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How can low-pressure channels and defortning 
tills coexist subglacially? 
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ABSTRACT. Deforming till and low-pressure water channels are observed to 
coexist subglacially, but till also is observed to creep rapidly into low-pressure sub­
glacial regions. A simple model shows that these observations are not contradictory. 
Creep of a thin till to a low-pressure region can occur from a narrow zone only, 
and will lead to isolation of channels from till farther away. 

INTRODUCTION 

Creep of till at a rate of O.2md- 1 into a tunnel dug 
beneath a glacier was observed by Boulton (1976), lead­
ing Boulton and Hindmarsh (1987) to suggest that the 
creep of till into subglacial streams and transport in the 
streams could be an effective mechanism for removing 
sediment from beneath glaciers. Yet, Engelhardt and 
others (1978; also see Meier, 1989) observed deforming 
till and low-pressure channels in close proximity sub­
glacially, showing that the channels had not removed all 
of the deforming sediment. Here I use a simple model 
to argue that the rapid, non-steady creep of till to a 
channel observed by Boulton (1976) can affect a thin till 
between ice and bedrock only within a short distance 
of the channel, so that the coexistence of low-pressure 
channels and soft subglacial sediments observed by En­
gelhardt and others (1978) is not surprising. 

M ODELS F OR TILL CREEP T O CHANNELS 

I conduct an order-of-magnitude analysis here. Assump­
tions and sources of error are considered in the discussion 
below. 

The assumed geometry is shown in Figure 1. Ice with 
basal pressure ~ over lies a thin till of thickness h, pene­
trated by a channel with pressure Pw < ~, all resting on 
rigid bedrock. Till is modeled by one of three continuum 
approximations: perfect plasticity, linear viscosity and 
Bingham rheology. 

I follow Turcotte and Schubert (1982, p. 234) in adopt­
ing a pseudo-hydrostatic model (neglecting deviatoric 
stresses) characterized by a pressure, P, in the contin­
uum till, with flow of the bulk till driven by spatial grad­
ients in P . Clearly, at the microscopic scale the bulk till 
consists of grains and pores , with a pore-water pressure, 
Pp, typically less than P (and clast- clast contact pres­
sures correspondingly greater than P). The flow proper­
ties ofthe till probably vary with P-Pp == N, and spatial 
gradients in ~) may cause pore-water flow through the 
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Fig. 1. Cartoon of the geometry fOT models 
developed here. Va,riab!es are defined in the 
text . 

till in addition to any water advection with the deform­
ing till (cf. Clarke, 1987). 

Far from the channel the till supports the full weight 
of the ice and has pressure P = ~, and at the channel 
the till pressure drops to P = p .... Till creep is assumed 
to occur to the channel, driven by the pressure difference 
p. - Pw along the till, and is resisted by the yield strength 
or viscosity of the till. I then solve for t he maximum 
distance from which (significant) creep can occur. 

P erfect-plasticity model 

The coordinate system shown in Figure 1 has its origin 
at the vertical midpoint of the till-channel face, with +x 
normal to that face away from the channel and +z ver­
tically upward. Per unit length along the channel (out 
of the page in Figure 1), the force causing till creep is 
Fe = (~- p ... )h ... , where hw is the till thickness in contact 
with the channel; the force resisting creep is Fr = 2T'X', 
where T' is the till yield strength. The distance x' is t he 
maximum till catchment length; creep may occur from 
a distance less than x', but cannot occur from x > x'. 
The factor of 2 in the expression for Fr arises because 
creep occurs past upper and lower surfaces of the till. 
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To estimate x*, I invoke force balance, equate Fe and Fr> 
and solve to obtain 

X * -. - (1) 

The yield strength, T*, can be approximated as (e.g. 
Boulton and Hindmarsh, 1987) 

