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INVARIANT MEASURES OF ULTIMATELY BOUNDED
STOCHASTIC PROCESSES

YOSHIO MIYAHARA

The author discussed in [4] the ultimate boundedness of a system
which is governed by a stochastic differential equation

dX(®) = f(&, X@)dt + G, X@®)dw (@) , t=0. (1)

In this paper we investigate the invariant measure of an ultimately
bounded process assuming stationarity: namely we are interested in a
process governed by

dX(t) = f(X@®)dt + GX@)dw®), t=0. (2)

where X(f) and f(x) are n-vectors, G(z) is an » X m-matrix, and W(%)
is an m-dimensional Wiener process. We assume that f(z) and G(z)
satisfy Lipschitz continuity.

Let X(¢) be a conservative Feller process defined on the state space
R». The corresponding semi-group {T,} of X(f) is the set of operators
T, on the space C = {f(x); bounded continuous function on R"} and is
defined by

Tj@=[ r@Ptwdy for feC, (3)

where P(t,xz,B) is the transition function of X(¢).

A process X(¢) is said to be p-th ultimately bounded (p > 0) if there
exists a constant K such that lim, . M, |X(@®)|? < K for any x, where M,
means the conditional expectation under the condition X(0) = z. An in-
variant measure p of a process X(¢) means that ux is a positive regular
measure and satisfies Ln P(t, x, BYdp(x) = w(B) for any t >0 and Borel
set B.
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THEOREM 1. If a conservative Feller process X(t) is p(> 0)-th
ultimately bounded, then there exists a finite invariant measure of X(t).

Proof. Fix a point z e R* and put
Oy(f) = %—J‘:th(x)dt ) N=12,.... (4)

Then @,(f) is a linear functional on C which satisfies

) D) 20, if F=0,

i) o,1)=1.
Therefore @, defines a probability measure on R"”, which we will denote
by the same notation @(.).

We will prove that the family {®#,}, N =1,2, ..., is tight, that is

liminf @,(S;) =1, (5)
k—~oo N
where S, ={z;|2|<k}), k=1,2,.... From the assumption of p-th

ultimate boundedness of X(t), there exist two constants K and t, such
that M, |X(@)]? < K for t = ¢, Using Tchebychev inequality to this in-
equality, we have

P@wﬁ%)é% for t = t,, (6)

where S¢ is the complement of S,. This inequality is equivalent to

P(t,x,Sk)gl—% for t > ¢, . (7)

Therefore we get the following inequality ;

1™ 1 K
> - 2 (N — —
Dy(Sy) = N LOP(t, x, Spdt = i (N —t,) (1 e )

for N > ¢, .

(8)

From this inequality we know that when any positive number ¢ is given,
there are two constant %,(¢) and N,(¢) such that

DS =1 —c¢ for k= %k, and N= N, . (9)
It is valid that there is a constant k,(¢) such that
Oy S =1—c¢ for k> k and N=1,2,.-..,N,, 10)

because Oy(.) is a probability measure. Two inequalities (9) and (10)
prove (5), that is, the family {®y}, N =1,2, ..., is tight.
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From the tightness of {&#y}, N=1,2,..., we can conclude that
there are a probability measure @(-) and a subsequence {@y }, m = 1,2,
..+, such that

lim @, (f) = o(f) for feC. 1y

m—co

Using this equality and the boundedness of feC and T,.feC, we have

T ) = lim [ "7, . f@ds
= lim Tvlzjj’" T,f(@)ds + 7\}1: UN:HTS F@)ds — J : T, f(x)ds) (12)

= O(f) for feCand t=0.

This equality stands for that @(.) is an invariant measure of X(?).
(Q.E.D.)

Remark 1. We know from the proof of Theorem 1 that the in-
variant measure of X(¢) is not unique. Every starting point x deter-
mines an invariant measure.

COROLLARY 1. If the system (2) is p(> 0)-th ultimately bounded, then
it has a finite invariant measure.

Proof. It is well-known that the solution of (2) is a conservative
Feller process. (cf. [2]). (Q.E.D.)

COROLLARY 2. If the system (2) is non-degenerate and p(> 0)-th
ultimately bounded, then it is positive recurrent.

Proof. It is proved by W. M. Wonham [6, Appendix] that the sys-
tem (2) is a diffusion process in the sense of R. Z. Khas’minskii [3] if it
is non-degenerate. And R. Z. Khas’miskii proved that a diffusion process
is positive recurrent if and only if it is recurrent and has a finite in-
variant measure ([3], Theorem 3.3 and Lemma 5.3). We already knows
that an ultimately bounded process is recurrent ([4], §5) and Corollary 1
assures the existence of a finite invariant measure. (Q.E.D.)

Remark 2. We know that a p(> 0)-th ultimately bounded process
is weakly recurrent and that an exponentially p(> 1)-th ultimately bounded
process is weakly positive recurrent ([4], §5). But it is not known
whether a p(> 0)-th ultimately bounded process is weakly positive recur-
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rent or not. Corollary 2 gives us a partial answer of this problem.

THEOREM 2. Let X(t) be a p-th ultimately bounded Markov process
with a finite invariant measure v. Then it satisfies

j |2l? v(dz) < oo .
R

Proof. Put f(x) = |z’ and fn(x) = yp,.,(f(x)), where y is a characte-
ristic function. We note that f,(x) € L'(R",v). From the assumption of
p-th ultimate boundedness, there is a constant K’ such that

limM,f(X,) < K for any x .

t—oo

By the use of Ergodic theorem for Markov process with invariant measure
(cf. [5] pp. 388), there exists the limit

lim L5170 = 5@ Grae) a3)
and
Ef@) = B.1.() , (14)

where T f.(x) = Im FP(k,x,dy) and E,f,(x) = L fz(@)dv(x). From the

inequality f,(x) < f(x) and the assumption of p-th ultimate boundedness,
we have

lim -1 3 7ofu@) < Tim L 37 T, f(@) < K
Now N i=1 Noow N #=1

for any z e R".

(15)

From (13) and (15) we obtain f*(x) < K’ (v-a.e.), and from this inequality
we have

E,f=x) = K'. (16)
The formulas (14), (16) and the fact f,(x) 1 f(x) (n — o) imply that
E f(x) =limE,f,(x) =limE, f¥x) < K . (Q.E.D.)

n—co n—oo

COROLLARY. If X(t) is oco-th ultimately baunded, then any finite in-
variant measure v of X(t) satisfies E,|z|P < oo for any p > 0.

The author of this present paper expressed his thanks to Professor
H. Kunita for his useful discussions.
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