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Knowledge Spillover and Positive
Environmental Externality in
Agricultural Decision Making under
Performance-Based Payment
Programs

Hongxing Liu ©®, and Christopher S. Ruebeck

Agricultural activities have imposed significant impacts on water resources, leading
to hypoxic zones and harmful algal blooms all over the world. Government agencies,
nongovernmental organizations, and individuals have been making various efforts
to reduce this non-point source pollution. Among those efforts, even the more cost-
effective examples of performance-based environmental payment programs
generally have low participation rates. We investigate the effects of externalities
in farmers’ decisions on neighboring farms, incorporating both a knowledge
spillover effect and a positive environmental outcome externality of farmers’
best-management practice (BMP) adoption decisions. Our focus is on how these
effects may influence the outcome of performance-based payment programs and
how policy makers might recognize these effects in the design of cost-effective
policies to promote program participation and BMP adoption. Rather than
imposing an assumption of profit-maximization or forward-looking behavior, we
allow outcomes to emerge from interactions among neighboring farmers. We
recommend cost-effective policies across communities depending on their
composition. It is more cost-effective to target communities with fewer
innovators and/or target the programs towards the least-innovative individuals.

Keywords: agent-based modeling, agricultural decision, externality, knowledge
spillover, performance-based payment programs, non-point source pollution

Introduction

Agricultural activities (nonpoint source) and urban development (point source)
have imposed significant impacts on water resources, leading to harmful algal
blooms (HABs) and hypoxic zones in every U.S. coastal state and around the
world (NOAA, 2019). HABs affect not only the marine ecosystems but also
fisheries, human health, recreational industries, and related local economies.
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Both the accumulation of nutrients (in soil and in bodies of water) and global
climate change are leading to HABs with increasing frequency. To combat
these  harmful effects, efforts involving government agencies,
nongovernmental organizations, and community-based groups have sought to
create innovative mechanism designs that can reduce nutrient runoff and
improve water quality. These include voluntary cost-share payments for best
management practices (BMPs), regulatory limits such as total maximum daily
load (TMDL), fertilizer taxes, and water quality trading (WQT).

Relatively recently, there has been growth in pay-for-performance (PFP)
conservation programs such as the Maryland Nutrient Trading Program
(Duke et al. 2020; Palm-Forster et al. 2016b; Claassen and Weinberg 2006;
Winsten and Hunter 2011). These programs are similar to Payments for
Ecosystem Service (PES) programs in that farmers participate voluntarily but
receive payments based on the environmental benefits generated from their
conservation practices rather than being paid for the practices themselves (e.
g, Environmental Quality Incentive Program). Studies have shown that the
performance-based programs can be more cost-effective and offer flexibility
as compared to the pay-for-practice programs (Fales et al. 2016; Claassen
and Weinberg 2006). In PFP programs, environmental outcomes such as
phosphorus or nitrogen reduction are usually calculated by field-scale models
(e.g., Maryland Nutrient Trading Tool) that build on hydrologic models such
as the Soil and Water Assessment Tool (SWAT) or the Agricultural Policy
Environmental eXtender (APEX) Model (Muenich et al. 2017). These models,
though differing from one another in some details, all take into account the
inherent spatial heterogeneity in fields’ physical characteristics such as soil
productivity, hydrologic balance, and climate inputs. Thus, PFP programs can
increase efficiency by moving away from uniform payments and toward first-
best differentiated policies.

While we have seen that these programs can provide greater flexibility on the
choice and timing of conservation practices, reduce overall compliance costs,
and encourage voluntary participation of non-point sources within the
watershed (EPA/NPDES 2019), experience has also shown that the number
of participants from both point and nonpoint sources has been limited, and
the value of offsets has been minimal (Stephenson and Shabman 2017; U.S.
Environmental Protection Agency, 2008; Hanson and McConnell 2008;
Newburn and Woodward 2012). One of the main reasons for the limited
participation to this point is that, even though theoretically cost-effective,
these programs still impose high transaction costs on the participants.
Previous research has focused largely on the transaction costs and
information asymmetry of WQT participation or PES payment for
environmental service contracts in general (Hanson and McConnell 2008;
Newburn and Woodward 2012; Nguyen et al. 2013; Palm-Forster et al.
2016a; Peterson et al. 2015; Woodward and Kaiser 2002). Studies have
found that the costs created by asymmetric information—formulating,
negotiating, and monitoring contracts—can significantly decrease the
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efficiency of the programs (Palm-Forster et al. 2016a; Peterson et al. 2015;
Stephenson and Shabman 2017), in part because they disincentivize
participation.