T* = N tan cP + C (2) 

where tan cP is the internal friction and C is the cohesion 
of the till; N is the difference between the bulk pres­
sure, P, and the pore-water pressure in the till, Pp. In 
earlier papers (e.g. Alley, 1989a; and based on Boul­
ton and others (1974)) I have suggested that C = 4 kPa, 
tan cP = 0.2 are possible values for a typical till under­
going deformation from the basal shear stress of the ice, 
and I adopt these values here for till creep to a channel. 
(The observation of till deformation beneath a variety of 
glaciers (e.g. Engelhardt and others, 1978; Boulton and 
Hindmarsh, 1987; Blake and Clarke, 1989; Meier, 1989) 
demonstrates that values of C and tan cP are toward the 
low end of those typically reported in the soils literature 
(Alley and others, 1987a).) 

The effective pressure, N, should approach zero at 
the channel, x = 0, where the boundary condition is 
P = Pp = Pw . The pore-water pressure, Pp, will rise 
away from the channel, reaching a value at the divide 
with the next channel that depends on the till permeabil­
ity and thickness, the water supply and the channel spac­
ing, but which will not exceed the Weertman-film value 
of a few tenths of a bar less than 11 (Weertman, 1972). 
Shoemaker (198G) showed that for typical deforming-till 
permeabilities and other factors, introduction of a low­
pressure channel will rapidly reduce pore-water pressures 
significantly below the Weertman-film value in a zone 
tens to hundreds of meters wide, causing Pp to be al­
most as low as Pw within a few meters of the channel. 
Below, I show that if till has a significant yield strength 
or viscosity, its pressure, P, rises steeply away from a 
channel and approaches or equals 11 only a few meters 
from the channel, giving N ~ 11 - Pw at the limit of till 
creep, x = x*. As a crude approximation (see discus­
sion), I assume that N is constant at the average of the 
extreme values at x = 0 and x = x*, or 

(3) 

The value of Pw probably depends on both ice-water 
and sediment- water interactions (Walder and Fowler, 
1989), but for simplicity I will estimate Pw from the 
theory of Rothlisberger channels (Rothlisberger, 1972; 
Weertman, 1972), assuming that the channel is water­
filled and the ice- water interaction controls channel pres­
sure. (Notice that if Pw < 11 there is a tendency for till 
creep to the channel, regardless of the physical processes 
that control Pw.) If channel radii and potential grad­
ients driving channel flow are not too small (>~ 0.1 m, 
>~ lOPam-', then 

(11 - Pw ) tan cP» C (4) 

and combining this with Equations (2) and (3) 
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(5) 

Substituting for T* in Equation (1) from Equation (5) 
for the initial configuration of Figure 1 with tan cP = 0.2 
yields 

* hw x ~--
tan cP 

(Ga) 

(Gb) 

Thus, the simple result is that a perfectly plastic till layer 
with tan cP = 0.2 and yield strength given by Equation (5) 
can creep toward a low-pressure channel through thick­
ness hw from a catchment area of half-width no greater 
than x* ~ 5hw . For hw = 0.1 to 1 m, x* ~ 0.5 to 5 m, a 
short distance. 

Time-dependent solution 

The perfect-plasticity analysis assumes a yield strength 
for creep to a channel, but that yield strength may be 
reduced or eliminated if subglacial till is sheared along 
ice flow by the basal shear stress of the ice, as seems 
likely in many cases (but see discussion). If so, then 
the perfect-plasticity limit on the till catchment area is 
broadened or eliminated. However, I show next that by 
including likely till viscosities, the catchment area for 
significant creep remains narrow even in the limit of zero 
yield strength. I also estimate the time-scale for thinning 
of till adjacent to channels, and find that it is on the order 
of 1 year or less. 

