A GENERALIZATION OF SUSPENSION THEOREMS

YASUTOSHI NOMURA

Our purpose in this note is to establish a classification theorem for fiberings
with a loop-space as fibre. This is deduced by applying a generalized suspen-
sion theorem which will be proved in §1. As a by-product we obtain a pro-
position concerning fiberings with a loop-space as the total. Throughout this
note we shall denote by 28 the category of spaces having the based homotopy
type of a CW-complex.

§ 1. Generalized suspension theorems

For a given map f: X- Y, let Es denote the subspace of Xx EY consist-
ing of the pairs (x, §) such that f(x) =3(1) where EY is the space of paths
in Y emanating from the base-point y,, and let Cy denote the space obtained
by attaching the reduced cone over X to Y by means of /. Denoting the loop
and suspension functors respectively by £ and S, we have defined in [6, p.
136] #': SEf->Cy and %: Er—-> 2Cy by setting, for (x, ) € Ey,

B(2s) if ogss%r,
7((% B), s) =

(x, 2-2s) if %Ssgl,

(x, 2s) ifogsgé,
{n(% 8)}(s) = {

82— 25s) if -Zl—ésél

These induce suspensions s* = (y')*: 2(Cys, Z) »=(SEyf, Z) and ¢, = 9. : n(Z, Ef)
- Z, 2Cy) for any space Z, where n(A, B) denotes the set of homotopy

classes of maps A- B. The following has been established there:

Taeorem 1. If Y is r-connected and Eyr s-commected, them o°: HY(Cy)
~HYSEy) is an isomorphism for q=r+s+1 and a wmonomorphism for
qg=7r+s+2.

Received April 26, 1961.

https://doi.org/10.1017/50027763000002440 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002440

160 YASUTOSHI NOMURA

Turorem 1. Let X and Cy be r- and s-connected respectively. Then oy
n(Ef) » n( 2Cs) is an isomorphism for 1=q=<r+s—1 and an epimorphism

for g=r+s.
These theorems may be generalized as follows:

THEOREM 2. Let X and Y both belong to B, and let Y and Ef be r- and
s-connected respectively (r =1, s=0). Suppose that Z is n-simple for all n>0.
Then
(a) ¢*: =(Cyr, Z) >n\SEy, Z) is onto if n(Z) =0 for q=r+s+2.

(b) o*: a(Cy, Z)->n(SEf, 2) is 1 =1 if ny(Z) =0 for q=r+s+3.

ToeoreM 2'. Let Z be in I8 and let X aud Cr be r- and s-connected re-
spectively (r=1, s=2). Then
(a) 045 n(Z, Ef)->ntZ, QCy) is 1 —1 if the integral cohomology groups H(Z)
are trivial for q=7r+s.
(b) o4 #n(Z, Ef)>n(Z, 2Cy) is onto if H(Z) =0 for q=r+s+ 1.

The proofs will be based on the following simple:

LemMma. Let X and Y be in I8 and let f: X~ Y be a given map. Then
(1) f is equivalent to an inclusion X'C Y" where X' is a subcomplex of a CW-
complex Y'.
(ii) Ey and Cys also belong to 2B.

Proof of Lemma. By using the mapping cylinder argument we may assume
that f is an inclusion. Then we have a commutative diagram

If]
| X|—=—Y]
A 17
f
X1y

where | X| and | Y| are respectively the geometric realizations (see [4]) of
the singular complexes of X, Y and | f| is induced by . j and j, are canoni-
cal maps which induce isomorphisms of homotopy groups [4, Theorem 4], and
hence homotopy equivalences by [8, Theorem 11. Taking X', Y’ to be |X]|,
| Y|, we obtain the first assertion. We shall now prove the second half. In
view of [6, Lemmas 6, 9] and (i), we may assume that X is a subcomplex of

a CW-complex Y and that f is an inclusion. Obviously, Cr=Y |} CX is then
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a CW-complex. On the other hand, Ef is the space of paths in Y emanating
from the base-point and ending in X. Milnor’s result [5, Theorem 3] implies

that Ef belongs to ¥8. This completes the proof of the lemma.

