
1

Introduction

1.1 About This Book

This book aims to provide a resource for students, teachers and researchers in
chemistry who want to use Python in their work. Over the last 10 years, the Python
programming language has been widely adopted by scientists, who appreciate its
expressive syntax, gentle learning curve and numerous packages and libraries which
facilitate numerical work.

The book is composed of relatively short chapters, each with a specific job.
Mostly, these jobs fall into one of two categories: to act as a tutorial on a specific
part of the Python language or one of its libraries, or to demonstrate the application
of Python to a particular concept in chemistry. For students and teachers, these ex-
ample applications are chosen to go beyond what can be reasonably achieved with a
pencil, paper and a calculator: A brief overview of the chemical concepts is usually
given, but there is no in-depth tutorial on these topics. Rather, it is assumed that
the reader has some familiarity with the topic and wishes to use Python to solve
larger or more complex problems than those usually presented in textbooks. For
example, the chapter on Hückel molecular orbital theory (Chapter 33) outlines the
assumptions behind this approach to modeling the electronic structure of organic
molecules and then demonstrates the use of Python in determining the π molecular
orbitals of benzene, which (using an unsymmetrized basis) involves a 6× 6 matrix
determinant: not a problem to be solved by hand.

Researchers are also increasingly using Python in their work as a computational
tool, to manage and transform data, to produce publication-quality figures and vi-
sualizations, and even (using the JupyterLab package) as a replacement for labora-
tory notebooks, and to disseminate data and reproducible analysis. Indeed, Jupyter
Notebook was listed in an article in the journal Nature as one of the ten computer
codes that have transformed science.1

1 J. M. Perkel, Nature 589, 344–348 (2021).

1

https://doi.org/10.1017/9781009106696.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009106696.001


2 1 Introduction

Creating high-quality reports requires some knowledge of Markdown and LaTeX
towrite equations, tables, and chemical reactions: These are described in Chapter 14.
There are further chapters on chemical databases and formats, peak-finding, linear
and nonlinear least-squares fitting and symbolic computing with SymPy.

The examples are provided on the website https://scipython.com/chem/
in the form of downloadable Jupyter Notebooks (see Chapter 13), and are supple-
mented by some exercises (with solutions at the back of the book).

1.2 About Python

Python is a powerful, general-purpose programming language that is well-suited to
many of the tasks of scientific computing. It is a “high-level language” in that the
programmer does not have to manage the fundamental operations of data type dec-
larations, memory management and so on. In contrast to languages such as C and
Fortran, for which the user must pass their code through a “compiler” to generate
executable machine code before it is executed, Python programs are compiled auto-
matically into “bytecode” (a kind of intermediate representation between its source
and the machine code executable by the processor) by the Python interpreter. This
makes the process of code development much quicker: There is a single step to code
execution, and any errors are reported in messages returned are generally helpful
and specific.

Python and its associated libraries are free and open source, in contrast to com-
parable commercial languages such as Mathematica and MATLAB. It is available
for every major computer operating system, including Windows, Unix, Linux and
macOS. It is a highly modular language: A core functionality is provided with the
Python distribution itself, but there is a large number of additional modules and
packages that extend its functionality. The most notable of these, in the context of
scientific computing, are as follows:2

• NumPy: a package implementing mathematical algorithms for fast numerical
computing, including support for vectors, matrices andmulti-dimensional arrays –
see Chapters 9 and 18.

• SciPy: a library of scientific computing algorithms for optimization, root-finding,
linear algebra, integration, interpolation, signal processing and the numerical so-
lution of ordinary differential equations – see Chapters 21, 22 and 25.

• Matplotlib: a package for visualizing and plotting data, with the ability to gener-
ate high-resolution, publication-quality graphs and charts – see Chapter 10.

2 These packages are sometimes collectively referred to as the Python scientific computing “stack.”

https://doi.org/10.1017/9781009106696.001 Published online by Cambridge University Press

https://scipython.com/chem/
https://doi.org/10.1017/9781009106696.001


1.3 Installing Python 3

• pandas: a library providing high-level data structures for manipulating tabular
data (DataFrames and Series), popular with data scientists – see Chapter 31.

• SymPy: a library for symbolic computation, with support for arithmetic, algebra
and calculus – see Chapter 35.

• Jupyter: a suite of applications comprising a platform for interactive computing
allowing scientists to share code and data analysis in a way that promotes repro-
ducibility and collaboration – see Chapter 13.

However, Python programs will generally not execute as fast as those written
in compiled languages: for heavily numerical work, even Python code using the
NumPy and SciPy libraries (which call pre-compiled C routines from Python) will
not run as fast as code written in, for example, C, C++ or Fortran. It is also hard
to obfuscate the source code of a Python program: to some extent, an open-source
philosophy is built-in to the Python ecosystem.

1.3 Installing Python

The official website of Python, www.python.org, contains full and easy-to-follow
instructions for downloading Python. However, there are several full distributions
which include the NumPy, SciPy and Matplotlib libraries to save you from having
to download and install these yourself:

• Anaconda is available for free (including for commercial use) from www
.anaconda.com/distribution This distribution includes its own well-
documented package manager that can be used to install additional packages,
either using a dedicated application or the command-line conda command.