The Bingham relation for sediment deformation in the 
coordinate system of Figure 1 is 

OU 1 
ITI > T" (7a) - = -(T ± T*), 

oZ J.l 

oU 
ITI ~ T* (7b) OZ = 0, 

where u is velocity in the x direction, J.l is the Bingham 
viscosity, T is the shear stress, T* is the yield strength 
given in Equation (2), and the sign in (T ± T*) is chosen 
to reduce the magnitude of the expression, because till 
deformation slows with increasing yield strength. The x 
derivative of till pressure, oP j ox, must be balanced by 
a shear stress, T, in the x direction parallel to the upper 
and lower surfaces of the till, such that 

OT 
OZ 

oP 
ox' 

(8) 

(This derivation is modified from Turcotte and Schubert 
(1982, p. 234).) Integrating Equation (8) and noting 
that T = 0 at z = 0 gives 

oP 
T = z-;:;--. 

uX 
(9) 

Substituting for T in Equation (7) from Equation (9) 
and integrating with no-slip conditions (see discussion) 
at the upper and lower boundaries of the till, Z = ±hj2, 
yields 

1 loP h 2 * h 
{ [( ) 2 1 ( )} u = --;;, 2 ox "2 - Z ± T "2 -lzl , 

z· ~ Izl ~ hj2 (lOa) 
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o ~ Izl < z' (lOb) 

where the sign preceding T' is negative if 8P/8x > 0 and 
positive if 8P/8x < 0; a rigid plug occurs between ±z' 
given by 

(11) 

Averaging Equation (10) over the till thickness yields the 

till flux, hil, as 

In the absence of till sources, continuity for till (which 
I assume to be incompressible) gives 

8(hil) = -h 
8x 

(13) 

where ;1 is the rate of change of till thickness with time. 
If ice and till maintain contact, then ;1 can be estimated 
following Walder (1986), who approximated the creep 
closure of a subglacial cavity containing a low-viscosity 
fluid (water) using the Nye (1953) solution for closure of 
channels with circular cross-sections. Making the same 
approximation here (where the "cavity" is that part of 
the till layer undergoing creep thinning) yields 

(14) 

where n = 3 is the exponent for power-law creep of ice; 
the constant ]() = An -n, with A the usual pre-factor for 
power-law creep of ice. 

Differentiating Equation (12) with respect to x, equat­
ing to Equation (14) and solving with T', /-L, ]() and n 
assumed independent of x yields 

{h' ± [2T' (~=) -'n ~;, + (3h'~: ± 6T'h) ~~ 
+ 12/-L]()h(1l - pr = O. (15) 

To study the behavior of this system, consider intro­
duction of a steady channel at Pw to a glacier bed with a 
uniform deforming till of thickness ho at time t = 0, with 
the requirements that the till deforms toward the chan­
nel and that the ice and till remain in contact. The till 
pressure must rise to the ice-overburden pressure at the 
limit of till creep, x'. Till creep must drop to zero at x' 
to maintain ice- till contact because the driving stress for 
downward ice creep drops to zero there. The boundary 
and initial conditions then are: 
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h(x, t = 0) = ho 

P(x = 0, t) = Pw 

P(x = x', t) = II 

(16a) 

(16b) 

(16c) 

(16d) 

Notice that x' is time-dependent and determined by the 
requirements of till creep and ice- water contact. The 
system (15) and (16) can be solved numerically. Also, the 
condition (16b) of constant water pressure Pw at x = 0 
causes Equation (14) to integrate to 

h(x = 0) = hoexp ( -~) (17a) 

~ == ]()(ll- p .. T (17b) 

independent of till properties. 
For demonstration purposes, I will consider behavior 

of a 1 m thick till layer adjacent to a steady, water-filled 
Rothlisberger (1972) channel with radius r = 1 m, and a 
0.1 m thick till layer adjacent to a channel with 7' = 0.1 m. 
For these cases, I assume that ice- water interactions 
control water pressures in channels and that the pot­
ential gradients driving water flow along the channels are 
'Ij; = 1000 Pa m-I or'lj; = 20 Pa m-I, values that might oc­
cur beneath a mountain glacier (labeled M in the figures) 
and beneath a low-profile ice stream draining a large ice 
sheet (S in the figures), respectively, if the water table 
were parallel to the ice surface. Steady Rothlisberger 
channels with physical constants and roughness recom­
mended by Weertman (1972) would then have the ef­
fective pressures listed in Table 1, ranging from a few 
bars to a few tens of bars. (The reader can test any 
combination of potential gradient, 'Ij;, and radius, r, for 
turbulent flow in Rothlisberger channels using 

where the numerical values recommended by Weertman 
(1972) have been adopted.) 