Studies have also viewed the decision to adopt conservation practices from
the perspective of individual decision-making and as a part of social
interactions. In terms of an individual farmer’s motivation to adopt
conservation practices, the literature has found that farmers’ attitudes
towards “environmental stewardship” are an important component of their
decision-making in addition to their own economic concerns (e.g., Berger
2001; Carlisle 2016; Reimer, Thompson, and Prokopy 2012). Studies have
found that farmers’ concerns about the environmental impact of agriculture
can act as intrinsic motivators for adopting conservation practices (e.g.,
Reimer and Prokopy 2014; Ryan et al. 2003); that farmers’ perception of the
efficacy of particular conservation practices is a determining factor in their
decisions to use those practices (e.g., Zhang et al. 2016); and that awareness
of technical information on BMPs can promote adoption (e.g., Lemke et al.
2010). Others have shown that farmers’ decisions can be influenced by
farmland characteristics such as field size, crop choice, and irrigation choice
(e.g., Bergtold et al. 2012); by demographic characteristics such as education,
gender, and age (e.g., Druschke and Secchi 2014; Soule, Tegene, and Wiebe
2000); and by risk and time preferences (e.g., Rolfe and Gregg 2015).

These factors that influence individual farmers’ decisions can also be viewed
in a social context where knowledge spillover can promote farmers’ adoption of
new technology, especially among neighbors. Investigations have explored the
influence of social networks (Carlisle 2016), trust and social embeddedness
(Breetz et al. 2005; Mariola 2012), and social norms (Welch and Marc-Aurele
2001; Wollni and Andersson 2014). Much of the literature on knowledge
spillover in farmers’ technology adoption decisions is based on data from
developing countries and Northern European countries. Evidence shows that
neighborhood effects exist in farmers’ decision-making (Case 1992; Davey
and Furtan 2008; Lapple et al. 2017; Miyata and Manatunge 2004; Storm
et al. 2015), especially for smaller, less costly, and reversible decisions such
as milk recording (Baerenklau 2005). More specifically, farmers with
neighbors who have already adopted the new technology may lower their
learning costs and thus be more likely to adopt (Case 1992; Holloway,
Lacombe, and LeSage 2007; Lewis et al. 2011). The neighborhood effect
depends not only on farmers’ neighbors’ choices but also on their neighbors’
and their own characteristics, cultural attitudes, and social networks
(Bandiera and Rasul 2006; Munasib and Jordan 2011; Staal et al. 2002;
Storm et al. 2015). New knowledge acquired through technology training can
also be passed on through neighbors and friends (Nakano et al. 2018; Pratiwi
and Suzuki 2020; Ryan 2009). However, to the best of our knowledge, none
of the previous studies have examined the neighborhood effect under a
performance-based environmental program, nor the interaction of different
types of neighborhood effects.
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In this paper, we take a general approach towards modeling the BMP adoption
decision under a performance-based environmental program and investigate
two types of neighborhood effects: a knowledge spillover and an
environmental outcome externality among neighboring farms. These two
effects and their interactions could lower an individual farmer’s implicit
adoption cost and increase the productivity of participation in performance-
based programs, thus increasing participation rates and the cost-effectiveness
of such programs. We focus on the interactions among neighboring farmers
and these local spillovers’ translation to a global effect. As LeSage (2014)
explained for spatial econometric models, the crucial difference between local
spillover and global spillover is the endogeneity of feedback. Endogenous
interactions can lead to a sequence of adjustments in all regions where a new
long-run steady state equilibrium might arise. In our model, the global level
outcome is driven by heterogeneous interactions at local scales and their
spatial spillovers.