Froof of Theorem 2. By the preceding lemma, 7' is equivalent to an in-
clusion ¢: ACB where A is a subcomplex of a CW-complex B. Hence, to
prove our theorem, it suffices to show that i induces *: =(B, Z)->=(A, 2Z)
having the property stated in Theorem 2. Theorem 1 and the exactness of
the cohomology sequence of the pair (B, A) now imply that H*(B, A; G) =0
for g<7+s+2 and for all coefficient groups G.

Firstly, let 7,(Z) =0 for g=r+s+2; then H(B, A; =4(Z)) =0 for all
g=1. Thus a standard obstruction argument shows that i* is onto. Secondly,
suppose 74(Z) =0 for q=r+s+3; in this case H/(B, A; =,(Z)) vanishes for

every q=1. Therefore, by the same reasoning, we see that ¢* is 1 —1.

Proof of Theorem 2'. Consider the mapping cylinder M of 7: Er—- QCry.
We have a homotopy-commutative diagram :

U

Es —> QCy

N

NV

M
where the unlabelled arrows are inclusions and the vertical one is a homotopy
equivalence. According to Theorem 1', we have n,(M, Ef) =0forl<g=7r+s.
Let |Z| be the geometric realization of the singular complex of Z and j:
| Z| > Z be the canonical map. In case (a), H""'(1Z|; =,(M, Ef)) =0 for all
q=2, and, in case (b), H(|Z|; =,(A, Ef)) =0 for all g=2. Observe also
that our assumption implies 7;(Er) =0 and hence the pair (M, Ef) is n-simple
for every m=2. Noting that j is an equivalence and using the theory of
obstructions to compressions as outlined in [2, Theorem 4.4.2], we obtain the

desired conclusions.

CoroLLARY 3. (]J. Stasheff [7, Theorem 21) Suppose Y is a r-connected
space belonging to 23, and that Z satisfies the condition =,(Z) =0 for q=2r+1
(r21). Then ~\Y, Z) is in 1 -1 correspondence with =(QY, 2Z).

Proof. Taking X to be a point in Theorem 2, we have E;=2Y, Cr=Y,
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and s=7—1. The assertion then follows at once. Note that ¢*: =(Y, Z)
-»7(SQY, Z)X (Y, 2Z) is seen to be the mapping induced by assigning to
v: Y>Z Quv: QY -~ 02Z.

Similarly, by taking Y to be a point in Theorem 2', we have

CoroLLARY 3. Let X be r-connected and let 7Z be a CW-complex with
dimZ=<27r. Then =(Z, X) is in 1 —1 correspondence with n(SZ, SX).

§ 2. Applications

First, the notations introduced in [6] will be used throughout; in parti-
cular,-we consider *: z(Cyr, Z)~=(Eys, 27) given by &' {v}={9sn.}, where
v: CroZ, u=veP f: Y->Cr~Z, and yr,«: Er— 2Z is defined by

o(x 25) if 0<s=- ;
{nr, 0l B)I(S) =
uB(2—2s)  if ;gsél.

Note that 7" corresponds to — 4" (see [6, Lemma 14]).

f
Next, let F— —>X———>Y and F’—->X'—f—> Y’ be two fiberings with fibres F,

F' respectively, and let the following diagram be commutative :

i S
F— X—Y

bl

F—X—Y
i f

If g, B, 1 are all (weak) homotopy equivalences, we say that (h, &, g): f—~/f'
is a (weak) equivalence between two fiberings.

Finally, we define {Y, Z} to be the set of equivalence classes of elements
in z(Y, Z2), in which we call u;, #: Y- Z equivalent if and only if there
exist homotopy equivalences k. Z-Z, k: Y- Y satisfying u: = hu k.

Under these definitions, the main result obtained by applying Theorem 2

is stated as follows:

TueorEM 4. Let Y and Z belong to W, and let Y be (r—1)-connected
(r=2).  Suppose further that =,(Z)=%0 onlv for s+1<qgsr+s-1 (s=1)
and that s+ 1=r. Then the cquivalence classes of fiberings m I8, with Y as
base and with fibre 9Z, are in 1 — 1 correspondence with {Y, Z}.