From Equation (17), thinning of till at the ice- till in­
terface is independent of till properties. Taking n = 3 
and](1 =2xlO-25 Pa-3 s- 1 (A=5xlO-24 Pa-3 s- I),the 
response times, B, range from 10-3 a (3.0 x 10'1 s) to 1.6 a 
(5.0 x 107 s) (see Table 1). The continuum approximation 
must break down when the thickness reaches some "typ­
ical" clast height, which will depend on the till grain-size 
distribution and probably is of the order of 1- 100 mm. If 
that height is 10 mm, then for the examples in Table 1 it 
is reached in about 1.5 d to 3.7 a. This is an estimate of 
the time required for a channel to become isolated from 
till creep from an adjacent deforming layer. 

Away from the channel, calculation of the time evol­
ution of till thickness and till supply to the channel 
requires specification of a Bingham viscosity and yield 
strength. I test till viscosities /-L = 1010 Pa s (low viscos­
ity; L in figures), a possible value for till beneath Ice 
Stream B (Alley and others, 1987b), and /-L = 1012 Pas 
(high viscosity; H in figures), which may be more approp­
riate for lowered pore-water pressures in till adjacent to 
a channel, especially in the mountain-glacier case. To 
test dependence on yield strength, I start with the same 
yield strength as in the perfect-plasticity solution and 
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Table 1. Response times and rates of till supply per unit length of channel for examples considered in the 
text 

Channel Potential Pressure Response 
radius gradient drop time 

r 1/J Pi -Pw f) 

Pam ·1 Pa m a 

20 7.8 x 105 0.33 
20 7.8 X 105 0.33 

1000 5.5 X 106 9.5 X 10.4 

1000 5.5 x 106 9.5 X 10-4 

0.1 20 4.6 x 105 1.6 
0.1 20 4.6 x 105 1.6 
0.1 1000 3.2 x 106 4.8 X 10.3 

0.1 1000 3.2 x 106 4.8 X 10.3 

then lower it in order-of-magnitude steps. Results in­
clude: 

Decreasing the till viscosity increases the initial rate of 
till supply to the channel (Fig. 2; Table 1). 

Increasing the till thickness increases the initial rate of 
till supply to the channel (Table 1). 

Till thinning is fastest adjacent to the channel (Figs 2 
and 3). 

The maximum rate of till supply to the channel occurs 
at t = 0 (Fig. 4). 

For given till properties, lowering the water pressure in 
the channel increases the driving stress for till creep 
and thus the rate of till supply (Table 1). 

The maximum distance, x·, from which creep can occur 
decreases with increasing time (Fig. 3) because the 
fastest thinning occurs at the channel, and the pres­
sure gradient driving till creep must steepen to force 
till through the thinning layer there. 

Results are only weakly sensitive to the assumed till yield 
strength for the assumed till viscosities (Fig. 5). 

This last point is especially important. Creep to the 
channel is driven by P; - Pw , and is opposed by the yield 
strength and the viscosity of the till. Far from the chan­
nel where creep is slow, the magnitude of the pressure 
gradient in the till is that needed to overcome the yield 
strength; near the channel creep is faster, and the mag­
nitude of the pressure gradient must increase to overcome 
the viscous forces (Fig. 2a). In all cases considered here 
except the low-viscosity, ice-stream case at short times 
(LS in Fig. 2), the major control near the channel is 
viscosity. And as time passes and the pressure gradient 
near the channel increases to force till through the thin­
ning layer there, the yield strength becomes insignificant 
in all cases considered here. Thus, although the yield 
strength is critical to setting the length scale of failure 
in the perfect-plasticity model, a low yield strength will 