Focusing on interactions between local and global levels has led investigators
toward tools that allow the equilibrium to emerge through simulation rather
than being imposed as the closure of a mathematical model (Matthews et al.
2007). Agent-based modeling (ABM) simulation has become a tool of choice
for this reason and others. Filatova et al. (2013) note that an ABM approach
allows the modeler to use representations of individuals that “act more
realistically, accounting for bounded rationality, heterogeneity, interactions,
evolutionary learning and out-of-equilibrium dynamics, and to combine this
representation with a dynamic heterogenous representation of the spatial
environment.” This bottom-up approach lets equilibria emerge from agents’
actions as they follow decision rules within a social context—in contrast to
assuming or imposing the equilibrium outcome (Bonabeau 2002). Agents can
be specified to follow decision rules similar to observed conditions
(Wiesbuch 2000; Wiesbuch and Boudjema 1999), and policy-relevant
features of equilibration can also be observed in addition to the outcome; for
example, the time it takes to reach the desired outcome (Chen et al. 2012).
Moreover, the technique can account for spatial heterogeneity and allow
agents to interact with socio-ecological features, as has been applied in the
innovation diffusion literature generally (Kiesling et al. 2012; Zhang and
Vorobeychik 2019) and in modeling technology diffusion in terms of farmers’
expectation of costs and returns facing risks (Berger 2001; Schwarz and
Ernst 2009), as well as linking to hydrologic-agronomic models to study the
impacts of agricultural conservation practices on water quality (Daloglu et al.
2014; Ng et al. 2011).

Our model takes advantage of these ABM features to simulate various
communities with heterogenous spatial features and various distributions of
farmer types, using parameters derived from empirical studies, and a
network topology (both von Neumann and Moore neighborhoods) at the
meso level of neighborhood influence, providing a stylized framework that
can be extended to represent more complex systems. Our model is in the
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category that Zhang and Vorobeychik (2019) describe as “learning tools,”
affecting policy decisions at a conceptual level rather than making direct
predictions. We place less focus on influencers and instead on a network
structure that has far more local connections, creating results that depend on
the distribution of farmer types and allows us to look for the cost-effective
policies targeting those community features.

Our paper thus contributes to this literature by modeling the relationship
between farmers’ interactions and the aggregate outcomes linked through the
knowledge spillover and environmental externalities affected by farmers’
heterogeneous innate interests in conservation program participation. We
explore both spatial and dynamic features of the emergent outcomes in the
system along with effects of heterogeneity in farmers’ attitudes towards new
programs and their fields’ characteristics. To focus on these aspects of the
model, we assume farmers are price takers who observe the exogenous
market price of a performance-based program for nutrient reduction. We do
not model price change in this paper because we are considering
communities that are a small portion of the program; this feature can be
adjusted in future applications to represent the reality that credit prices can
change over time as determined by market supply and demand. One
important feature of the model is that it allows farmers’ profits from
participating in the performance-based programs to be interdependent with
their neighbors’ actions through spillover effects. Because of this feature, a
farmer’s profit is difficult to anticipate, and we model these farmers as
backward-looking adaptive profit-seekers rather than forward-looking profit-
maximizers. We show that knowledge spillover effects and positive
environmental externalities increase participation in conservation programs
and provide an innovative framework that highlights the potential
effectiveness of policies such as educational campaigns. This can broaden the
policy maker’s toolbox and increase the cost-effectiveness of performance-
based programs.