• Enthought Deployment Manager (EDM) is a similar distribution with a free ver-
sion and various tiers of paid-for versions including technical support and de-
velopment software. It can be downloaded from https://assets.enthought
.com/downloads/.

In most cases, one of these distributions should be all you need. There are some
platform-specific notes below.

The source code (and binaries for some platforms) for the NumPy, SciPy, Mat-
plotlib, pandas, SymPy and Jupyter packages are available separately at:

• NumPy: https://github.com/numpy/numpy
• SciPy: https://github.com/scipy/scipy
• Matplotlib: https://matplotlib.org/users/installing.html
• pandas: https://pandas.pydata.org/
• SymPy: www.sympy.org/
• Jupyter Notebook and JupyterLab: https://jupyter.org/

https://doi.org/10.1017/9781009106696.001 Published online by Cambridge University Press

http://www.python.org
https://assets.enthought.com/downloads/
https://github.com/numpy/numpy
https://github.com/scipy/scipy
https://matplotlib.org/users/installing.html
https://pandas.pydata.org/
http://www.sympy.org/
https://jupyter.org/
https://assets.enthought.com/downloads/
www.anaconda.com/distribution
www.anaconda.com/distribution
https://doi.org/10.1017/9781009106696.001


4 1 Introduction

1.3.1 Windows

Windows users have a couple of further options for installing Python and its libraries:
Python(x,y) (https://python-xy.github.io) andWinPython (https://winpy
thon.github.io/). Both are free.

1.3.2 macOS

macOS, being based on Unix, comes with Python, usually an older version of
Python 3 accessible from the Terminal application as python3. You must not
delete or modify this installation (it’s needed by the operating system), but you
can follow the instructions above for obtaining a distribution with a more recent
version of Python 3. macOS does not have a native package manager (an applica-
tion for managing and installing software), but the two popular third-party pack-
age managers, Homebrew (https://brew.sh/) and MacPorts (www.macports
.org), can both supply the latest version of Python 3 and its packages if you prefer
this option.

1.3.3 Linux

Almost all Linux distributions these days come with Python 3 but the Anaconda
and Enthought distributions both have versions for Linux. Most Linux distributions
come with their own software package managers (e.g., apt in Debian and rpm for
RedHat). These can be used to install more recent versions of Python 3 and its
libraries, though finding the necessary package repositories may take some research
on the Internet. Be careful not to replace or modify your system installation as other
applications may depend on it.

1.4 Code Editors

Although Python code can be successfully written in any text editor, most pro-
grammers favor one with syntax highlighting and the possibility to define macros
to speed up repetitive tasks. Popular choices include:

• Visual Studio Code, a popular, free and open-source editor developed by Mi-
crosoft for Windows, Linux and macOS;

• Sublime Text, a commercial editor with per-user licensing and a free-evaluation
option;

• Vim, a widely used, cross-platform keyboard-based editor with a steep learning
curve but powerful features; the more basic vi editor is installed on almost all
Linux and Unix operating systems;

https://doi.org/10.1017/9781009106696.001 Published online by Cambridge University Press

https://python-xy.github.io
https://winpython.github.io/
https://winpython.github.io/
https://brew.sh/
http://www.macports.org
http://www.macports.org
https://doi.org/10.1017/9781009106696.001


1.4 Code Editors 5

• Emacs, a popular alternative to Vim;
• Notepad++, a free Windows-only editor;
• SciTE, a fast, lightweight source code editor;
• Atom, another free, open-source, cross-platform editor.

Beyond simple editors, there are fully featured integrated development environ-
ments (IDEs) that also provide debugging, code-execution, code-completion and
access to operating-system commands and services. Here are some of the options
available:

• Eclipse with the PyDev plugin, a popular free IDE (www.eclipse.org/ide/);
• JupyterLab, an open-source browser-based IDE for data science and other appli-

cations in Python (https://jupyter.org/);
• PyCharm, a cross-platform IDE with commercial and free editions

(www.jetbrains.com/pycharm/);
• PythonAnywhere, an online Python environment with free and paid-for options

(www.pythonanywhere.com/);
• Spyder, an open-source IDE for scientific programming in Python, which inte-

grates NumPy, SciPy, Matplotlib and IPython (www.spyder-ide.org/).

The short-code examples given in this book be in the form of an interactive Python
session: commands typed at a prompt (indicated by In [x]:) will produce the
indicated output (usually preceded by the prompt Out [x]:). It should be possible
to duplicate these commands in a Jupyter Notebook or IPython session (e.g., within
the interactive programming environments provided by the Anaconda distribution).

https://doi.org/10.1017/9781009106696.001 Published online by Cambridge University Press

http://www.eclipse.org/ide/
https://jupyter.org/
http://www.jetbrains.com/pycharm/
http://www.pythonanywhere.com/
http://www.spyder-ide.org/
https://doi.org/10.1017/9781009106696.001

