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MEAN REPRESENTATION NUMBER OF INTEGERS
AS THE SUM OF PRIMES

GAUTAMI BHOWMIK and

JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. Assuming the Riemann hypothesis, we obtain asymptotic estimates
for the mean value of the number of representations of an integer as a sum of

two primes. By proving a corresponding Ω-term, we show that our result is
essentially the best possible.

§1. Introduction and results

When studying the Goldbach conjecture that every even integer larger
than 2 is the sum of two primes, it is natural to consider the correspond-
ing problem for the von Mangoldt function Λ. Instead of showing that an
even integer n is the sum of two primes, one aims to show that G(n) =∑

k1+k2=n Λ(k1)Λ(k2) is sufficiently large; more precisely, G(n) > C
√

n for
a suitable constant C implies the Goldbach conjecture. It has long been
known that this result is true for almost all n. It is easy to see that if f is an
increasing function such that the Tchebychev function Ψ(x) = x+ O(f(x)),
then the mean value of G(n) satisfies the relation

∑
n≤x

G(n) = x2/2 + O
(
xf(x)

)
.

If we consider the contribution of only one zero of the Riemann zeta func-
tion ζ, an error term of size O(f(x)2) appears, which, based on current
knowledge on zero-free regions of ζ, would not be significantly better than
O(xf(x)). Fujii [3] studied the error term of this mean value under the
Riemann hypothesis (RH) and obtained

∑
n≤x

G(n) = x2/2 + O(x3/2),
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which he later improved in [4] to

(1)
∑
n≤x

G(n) = x2/2 + H(x) +
(

O(x logx)4/3
)
,

with H(x) = −2
∑

ρ (x1+ρ/ρ(1 + ρ)), where the summation runs over all
nontrivial zeros of ζ. In fact, the oscillatory term H(x) is present even
without assuming the RH; however, it is necessary for the error estimate
above.

In this article, we prove the following.

Theorem 1.1. Suppose that the RH is true. Then we have
∑
n≤x

G(n) =
1
2
x2 + H(x) + O(x log5 x)

and ∑
n≤x

G(n) =
1
2
x2 + H(x) + Ω(x log logx).

This confirms a conjecture of Egami and Matsumoto [2, Conjecture 2.2].
Recently, Granville [6] used (1) to obtain new characterizations of the RH.
The innovation of the present work is the idea to use the distribution of
primes in short intervals to estimate exponential sums close to the point
zero. Note that, using the generalized RH, one could similarly find bounds
for the exponential sums in question in certain neighborhoods of Farey frac-
tions. Such a bound, for example, fixes a gap in the proof of [6, Theorem 1C].
This approach can further be used to study the meromorphic continuation
of the generating Dirichlet series

∑
G(n)n−s, as introduced by Egami and

Matsumoto [2], a topic we deal with elsewhere (see [1]).
The log-power in the error term can be improved, but reaching O(x log3 x)

would probably require some new idea.

§2. Proofs

To prove the first part of our theorem, we compute the sum using the
circle method. We use the following standard notation.

Fix a large real number x, set e(α) = e2πiα, and let

S(α) =
∑
n≤x

Λ(n)e(αn),

Ty(α) =
∑
n≤y

e(αn),
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T (α) = Tx(α),

R(α) = S(α) − T (α).

The following is due to Selberg [8, (13)].

Lemma 1. Assuming the RH, we have
∫ x

1
|Ψ(t + h) − Ψ(t) − h|2 dt � xh log2 x.

The following result is due to Gallagher (see [7, Lemma 1.9]). Put T =
y−1, δ = y/2.

Lemma 2. Let c1, . . . , cN be complex numbers, and set S(t) =
∑N

n=1 cn ×
e(tn). Then ∫ 1/y

−1/y
|S(t)2| dt � y−2

∫ ∞

− ∞
|A(x)|2 dx,

where
A(x) =

∑
n≤N

|n−x| ≤y/4

cn.

Our main technical result is the following.

Lemma 3. Suppose that the RH is true. Then we have for y ≤ x the
estimate ∫ y−1

−y−1

|R(α)|2 dα � x

y
log4 x.

Proof. We put N = x and cn = Λ(n) − 1 into Lemma 2. Putting

B(t) =
∑
n≤x

t<n≤t+y/2

cn,

we obtain∫ y−1

−y−1

|R(α)|2 dα � y−2

∫ ∞

− ∞
|B(t)|2 dt = y−2

∫ N

−y/2
|B(t)|2 dt.

In the range −y/2 < t < 0, we have
∫ 0

−y/2
|B(t)|2 dt =

∫ y/2

0
|Ψ(t) − [t]|2 dt � y2 log4 y.
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For 0 ≤ t ≤ x − y/2, we have B(t) = Ψ(t + y/2) − Ψ(t) − y/2 + O(1); thus,
we can apply Lemma 1 to obtain
∫ x−y/2

0
|B(t)|2 dt � x +

∫ x−y/2

0
|Ψ(t + y/2) − Ψ(t) − y/2|2 dt � xy log2 x.