We list an immediate consequence of this theorem which seems to be well
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known :

CoroLLARY. Let Y be a 1-connected space in 2, and let Z be a space of
type (7, n+1) which also belongs to L. Then the classes of fiberings in 28
having Y as base and 2Z as fibre are in 1~ 1 correspondence with the equiva-
lence classes in H' (Y, =) under O, where O is the group of automorphisms
of H™'(Y, =) determined bv homotopy equivalences of Y and automorphisms

of .

The 1—-1 correspondence in Theorem 4 is established by assigning to
u: Y -»Z the class of the fibering Pu: E,- Y induced by # from EZ-Z.
The fact that this is really 1—1 will be readily seen by combining several

lemmas below.

The following result is due to T. Ganea [3, Lemma 2.1]:

Levma 1. Let F—>X2>Y be a fibering with X and Y both in 3. Suppose
Y is (r—1)-connected and that =o(F) =0 only for s<g=r+s—2(r=2,s=1).
Suppose further that there exists a weak equivalence 0: F- QZ, where Z is a
1-connected space. Then we can find a map uw: Y~ Z such that there exists

a weak equivalence (£, Z, 1): f - Pu with £~4.

Proof. By assumption, n,(Z) X 7q-1(22) = rq-1(F) =0 for g=7+s. Further,
since F and Ey are equivalent to each other (see [6, Theorem 11, Efis (s —1)-
connected. Thus Theorem 2, (a) implies that 7 : =(Cy, Z) > =(Es, 22) is
onto, i.e. the’re exists a map v: Cr - Z such that 77, >~ 6% where u is the com-
position Yf—'{ Cf"’?‘>Z and 7: Er- F the canonical equivalence. We have a

homotopy-commutative diagram:

Pf f P'f
Er=>X=>Y~>Cs
“\r! E’//, " ié : Lo
V¥ Y | ¥
QZ—>E.—>Y-—>2Z
Tu Pu “

in which the middle square is commutative, and so 2 induces %: F- QZ.
Applying the five lemma to the diagram of homotopy groups derived from the
above one, we conclude that T is a weak equivalence. Since a simple computa-

tion shows that
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£(x)(s) =v(x s) for x€ F, 0<s<1,
v(x, 28) for()gsg%.
{9f,u°0(x)}(s) =
20 = base-point of Z for ; =s=1,

where 0: F- Ey is a canonical inverse of ¥ given by 0(x) =(x, ¢), e being
the constant path at y,, we have § =&, as asserted.

Next, in order to examine the extent to which # is determined, we need
LEmMA 2. Let h: Z-Z' be a map; then ¢ hy = hoo®, 7 hye = ()7 .

LemMa 3. In Lemma 1 we assume moreover that Z belongs to I and that
s+ 1=7r (this is always the case when r =2). Suppose there is given the com-
multative dz'dgmm

F-xLy
le g i=12,

uj

in which vertical maps are (weak) equivalences. Then there exists an equiva-
lence h: Z—->Z such that us=hu, and &= Qho&,.

Proof. Let Z; be a homotopy inverse of &,; since Z is s-connected and
r+s=2s+1, we can apply Corollary 3 to obtain a map k: Z-Z such that
Qh>~¢0%: QZ->0Z Consider vj: Cs—Z given by (j=1, 2)

vi(») = u;(y) for yeV,
vi(%, s) =1;(x) (s) for xeX, 0<s=<1,

where £;(x) = (f(x), 7i(x)). Then it follows from the proof of Lemma 1 that
0*5{v;} = {%;}. This leads to the following:

¥ 5 hdv) = 0¥ (Qn) 7 vy} by Lemma 2,
= (Qh), 07 {0} = (2h) . {&1}
={&) = 0" {v:}.

Because 7% is 1—1 by Theorem 2, (b) and ©* is an isomorphism, we have

{ho} = {1}, whence, composing P'f to the right, {hu} = {u}.

