = e−2πit( 9
10−ε), for γ + 1 ≤ k ≤ α,

and (counting multiplicities)

{yk(t) : 1 ≤ k ≤ L} = E(t), for all t ∈ [0, 1].

Let

W (t) =


y1(t) 0 · · · 0

0 y2(t) · · · 0
...

...
. . .

...
0 0 · · · yL(t)

 .

Then for all t ∈ [0, 1], W (t) and ϕ1,n(uε)(t) have exactly the same eigenval-
ues (counting multiplicities). By [20, Corollary 1.3], ϕ1,n(uε) and W are approx-
imately unitarily conjugate; i.e., there is a sequence Λn, n = 1, 2, . . . of unitaries
in ML(C[0, 1]) such that ϕ1,n(uε) = limn→∞ ΛnW Λ∗n . Therefore, cel(ϕ1,n(uε)) =
cel(W ).
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Let ε j (1 ≤ j ≤ L) be chosen satisfying −ε′ < ε1 < ε2 < · · · < εα = 0 <
εα+1 < εα+2 < · · · < εL < ε′, where ε′ is a fixed number in (0, ε/10). Let ỹk(t) =
exp{2πi(yk(t) + εk)} and

W̃ (t) =


ỹ1(t) 0 · · · 0

0 ỹ2(t) · · · 0
...

...
. . .

...
0 0 · · · ỹL(t)

 ∈ U (ML(C[0, 1])).

Then W̃ (t) has no repeated eigenvalues for all t ∈ [0, 1] and

‖W̃ (t)−W (t)‖ ≤ |e2πiε′ − 1| ≤ 2πε′.

Therefore,
cel(ϕ1,n(uε)) = cel(W ) ≥ cel(W̃ )− ε.

Let F̃s(t) be a rectifiable path in U (ML(C[0, 1])) from 1 to W̃ (t) with F̃0(t) = 1
and F̃1(t) = W̃ (t). By Corollary 3.5, there is a smooth path Fs in U (ML(C[0, 1]))
such that ‖F − F̃‖ < ε, F1(t) = F̃1(t) = W̃ (t), Fs(t) has no repeated eigenvalues
for all (s, t) ∈ [0, 1] × [0, 1], and | length(F̃) − length(F)| ≤ ε. By Lemma 3.8 and
Remark 3.9, there exist continuous maps f 1, f 2, . . . , f L : [0, 1] × [0, 1] −→ S1 and
unitaries Us(t) such that

Fs(t) = Us(t) diag( f 1
s (t), f 2

s (t), . . . , f L
s (t))Us(t)∗.

Since F1(t) = W̃ (t) and ỹα = e−2πit( 9
10−ε), we can assume f α1 = e−2πit( 9

10−ε). There-
fore, f αs is a path in U (C[0, 1]) from a point near 1 to e−2πit( 9

10−ε). By Lemma 2.5,

length( f αs ) ≥ 2π
( 9

10
− ε
)
− ε.

Therefore,

length(F̃s) ≥ 2π
( 9

10
− ε
)
− ε− ε = 2π

( 9

10
− ε
)
− 2ε,

and

cel(ϕ1,n(uε)) ≥ 2π
( 9

10
− ε
)
− 5ε.

Corollary 3.17 Let A = lim Ai and u ∈ A1 be defined as in 3.14. Then ϕ1,∞(u) ∈
CU (A) and

cel(ϕ1,∞(u)) ≥ 2π · 9

10
.

Note that for A = Mn(C[0, 1]) (n ∈ N), x ∈ CU (A) if and only if det(x(t)) = 1 for
each t ∈ [0, 1].

Proof For any ε ∈ (0, 1
100 ), let uε ∈ A1 be defined as in Theorem 3.16. Then

cel(ϕ1,n(uε)) ≥ 2π
( 9

10
− ε
)
− 5ε for all n ∈ N.

Since ‖ϕ1,n(u)− ϕ1,n(uε)‖ ≤ 2πε for all n ∈ N,

cel(ϕ1,n(u)) ≥ cel(ϕ1,n(uε))− 2πε ≥ 2π
( 9

10
− 2ε

)
− 5ε.
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Since ε is arbitrary, we have cel(ϕ1,n(u)) ≥ 2π · 9
10 , for all n ∈ N. Therefore,

cel(ϕ1,∞(u)) ≥ 2π · 9

10
.

Theorem 3.18 Let Ai , ϕi,i+1, (i ∈ N) be defined as in 3.14. For any ε > 0, there

exists i such that 10ki−1
10ki

≥ 1− ε
2π . Let u ∈ Ai be defined by

u(t) =


e
−2πit 10ki−1

10ki 0 · · · 0

0 e
2πit 1

10ki · · · 0
...

...
. . .

...

0 0 · · · e
2πit 1

10ki


10ki×10ki

.

Then ϕi,∞(u) ∈ CU (A) and

cel(ϕi,∞(u)) ≥ 2π
10ki − 1

10ki
≥ 2π

(
1− ε

2π

)
= 2π − ε.

Proof By using the same method of proof as for Theorem 3.16 and Corollary 3.17,
we can get the result.

Theorem 3.19 Let A be defined as in 3.14. Then

celCU (A) ≥ 2π.

Proof This inequality holds by applying Theorem 3.18.

Remark 3.20 After reading Lin’s article [9], we know that celCU (A) ≤ 2π for A
defined in Example 3.14 (see [9, Lemma 4.5]). Therefore, celCU (A) = 2π.

Remark 3.21 Our paper with the results above was first posted on arxiv on Dec.
2012. Later H. Lin posted a paper on Feb. 2013 (see [9]). In his paper, he provides
examples with celCU (A) > π for unital simple AH-algebras A with tracial rank one,
whose K0-group can realize all possible weakly unperforated Riesz group (see [9, 5.11,
5.12]). He also obtained our Theorem 3.13 with different methods. But we construct
an example A with celCU (A) ≥ 2π, where A is a simple AH-algebra (see 3.14, 3.17,
3.18). Of course, his paper contains many interesting results in other directions.
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