Method and Model Setup
Method

We use an ABM approach to study the effects of individual farmers’ decision-
making process and the resulting emergent phenomena (Epstein 1999). Each
agent individually assesses its situation and makes decisions to improve its
payoff based on its own set of rules while being affected by other agents’
decisions as well. There are two sources of interactions: a knowledge
spillover and an environmental outcome externality. The knowledge spillover
is represented by reducing part of the transaction cost of participating in
performance-based environmental payment program. The environmental
outcome externality is represented by improving the performance of


https://doi.org/10.1017/age.2020.18

https://doi.org/10.1017/age.2020.18 Published online by Cambridge University Press

Liu and Ruebeck Agricultural and Resource Economics Review 275

participation and thus improving the payoff. We also study the cost-
effectiveness of various policy interventions on heterogenous communities.
The model is implemented in NetLogo (Wilensky 1999; Tisue and Wilensky
2004), a widely used platform for ABM work (Kravari and Bassiliades 2015).

Model Setup

We model a generic BMP adoption decision set in a generic performance-based
nutrient reduction payment program. We start by simulating a watershed
landscape of farms with heterogeneous soil productivity indicator s (0 <s <
1) where s is the normalized indicator for the productivity of the farm field
for this BMP. This indicator represents BMP productivity or the nutrient
reduction performance of adopting the BMP. Higher s represents higher
productivity or reduction performance and thus higher payoff for
participating in the performance-based programs. Such indicators can be
derived from a hydrologic model such as SWAT or APEX that take into
account physical characteristics including soil type and location, agricultural
decisions including BMP adoption and fertilizing timing, and climate
information such as rainfall. Each cell in our model represents one decision-
making farmer with a farm field. We first randomly draw the soil
productivity indices from a uniform distribution then smooth this landscape,
making adjacent fields more similar to each other and reducing discontinuity,
which is often the case in real landscapes. This also reflects the historical
environmental outcome externality, where high/low runoff fields tend to
increase/decrease the runoff of the adjacent fields (e.g., USDA NRCS soils,
FAO of the UN). Figure 1 provides one example of such landscape of soil
productivity indices, where the brighter cells correspond to higher s.

We consider a generic BMP that reduces nutrient runoff and improves the
receiving waterbody’s water quality. Farmer i at time period ¢t who adopts
this BMP has x;, of 1 (and 0 otherwise), indicating that they participate in the

|

Figure 1. Example of Simulated Landscape
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performance-based payment program and get a payoff corresponding to their
nutrient reduction outcome R(s; S, X;» X;), which also depends on their
neighbors’ participation through the binary vector x;, representing all
neighbors’ participation. The model setup thus captures the literature’s
established fact that BMPs do not generally provide enough private benefit
for farmers to adopt them, leading to low participation in performance-based
programs.

There are costs to getting to know how the program works—getting certified
and monitored, learning how to adopt the BMP, and more. We assume this
transaction cost has two parts, a one-time cost (y;;) when trying the BMP and
participating in the program for the first time and an annual cost (c,) for
machinery, labor, paperwork, and other such recurring costs. In addition,
farmers have a willingness to adopt (w;) that reflects different attitudes
towards new BMP technology and participating in government programs.
Borrowing from Schwarz and Ernst (2009), we assume there are three types
of farmers, which we call social leader or innovator (w,), mainstream (w,,),
and traditional (w;) types.

As described above, we do not impose rational profit maximization or
forward-looking ability on the farmers in our ABM. Farmers make decisions
year by year while observing their own results, possibly learning from their
neighbors, and being affected by their neighbors’ decisions. Farmers first
consider adopting the BMP, comparing their willingness-to-pay to participate
with the transaction cost, and then after a year of doing so they calculate
their profit from the program to see if it has improved compared to the
previous year,

(1) Vie(Xie» Xje 5i) = (Dr * R(Si, Sj» Xits Xjt) — Vie — Ca)* Xig
(2) Xie = 1if w; > yir +cq

where pp is the price for a nutrient reduction credit. We have located farmers on
a two-dimensional planar grid, so each farmer i has four neighbors from whom
they can learn and whose BMP adoption decisions also affect i’s performance.
We test a wider neighborhood definition below.

Positive Spillover Effects
There are two positive spillover effects between each farm and its neighbors.