Till Till Initial Figure 
thickness viscosiry till code 

supply 

ha Jl 

m Pas 3 ·1 ·1 m a m 

10lD 3.7 LS 
1012 1.5 HS 
IO lD 709 LM 
1012 90 HM 

0.1 1010 0.0077 LS 
0.1 1012 0.0043 HS 
0.1 10lD 1.9 LM 
0.1 1012 0.46 HM 

not produce significant time-dependent creep from long 
distances if viscosity is significant. This result is quite 
robust for the high-viscosity cases but less so for the low­
viscosity, ice-stream case; clearly, if viscosity were much 
lower than assumed here, the results would be more sen­
sitive to changes in the yield strength. 

DISCUSSIO N 

Many complexities are omitted from the model here. 
For example, water pressures undergo large variations 
in channels connected to the ice surface. This will con­
tribute to till strength being a complex function of time 
and distance from a channel, depending on the coup­
led behavior of till deformation and porous flow through 
the till (Shoemaker, 1986). The ice pressure on the sed­
iment will vary with distance from a channel owing to 
the bridging effect modeled by Weertman (1972). Com­
plications such as these should change the exact values 
of numerical calculations here, but should not affect the 
basic result that significant till strength or viscosity will 
limit the creep of till to channels. 

The channel form shown in Figure 1 clearly is an over­
simplification (Walder and Fowler, 1989; Hooke and oth­
ers, 1990). At the water- till interface, both the bulk 
pressure on the till, P, and the pore-water pressure in the 
till, Pp, approach the water pressure in the channel, Pw , 

so that the effective pressure, N == P - Pp, approaches 
zero. If till cohesion is small, then the till will have lit­
tle strength there (Equation (2)). A vertical face such 
as shown in Figure 1 then would collapse under its own 
weight, causing channels to be broad and shallow. Such 
behavior has been predicted theoretically (Walder and 
Fowler, 1989) and supported by field data (Hooke and 
others, 1990). The exact form of the channel is a com­
plicated problem still not solved (Walder and Fowler, 
1989), but schematic ally it might resemble Figure 6. 

For the geometry of Figure 6, calculations following 
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Fig. 2. Initial distr-ibutions of pr-essur-e, P, 
and mte of thickness change, h, in 1 m thick 
subglacial tiLL at onset of t ime-dependent cr-eep 
to a 1 m mdius channel penetmting the tilL 
Cases shown ar-e: M , mountain glacier-; S, ice 
str-eam and H, high viscosity; L, low viscos­
ity, as descr-ibed in the text Q,nd Table 1. Solid 
lines ar-e for- a Bingham substance with yield 
str-ength given in Equat ion (5) with tan <P = 

0.2 (LS, HS , LM, HM cases); dashed Lines ar-e 
behavior- in limit of yield str-ength r-educed to­
war-d zer-o (LS, HM cases). (a) Initial pr-essur-e 
distr-ibution. Pr-essur-es ever-ywher-e ar-e ~ R, 
the ice pr-essur-e, and ar-e plotted nor-malized 
by the magnitude of the pr-essur-e differ-ence at 
the channel, IP - R Ix=o or- IPw - RI. (b) Initial 
mte of thickness change. Rate of change, ft, 
is nor-malized by the magnitude of this mte at 
the channel, Ihlx=o, fo r- the pr-essur e distribut­
ions and cases shown in Figur-e 2a. The HM 
cases for- significant and zer-o yield str-ength ar-e 
indistinguishable at this scale. 
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Shoemaker (1986) show that pore-water flow through the 
creeping till will, within a few hours , lower Pp more than 
P is lowered by creep failure of the till as modeled here, 
causing N to increase away from the channel in the creep­
ing till. (Assuming a till permeability of ~ 10-6 m s- 1 

