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Our purpose in this note is to establish a classification theorem for fiberings

with a loop-space as fibre. This is deduced by applying a generalized suspen-

sion theorem which will be proved in § 1. As a by-product we obtain a pro-

position concerning fiberings with a loop-space as the total. Throughout this

note we shall denote by 2B the category of spaces having the based homotopy

type of a CW-complex.

§ 1. Generalized suspension theorems

For a given map / : X-* Y, let E/ denote the subspace of XxEY consist-

ing of the pairs (x, β) such that fix) =0(1) where EY is the space of paths

in Y emanating from the base-point yOt and let C/ denote the space obtained

by attaching the reduced cone over X to Y by means of /. Denoting the loop

and suspension functors respectively by Ω and S, we have defined in [6, p.

136] Ύ}': SEf-^Cf and -η: E/-+ΩC/ by setting, for (*, j9)eJ2>,

0(2s) if O ^ s ^ g•>

β), s) =

(*, 2-2s) if I "£s£l,

These induce suspensions σ* = (;/)* : π(C/, Z) -*π(SE/f Z) and a.M = -q* : 7r(Z, E/)

-+π\Z, ΩCf) for any space Z, where π(A, B) denotes the set of homotopy

classes of maps A-*B. The following has been established there:

THEOREM 1. If Y is r-connected and E/ s-connected, then σ*: HQ(C/)

-»HQ(SEf) is an isomorphism for q^r-h s + 1 and a monomorphism for

q = r + s + 2.
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THEOREM 1'. Let X and C/ be r- and s-connected respectively. Then o* :

πq(E/)-*πQ(ΩC/) is an isomorphism for likqSr+s-l and an epimorphism

for q = r+s.

These theorems may be generalized as follows:

THEOREM 2. Let X and Y both belong to 2δ, and let Y and E/ be r- and

s-connected respectively ( r ^ l , sgrO). Suppose that Z is n simple for all n>0.

Then

(a) σ*: τr(C/, Z)-+πlSE/, Z) is onto if πQ(Z)=0 for q>r + s + 2.

(b) <;*: τr(C/, Z)-+π(SE/, Z) is 1 - 1 ifπq(Z)=0for $ > r + s + 3.

THEOREM 2'. Let Z be in SB and let X aud C/ be r- and s-connected re-

spectively ( r ^ l , s ^ 2 ) . Then

(a) <;*; 7r(Z, E/)-+π{Z, ΩC/) is 1 - 1 if the integral cohomology groups HQ(Z)

are trivial for q>r + s.

(b) <;*: τr(Z, Ef)-*π{Z, ΩCf) is onto if Hq(Z) = 0 for q^r+s+ 1.

The proofs will be based on the following simple:

LEMMA. Let X and Y be in 2B and let f: X-> Y be a given map. Then

(i) / is equivalent to an inclusion X'C- Y1 where X' is a subcomplex of a CW-

complex Y1.

(ii) Ef and C/ also belong to 2B.

Proof of Lemma. By using the mapping cylinder argument we may assume

that / is an inclusion. Then we have a commutative diagram

X > Y

where \X\ and \Y\ are respectively the geometric realizations (see Γ4]) of

the singular complexes of X, Y and I /1 is induced by /. j \ and j2 are canoni-

cal maps which induce isomorphisms of homotopy groups [4, Theorem 4], and

hence homotopy equivalences by [8, Theorem 11 Taking X\ Y' to be \X\,

I Y\, we obtain the first assertion. We shall now prove the second half. In

view of [6, Lemmas 6, 9] and (i), we may assume that X is a subcomplex of

a CFF-complex Y and that / is an inclusion. Obviously, C/ = YU CX is then

https://doi.org/10.1017/S0027763000002440 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002440


A GENERALIZATION OF SUSPENSION THEOREMS 161

a CW-complex. On the other hand, Ef is the space of paths in Y emanating

from the base-point and ending in X. Milnor's result [5, Theorem 3] implies

that Ef belongs to 2B. This completes the proof of the lemma.