One is the knowledge spillover effect, which is represented in the one-time
information cost part of the transaction cost,

(3) Yig =01 — 0%l

for the first time participating and 0 in any later year. I;,; =1 if at least one of
the neighbors has participated in the program prior to year t (and 0 otherwise).
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This captures the learning from experienced neighbors that reduces the
information cost, thus lowering the hurdle to participate. The parameter ¢; >
0 is the representative information cost, and 8> 0 is the information sharing
coefficient.

The other externality is the environmental outcome externality from
neighbors’ adoption of BMP and is represented by the nutrient reduction
outcome function

4
(4) R(si, sj, XieXje) = a+ Psi+y Z Sj*Xjt
=1

where a, B, and y are positive parameters. Higher soil productivity leads to
higher nutrient reduction and the positive externality from neighbors can be
additive through vy, the conservation spillover coefficient, increasing the
performance. This environmental outcome externality provides an incentive
for farmers to share their knowledge to make it easier for their neighbors to
participate.

The hypotheses that we investigate with this model are:

1) Communities with a higher percentage of innovators will result in a
higher participation rate, and in a non-linear fashion.

2) Communities with a higher percentage of innovators will arrive at the
equilibrium faster.

3) Communities with a higher percentage of high-productivity land will
result in higher participation rate.

4) Communities with a higher percentage of “traditionals” can create regions
where no one participates in the program.

Analytical Baselines

Before presenting the simulation results, we derive some mathematical
relationships. The first component of a farmer’s decision to adopt the BMP
and participate in the performance-based payment program is the interaction
between their WTP to participate and the participation cost. Combining Eq.
[2] and Eq. [3], the farmer will participate (set x;, =1) if w; > ¢, + ¢; — 6% .1.
We start at t=0 with no participation to simulate the beginning of a
payment program, so in the first year that constraint becomes w;>c, + c;.
This is thus the lower bound on WTP to get participation started. Once at
least one of farmer i’s neighbors have adopted, the farmer’s necessary WTP
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becomes w;>c,+ c;— 6, as i benefits from the knowledge spillover effect.
Individuals with w; < ¢, +¢;— 6, or w; < ¢, + ¢; without any participating
neighbors will never participate, which explains why in reality there are
areas where no one participates.

Farmers also condition their adoption with the goal of increasing profits as
described in the profitability Eq. [1] and the nutrient reduction Eq. [4], where
the latter captures the external effects of nutrient reduction by neighbors j =
1 to 4 on farmer i’s profit. After participation at t, farmer i observes their
realized return pr*R(s;, s X;. X;¢), henceforth simply pgR;. and use this to
determine whether to participate in the next period, thus setting x;.,; before
the beginning of period t + 1. Because choosing not to participate results in a
return of zero—farmer i receives no payment at no cost if they don’t adopt
the BMP—Eq. [1] and [2] combine with Eq. [3] to form the condition pgrR;: >
Ca+ ¢ — 0%, for farmer i to participate at time ¢t + 1 (set x;,1 =1)

Because farmers in our simulation do not initially participate, V;, = 0. At the
beginning of t = 1 anyone who decided to participate had w; > c, + ¢;, but now
at the end of t=1 they are considering whether pgR;; > c, + c; to determine
whether to participate in period t= 2. (Note that I;,; is 0 for all farmers at
t=1)

From t = 2 forward, any farmer who has participated in period ¢ falls into one
of the following four cases.

1) If farmer i participated at t for the first time, then the condition to
participate at t + 1 becomes pgR;: > ¢, + ¢; — 0*I; 1

2) If farmer i didn't participate at t - 1 and participated at t but the farmer
has participated before ¢ - 1, there is no information cost, so we have pgR;
>cC
t= ‘%a

3) If farmer i participated at t - 1 for the first time and also participated at ¢,
then to continue participating in t + 1, the return needs to be higher:

(5) PrRRi¢t — €a > PRRi¢-1 — €1 + 0% 1 2 — ¢4

Recall Eq. [4] and the soil productivity doesn’t change, so this case is
equivalent to:

4 4
(6) ¥sj* (ij,t - ij,t—1> > —c;+ 0%l 7)
=1 =
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If farmer i participated at t — 1 and t and has participated at any time before t
- 1, the derivation follows Case 3 except that the information cost is zero in
both periods, so the condition becomes:

4 4
(7) ij,t - ij,tq >0
j=1 j=1
That is, the number of BMP-adoptiing neighbors did not decrease from t - 1 to t.