(Boulton and others, 1974), Shoemaker (1986) showed 
that a sinusoidal variation in Pw with an amplitude of 
1 d is transmitted to the pore water in the till with a l ie 
distance of 16 m, compared to significant reduction in P 
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Fig. 3. Time evolution of till thickness for­
the lo'w-viscosity, 'ice-str-eam (LS), 1 m case 
with 'yield str-ength given b'y Equation (5) and 
tan <p = 0.2. The thickness is plotted for­
times t = 0, 0.1,0.3,0.5 and a.'1a, (Lnd the 
distance fr-om which cr-eep is occur-r-ing at each 
time, x· ( t), is shown. 
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Fig. 4. Time evolution of tiLL flux to channel 
for- the example shown in Figur-e 3. 
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Fig , 5. D ependence of initio'/' till thinning 
rate on yieLd strength, for creep of a 1 m 
thick till lay er to a 1 m radius channel in the 
low-viscosity, ice-stream case (LS), which is 
the case considered here 'where yield stre'ngth 
is most important. The yield strength fOT 
each curve is aT', where T' is calculated from 
Equation (5) with tan cP = 0 .2, and the curves 
are labeled with 0'.. The catchment widths, x', 
are 4.95mfoTO'. = 1 , 9.4mforO'.= 0.5, 35m 
fOT 0'. = 0.1 , 142m fOT 0'. = 0.01 (not shown) 
and 484 m for 0'. = 0.001, and continue to 
widen with decreasing 0'. toward zero. How­
ever, thinning rates for 0'. < 0.01 are indistin­
guishable from Cl! = 0.01 on the scale plotted 
here, and thinning rates in excess of 10 % of 
the maximum 'ualue are indistinguishable for 
Cl!~0.1. 

extending only 5 m or less in almost all of the cases con­
sidered here; Fig. 2.) This will cause the till in the wedge 
at x < 0 in Figure 6 to have strength from internal fri c­
tion as well as cohesion, and will require a pressure grad­
ient in the till to cause creep through the wedge to the 
channel. Then at x = 0, the edge of the channel, P > Pw 

in the till. The driving force for till creep to the channel 
in this case is less than calculated above, and the catch­
ment area for s ignificant till creep is less than calculated 
above, strengthening my conclusions. The geometry of 
Figure 6 would increase the time needed for isolation of 
the channel from the till compared to the geometry of 
Figure 1, but faster thinning at x = 0 than at x > 0 still 
would occur in the Figure 6 case, eventually isolating the 
channel from the till. I therefore feel justified in ignoring 
the interesting but difficult question of channel shape. 

The results here require that subglacial till has a sig­
nificant yield strength or a significant viscosity. Recent 
work by Kamb (1990, 1991) suggests that subglacial till 
approaches perfect plasticity (strain rate proportional to 
stress raised to a large power, perhaps 100), based on 
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Fig. 6. Cartoon of the possibl,e geometT'tJ and 
preSSUTe relations i f till, Iws /,OU) cohesion and 
the till- wateT fa ce collapses. 

unconfined testing of till and on results from soil mec­
hanics. One might suggest that for the situation mod­
eled here, if the basal shear stress of the ice exceeded the 
yield strength of a perfectly plast ic till, and if the yield 
strength were a scalar rather than a t ensor property of 
till, then the till would offer almost no resistance to creep 
to the channel. 

I consider this scenario to be unlikely for several reas­
ons. First, the high stress exponent assumed by Kamb 
(1990, 1991) does not accord with the (limited) available 
data on subglacial deformation, If till follows a linea r­
viscous or other creep law with a small stress exponent, 
the thickness of till de formed by the basal shear stress 
of the ice can be relatively large, whereas increase of the 
stress exponent toward the infini te value in perfect plas­
ticity will collapse the zone of sign ificant deformation 
toward a single surface (e.g. Turcotte and Schubert, 
1982, p.318). The available data (Boulton and Hind­
marsh , 1987; Blake and Clarke, 1989; Meier, 1989) show 
a broad zone of deformation in subglacial till, consis­
tent with a low stress exponent (including linear- viscous 
behavior) but inconsistent with a high stress exponent 
(Alley, 1989b). A larger data set might find perfectly 
plastic behavior (and indeed, localized deformation oc­
curs in the deforming till studied by Boulton and Hind­
marsh (1987), although distributed deformation domin­
ates) , but a small stress exponent seem s a better model 
now. 