Proof of Theorem 2. By the preceding lemma, rf is equivalent to an in-

clusion i: AaB where A is a subcomplex of a CW-complex B. Hence, to

prove our theorem, it suffices to show that i induces «* : ~ΛB, Z)-*π(A, Z)

having the property stated in Theorem 2. Theorem 1 and the exactness of

the cohomology sequence of the pair (J5, A) now imply that EFiB, A) G) = 0

for q ̂  r + s -f- 2 and for all coefficient groups G.

Firstly, let πQ(Z) = 0 for ^ r + s + 2; then HQ+1(B, A; πQ(Z)) - 0 for all

# > 1 . Thus a standard obstruction argument shows that i* is onto. Secondly,

suppose r.Q{Z) =0 for q>r+s+3; in this case HQ(B, A; ~Q{Z)) vanishes for

every q^l. Therefore, by the same reasoning, we see that t* is 1 — 1.

Proof of Theorem 2'. Consider the mapping cylinder M of r>\ E/-*ΩCf.

We have a homotopy-commutative diagram:

v
Ef —» ΩCf

\ (

\ ψ

M

where the unlabelled arrows are inclusions and the vertical one is a homotopy

equivalence. According to Theorem 1', we have πQ(M, Ef) =0 for 1 ̂  q ^ r + s.

Let \Z\ be the geometric realization of the singular complex of Z and j :

|Z |->Zbe the canonical map. In case (a), Hq~\\Z\) πg(M, £"/))= 0 for all

<?52, and, in case (b), HQ(\Z\\ τzq{M, Ef)) = 0 for all q>2. Observe also

that our assumption implies πi(E/) =0 and hence the pair (M, Ef) is ^-simple

for every ?ί^2. Noting that j is an equivalence and using the theory of

obstructions to compressions as outlined in [2, Theorem 4.4.2], we obtain the

desired conclusions.

COROLLARY 3. (J. Stasheff [7, Theorem 2]) Suppose Y is a r connected

space belonging to 3£, and that Z satisfies the condition ~Q(Z) = 0 for q>2r+l

(r^D. Then rΛY, Z) is in 1-1 correspondence tvith rλQY, ΩZ).

Proof. Taking X to be a point in Theorem 2, we have Ef-ΩY, Cf^ Yy
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and 5 - r — 1. The assertion then follows at once. Note that <;* : rλ Y, Z)

->τ:(Si?y, Z)^~(QY, ΩZ) is seen to be the mapping induced by assigning to

v: Y-Z Ωv: ΩY••-> ΩZ.

Similarly, by taking Y to be a point in Theorem 2', we have

COROLLARY 3'. Let X be r-connected and let Z be a CW-complex with

Then r(Z, X) is in 1-1 correspondence ivith π(SZ, SX).

§2. Applications

First, the notations introduced in Γ61 will be used throughout in parti-

cular,^we consider ' j* : τ:(C/, Z)-*~ΛEf, ΩZ) given by σ*lv} = {y/,n}, where

v: C/-+Z, u=v°P'f: Y > C/ >Z, and ?/,„: E/->ΩZ is defined by

I vix, 2s) if O^s^ I ,

uβ(2-2s) if * ^ s ^ l .

Note that a* corresponds to - a* (see [6, Lemma 14]).
* f ϊ f

Next, let F—>X—>Y and F1—>X'—>Y' be two fiberings with fibres F,
F1 respectively, and let the following diagram be commutative:

I*

If g, h, h are all (weak) homotopy equivalences, we say that (h, h, g): /-*/'

is a iioeak) equivalence between two fiberings.

Finally, we define {Y, Z) to be the set of equivalence classes of elements

in 7τ( y, Z), in which we call uu u%\ Y-+Z equivalent if and only if there

exist homotopy equivalences h: Z->Z, k: Y^ Y satisfying u2-huik.

Under these definitions, the main result obtained by applying Theorem 2

is stated as follows:

THEOREM 4. Let Y and Z belong to 2tf, and let Y be Kr -1)-connected

i r ^ 2). Suppose further that ~η{ Z) * 0 only for s f l ^ ( 7 ^ r + s - l ί s ί> 1)

r/;2ί/ ί/z<7ί 5 + 1 ^ r. TZ/ί' ί j?/zβ equivalence classes of fiberings in 2I\ ivith Y as

base and ivith fibre ΩZ, are in 1 — 1 correspondence with {37, Z).