Finally, for x − y/2 ≤ x ≤ N we have B(x) = Ψ(x) − Ψ(t) − (x − t) + O(1).
Since the RH is equivalent to Ψ(x) = x + O(x1/2 log2 x), this implies that
B(x) � x1/2 log2 x, and therefore that

∫ x

x−y/2
|B(t)|2 dt � xy log4 x.

Collecting our estimates, our claim follows.

Note that no nontrivial unconditional version of Lemma 3 can be proven
without better understanding of the zeros of the Riemann ζ-function, since
the existence of a single zero close to 1 would already blow up the left-hand
side.

Writing S2(α) as (T (α) + R(α))2, we have

∑
n≤x

G(n) =
∫ 1

0
T (−α)S2(α)dα

=
1
2
x2 + 2

∫ 1

0
|T (α)|2R(α)dα +

∫ 1

0
T (−α)R2(α)dα + O(x).

We claim that the second term yields H(x) and that the last one yields an
error of admissible size. In fact, the second term can be written as

2
∫ 1

0
|T (α)|2S(α)dα − 2

∫ 1

0
|T (α)|2T (α)dα = 2

∑
n≤x

(
Λ(n) − 1

)
([x] − n)

= 2
∑

n≤x−1

(
Ψ(n) − n

)
.

We now insert the explicit formula for Ψ(n) and replace the sum over n by
an integral to find that the second term is indeed H(x) + O(x).

We now consider the third term. We split the integral into an integral over
[−x−1, x−1] and integrals, of the form [2kx−1,2k+1x−1]. On each interval,
we bound T (α) by min{x,1/‖α‖ }, where ‖α‖ is the distance of α to the
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nearest integer, and we bound R(α) using Lemma 3. For the first interval
this yields

∫ x−1

−x−1

T (−α)R2(α)dα � x

∫ x−1

−x−1

R2(α)dα � x log4 x,

while for the other intervals we obtain
∫ 2k+1x−1

2kx−1

T (−α)R2(α)dα � 2−kx

∫ 2k+1x−1

2kx−1

R2(α)dα

� 2−kx
x

2−kx
log4 x � x log4 x.

There are O(logx) summands; hence, the contribution of R2 to the whole
integral is O(x log5 x), and the first part of our theorem is proven.

We now turn to the proof of the Ω-result. To do so we show that G(n) =
Ω(n log logn); hence, the left-hand side of (1) has jumps of order Ω(n ×
log logn). Since x2/2 and H(x) are continuous, the error term cannot be
o(x log logx). By considering the average behavior of H(n) − H(n − 1), one
can even show that the error term is of order Ω(x log logx) for integral x;
however, we will do only the easier case of real x here.

The idea of the proof is that if an integer n is divisible by many small
primes, then G(n) should be large. Let q1 be the exceptional modulus for
which a Siegel zero for moduli up to Q might exist, and let p1 be some prime
divisor of q1. For the sake of determinacy, we put p1 = 2 if no Siegel zero
exists. We now use the following result due to Gallagher [5, Theorem 7].

Lemma 4. There exists a positive constant c, such that for x/Q ≤ h ≤ x,
and exp(log1/2 x) ≤ Q ≤ xc we have

∣∣∣x −
∑

x≤n≤x+h

Λ(n)
∣∣∣ +

∑
q≤Q

∑
χ

∗∣∣∣ ∑
x≤n≤x+h

Λ(n)χ(n)
∣∣∣ � h exp

(
−c

logx

logQ

)
,

Here
∑∗ denotes summation over primitive characters modulo q, and if

there exists an exceptional character, for which a Siegel zero exists, this
character has to be left out of the summation.

We put Q = q =
∏

p<h,p �=p1
p. Then all characters χ modulo q are induced

by some primitive character χ′ modulo q′ ≤ q, and∣∣∣ ∑
x≤n≤x+h

Λ(n)χ(n) −
∑

x≤n≤x+h

Λ(n)χ′(n)
∣∣∣ ≤

∑
d|q

Λ(d) ≤ log q,
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which is negligible. Hence, it follows from Lemma 2 that
∣∣∣x −

∑
x≤n≤2x

Λ(n)χ0(n)
∣∣∣ +

∑
χ (mod q)

χ �=χ0

∣∣∣ ∑
x≤n≤2x

Λ(n)χ(n)
∣∣∣ ≤ x

2
,

where χ0 is the principal character, provided that q < xc′
for some absolute

constant c′. It follows that, for (a, q) = 1, we have

S(x, q, a) :=
∑
n≤x

n≡a (mod q)

Λ(n) ≥ x

ϕ(q)
.

Now ∑
n≤4x

q|n

G(n) ≥
∑

(a,q)=1

S(x, q, a)S(x, q, q − a) ≥ x2

4ϕ(q)
.

On the left we take the average over � x/q integers; hence, we obtain

max
n≤4x

G(n) � x

2ϕ(q)
= (1 − p−1

1 )
∏
p≤h

(1 − p−1)−1x � x log logx,

and our claim follows.
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