Secondly, deformation of till aligns clasts, suggesting 
the possiblity of a t ensor yield strength (Murray and 
Dowdeswell , 1990). Shear deformation a long a surface 
(such as might occur in a perfectly plastic till) typica lly 
produces a striated or slickensided surface that is smooth 
parallel to the motion but rough transverse to the mot­
ion. If deformation were occurring along ice flow, such a 
surface probably would have significant strength against 
initiation of transverse creep to a channel. 

Even if the till were a perfect plastic with a scala r 
yield strength, however , the conclusions here would b e 
valid . Deformation of perfectly plastic till by the basal 
shear stress of the ice should cause failure on a single 
surface, probably at the top of the till , but creep of till 
to a channel requires failure at the top and bottom of 
the till. A pre-existing failure surface would reduce the 
resistance to creep toward a channel, and increase the 
distance from which creep could occur, by a factor of two 
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(x* ~ 10hw rather than 5hw in Equation (6b)). The till 
catchment area then would be 10 m rather than 5 m for a 
1 m thick till, not a large enough difference to change the 
conclusions here. If the till had a high stress exponent 
(or if till followed some other flow law but slip occurred 
on its upper and lower boundaries rather than having 
no-slip boundaries), the till flux would be increased by 
some geometric factor over that shown in Figure 4 and 
Table 1, but this is not critical to the conclusions here. 

CONCLUSIONS 

Despite numerous uncertainties, I believe that the res­
ults here are quite robust at the order-of-magnitude 
level. Low-pressure channels do exist subglacially, and 
till creep has been induced into one such channel (Boul­
ton, 1976), driven by the pressure drop into it. Such 
creep, if it occurs, will be resisted by the viscosity plus 
any yield strength of the till. The resulting force bal­
ance is expressed in Equation (1), if the strength T* is 
understood to be the total resistance to significant creep, 
and the distance x* is understood to be the maximum 
distance for significant creep. Data from subglacial till 
shear along ice flow suggest that T* then is a few tenths 
of a bar (e.g. Engelhardt and others, 1978; Alley and 
others, 1987b; Boulton and Hindmarsh, 1987). If the 
pressure drop into the channel is a few bars, and the till 
thickness is a few tenths of a meter, then x* can be no 
more than about ten times the till thickness. This can 
be increased substantially only if both till viscosity and 
till yield strength for creep to a channel are small com­
pared to values used here. (The values used here are in 
accord with the best available data; however, the data 
are sufficiently limited that it remains possible that the 
values used here are substantially in error at some times 
or places.) The calculations here are valid for linear­
viscous, Bingham and perfectly plastic models, so uncer­
tainties in the stress exponent for till deformation do not 
affect my results. 

If a channel can remove the till supplied to it and 
remain open (Alley, 1989a), then the till will thin in 
the narrow zone of creep near the channel. This will 
isolate the channel from till farther away, often in a 
single melt season. The observed coexistence of low­
pressure channels and thin deforming till layers then is 
explained provided spacings between low-pressure chan­
nels are >~10 m and lateral migration of channels is not 
too fast. 

If my results are correct, then a subglacial deforming 
till should be thin or absent very near (wi thin one or a 
few meters of) any long-lived channel. This clearly can 
be tested, although the test might be technically difficult. 
The thinning of till near channels calculated here will af­
fect the transmission of water-pressure fluctuations from 
a channel to the rest of the bed, and will affect the spat­
ial distribution of basal drag on ice flow, with possible 
effects on ice dynamics. 
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