We list an immediate consequence of this theorem which seems' to be well
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known:

COROLLARY. Let Y be a l-connected space in 2£, and let Z be a space of

type (7r, n -f 1) which also belongs to 28. Then the classes of ϋberings in 2&

having Y as base and ΩZ as fibre are in 1 — 1 correspondence with the equiva-

lence classes in Hn"ιiY, rr) under Θ, ivhere Θ is the group of automorphisms

of HnJrl(Y, ΰ) determined by homotopy equivalences of Y and automorphisms

ofπ.

The 1-1 correspondence in Theorem 4 is established by assigning to

u' Y ^ Z the class of the fibering Pu: EU-*Y induced by u from EZ^Z.

The fact that this is really 1-1 will be readily seen by combining several

lemmas below.

The following result is due to T. Ganea [3, Lemma 2.1]:

LEMMA 1. Let F—>X—> Y be a fibering with X and Y both in 29. Suppose

Y is O - D-connected and that ~Q(F) =̂ 0 only for s^q^,r+ s — 2 ( r>2, s > l ) .

Suppose further that there exists a weak equivalence β: F-» ΩZ, where Z is a

I'Connected space. Then we can find a map u'. Y-+Z such that there exists

a weak equivalence (?, ξ, 1) : f ^ Pu with ξ — θ.

Proof By assumption, πQ(Z)^τ:Q-ί(ΩZ)^7zη-1{F) = 0 for q>,r+s. Further,

since F and Ef are equivalent to each other (see [6, Theorem 1]), Ef is (s -1)-

connected. Thus Theorem 2, (a) implies that a''' \ τr(C/, Z)-*τ:(Eff ΩZ) is

onto, i.e. there exists a map v: Cf ^Z such that yf,u~ΘΨ where u is the com-
P'f v

position Y—-^Cf—>Z and ψ: Ef-*F the canonical equivalence. We have a

homotopy-commutative diagram :

Pf f P'f
Ef—+X — »Y—»Cf

" ψ ! ! r'f, » ! I : \v

r*Eκr+Y >Z
Iu Pu u

in which the middle square is commutative, and so J induces ξ: F-+ΩZ.

Applying the five lemma to the diagram of homotopy groups derived from the

above one, we conclude that | is a weak equivalence. Since a simple computa-

tion shows that
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ξ(χ){s) = v{χ, s) for X^L F, 0 ^ s ^ 1,

I v(x, 2s) for O ^ s ^ y f

2o = base-point of Z for 9 ^ s ^ 1,

where Φ: F-+Ef is a canonical inverse of Ψ given by Φix) - (x, e), e being

the constant path at jy0, we have θ-ξ, as asserted.

Next, in order to examine the extent to which u is determined, we need

LEMMA 2. Let h: Z-+Z1 be a map; then σ*h* = hi:σ*> ϋ*h* = (i?/i)*tf*.

LEMMA 3. In Lemma 1 w£ assume moreover that Z belongs to SB and that

s + l^r (this is always the case when r = 2). Suppose there is given the com-

mutative diagram

F - U X—+ Y

in which vertical maps are {weak) equivalences. Then there exists an equiva-

lence h: Z-*Z such that u2-huι and ξ2^Ωh°ξ\.

Proof. Let | i be a homotopy inverse of ςΛ; since Z is s-connected and

r + s ^ 2 s + l, we can apply Corollary 3 to obtain a map h: Z-*Z such that

Ωh^ξs°ξi: ΩZ-+ΩZ. Consider vj: C/-+Z given by (.7 = 1, 2)

Vjiy) = uj(y) for y e Y,

vj(x, s) =rj(x) (s) for Λ G J , O ^ s ^ l ,

where £/(#) = (fix), rAx)) Then it follows from the proof of Lemma 1 that

Φ*ct*{vj) =- {~j}. This leads to the following:

Φ*J*hΛvι) =• Φ*(Ωh)*a*{vx) by Lemma 2,

Because ^ * is 1 - 1 by Theorem 2, (b) and 0* is an isomorphism, we have

{Jivi} = {t 2}, whence, composing P ' / to the right, {hui) =

LEMMA 4. Lί?ί «: Y-+Z be a map and let h: Z-*Z\ k: Yf-*Y be homo-

topy equivalences. Then Pu: EU-*Y and P(huk) : Ehnk-*Y' are equivalent.
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Proof. Let k be a homotopy inverse of k. Consider then the following

homotopy-commutative diagram

u

Y —>Z
\h

huk

This transformation gives rise to the map Z: Eu -» JEW which is defined by

χ(y, r) = (^(jy), r'ί^)) for J Έ Y , γ&EZ, uiy) ~\

where r'(^) is the path in Z' given by, using a homotopy #*: Y-+Z1 with

Ho = hu, Ht = hukh rf(y){s) = hγi2s) for O ^ s ^ - L ^Άs-Ay) for - ^ s ^ l .

It follows from Lemma 6 in [6] that Z is a homotopy equivalence. Thus

(Ωh, */,%): Pu-*P(huk) is a desired equivalence.

LEMMA 5. Suppose there is given the commutative diagram

F - '-> X —> Y

u u w

where the top line is a fibering. Then the above diagram admits a factorization:

F --> X --—* Y

l if
Hut?) P(uΨ) ufp

ΩZ > EttP > Y—> Z

Iu Pu u

Proof. If we write down ξ as ξix) = (φf(x), γ(χ)) for XEΞX, γ(χ) e EZ

with uψf(x) = γ(x)(l)t then it suffices to consider ψ, h given by ψ(x) = (f(x),

r(x)), and h(y, r) = {<f(y), r),y<=Y, γ^EZ.

Finally, we shall prove

THEOREM 5. Let f: ΩW-+ΩV be a map zvith W, V m 2B. Suppose further

that τr/( W) % 0 ow/y /or w + 1 ̂  i ̂  2 Λ βwrf τzj{ V) * 0 ow/v /or^ + 2 ^ / ^ w + ^ + l

(2 ^ w ̂  q+ 1). If Ef is of the same homotopy type as a loop-space of a space

in 5B, then f is homotopic to Ωg for some g\ W-> V,
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Proof. Let θ: E/->ΩZbe an equivalence. For q=n-l, the assertion is

trivial by Corollary 3. Hence we may assume that q^n. Since E/ is (n-D-

connected and 7r, (Z) =0 for i>n + q+l, we can apply Theorem 2, (a) to find

a map υ: Cf-*Z such that there exists a homotopy-commutative diagram

Pf f P'f
E/—+ΩW—> Ω V—> Cf

I I I I
0 V/, u ςj, M ! v

in which O — -ηftU* u = v°P'f. By the five lemma we see that £/,« is a homo-

topy equivalence. Choose a homotopy inverse p: EU-+ΩW of ?/,M. Observe

that Z and Eu are /2- and (« — l)-connected respectively. Thus Theorem 2

yields again a map υf: Cw*W such that -qu,w-p holds in the homotopy-

commutative diagram

Pu u P'u
Eu—*ΩV—+Z—»Cu

M; PW W

where w = vf°P'u. As above, ξUtw is seen to be an equivalence. Let r :

EW-*ΩV be a homotopy inverse of ξu,w. Since ^ is ^-connected, Theorem 2

shows that there exists a homotopy-commutative diagram

Iw Pw w P'vυ
ΩW >EW—> Z — > W—>CW

where τ-ηw,t and ω is the involution induced by reversing loop-parameter.

Combining the above three diagrams with one another we see that f-ω°Ωt.

Corollary 3 implies that ω-Ωs for some s: V-> V, whence f-Ωg for g=^s°t.

Remark. By a similar argument as in Theorem 5 we may obtain a result

due to Berstein and Hilton ([1, Lemma 3.6]): Let f: S"1""1-*^, m><7+i;>3.

// C/= SQ\Jem is of the same homotopy type as a suspension, then f is homo-
f

topic to Sg for some g: S " 1 " 2 - ^ " 1 .

Added in proof. After the submission of this note, Hilton's paper "On

excision and principal fibrations" (Comment. Math. Helv. 35, 1961, Fasc. 2)
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appeared, where he has obtained essentially the same results as our Theorems

2 and 2'.
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