LemMmA 4. Let u: Y—>Z be a map and let h: Z-2', k: Y'-Y be homo-

topy equivalences. Then Pu: E.-7Y and P(huk): Ene—Y' are equivalent.
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Proof. Let %k be a homotopy inverse of k.  Consider then the following

homotopy-commutative diagram

U
Y —>Z
B, I
[ A '
Y huk *Z

This transformation gives rise to the map 7/ : Eu - Enu. which is defined by
1y, 1) =(E(y), ¥'(y) for ye Y, r€ EZ, u(y) =v(1),

where y'(y) is the path in Z' given by, using a homotopy H:: Y -Z2' with
Hy=hu, Hy = hullf, 7/(5)(s) = hr(2s) for 0S5 5. =Hye(y) for & =s=1.
It follows from Lemma 6 in [6] that 7 is a homotopy equivalence. Thus

(Qh, 7, E): Pu- P(huk) is a desired equivalence.

LEMMA 5. Suppose there is given the commutative diagram

{ f
F->xloy
e H e
A4 v ¥

p— [
27 7EM P Y e zZ
where the top line is a fibering. Then the above diagram admits a factorization :

Foiox-Toy
SR

Hup) P(u?) u$
QZ-—E,, - —>Y—Z

I L
R7Z- ‘;;—) Eu i “‘};;—-) Y’ ‘u") Z

Proof. If we write down £ as £(x) = (¢f(x), 7(x)) for x€ X, r(x) € EZ
with u¢f(x) =7(x)(1), then it suffices to consider ¢, k given by ¢(x) = (f(x),
7(x)), and h(y, v) =(¢(»), 1), y€Y, re EZ.

Finally, we shall prove

TaeOREM 5. Let f: QW 2V be a map with W, V in28. Suppose further
that (W) =0 only for n+1<i<2nandrj(V)x0 only forq+2=<j<n+q+1
(2=n=sqg+1). If Ef is of the same homotopy type as a loop-space of a space
in W, then f is homotopic to 2g for some g: W V.
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Proof. Let 0: Ef—> 2Z be an equivalence. For g=#n—1, the assertion is
trivial by Corollary 3. Hence we may assume that g=x. Since Eyis (n—1)-
connected and =;(Z) =0 for {=n+q-+1, we can apply Theorem 2, (a) to find

a map v: Cr—Z such that there exists a homotopy-commutative diagram

Pf P'f
Ef—> .QW—f% QV—>Cr
Ll l 1

()‘Jr‘bﬂj, n ‘LE/, u ‘.;v

9Z0 B qv o 2

in which 6=~%¢.,, u=voP'f. By the five lemma we see that £s,» is a homo-
topy equivalence. Choose a homotopy inverse p: E.—2W of 4. Observe
that Z and E, are =n- and (n -~ 1)-connected respectively. Thus Theorem 2
yields again a map v': C.— W such that 7., »=p holds in the homotopy-

commutative diagram

Pu % Pu
Ey—>RV—>Z—>Cy

l | '

p\tlﬂu, w ¢§u, w lv

QW—Ey—->Z—>W
Iw Pw w

where w=v'oP'u. As above, &.,,» iS seen to be an equivalence. Let r:
Ey— 2V be a homotopy inverse of £4,». Since Ey is g-connected, Theorem 2

shows that there exists a homotopy-commutative diagram

Tw Pw w Pw
QW—>Ew—>Z—>W—>Cu

Al o]

W oV B WV

where t =%y, and o is the involution induced by reversing loop-parameter.
Combining the above three diagrams with one another we see that f=~wo2t

Corollary 3 implies that w= Qs for some s: V- V, whence f =g for g=s°¢t.

Remark. By a similar argument as in Theorem 5 we may obtain a result
due to Berstein and Hilton ([1, Lemma 3.61): Let f: S* 'S, m=qg+1=3.
If Cr= S”\f)e’” is of the same homotopy type as a suspension, then f is homo-
topic to Sg for some g: S™ ST

Added in proof. After the submission of this note, Hilton’s paper “On
excision and principal fibrations” (Comment. Math. Helv. 35, 1961, Fasc. 2)
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appeared, where he has obtained essentially the same results as our Theorems
2 and 2'.
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