Parameterization and Simulation Results
Parameterization

We set the initial parameters based on data from Duke et al. (2020).
Information for 196 fields located on the Eastern Shore of Maryland was
collected and processed through Maryland’s Nutrient Trading Tool (MDNTT)
to predict their participation in the Maryland water quality trading (MWQT)
program. We set our parameters to match the productivity information and
associated costs for these fields. The unit price for nutrient reduction is pg,
ranging from $20 to $100 per pound of phosphorus (P) reduction. We
assume the information cost y;, to be between $0 and $30/lb/year,
representing a range of complexity and length of WQT contracts (DeBoe and
Stephenson 2016).The adoption cost of a BMP per year (c,) ranges between
$10 to $250 per acre per year. The productivity of BMP adoption in the
sample ranges from 1 to 8 Ibs per acre in terms of phosphorus reduction. We
set the information sharing cost 6 to be half of the information cost. Table 1
summarizes the model’s parameters.

Table 1. Parameters and Descriptions

Parameter Unit Description Initial value
DPr $/1b of P reduction Unit price for nutrient reduction 60
c $/acre One-time information cost 15
6 $/acre Information sharing coefficient 7.5
Cq $/acre Yearly adoption cost of BMP 60
a Ib/acre Productivity parameter

B Ib/acre Productivity parameter 4
y Ib/acre Conservation spillover coefficient 1
wh, $/acre WTP for innovator 80
Wp $/acre WTP for mainstream 70
w; $/acre WTP for traditional 60
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Simulation Results

We simulate a 33 by 33 landscape, which has 1089 fields. The following figures
show an example run. Figure 2 shows the landscape and soil qualities and the
farmers’ WTP values (randomly distributed among the grid). Figure 3 shows
the process of BMP adoption arriving at a steady state equilibrium in the
landscape and community of Figure 2.

To test hypotheses 1 and 2, we fix the percentage of traditional types and run
through varying percentages of the mainstream and social leader types. In the
plots of Figure 4, each line represents the evolution of a different type of
community, averaged over 30 simulations, with the number of years on the
horizontal axis. The panels from left to right have 30%, 40%, and 50% of the
farmers classified as traditional. The lines in each graph vary from blue to
red as we increase the representation of social leaders from 2% to 20% in
steps of 2 percentage points. The blue lines thus are also those lowest and to
the right in the diagram and the red lines the highest and to the left.

Next we fix the percentage of the mainstream types in the community and
consider varying levels of the traditional and social leader types in each
simulation. Figure 5 shows, from left to right, 30%, 40%, and 50% of farmers
set to the mainstream type. Each line again shows an average across 30
simulations ranging from 2% (blue, bottom right) to 20% (red, top left) innovators.

These simulation results support hypotheses 1 and 2: Communities with a
higher percentage of innovators result in higher participation and arrive at
such steady states faster. The non-linear nature of that relationship is
apparent in Figures 4 and 5, as well as in Figure 6 where we group the
mainstream and traditional types as “non-innovators”.

Because there are many possible topologies of agent connectivity other than
the one we are investigating, we also considered farms on the same two-
dimensional layout but with a larger number of neighbors who can be

Figure 2. Example Landscape: Soil Productivity (left) and Farmer Types
(right). Green: social Leader; Red: Mainstream; Yellow: Traditional
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Figure 3. Participation Process in the Landscape, with Time Moving from Left
to Right. Black: Nonparticipants; Blue: Participants

information sources and spreaders of the environmental externality for the
focal farm. We explained in above that we have thus far treated farm i’s
neighbors as those to the North, South, East, and West of i (a von Neumann
neighborhood). To investigate one other possible topology, we increased the
neighbors to 8 by additionally including those to i's Northeast, Southeast,
Southwest, and Northwest (a Moore neighborhood). The results are similar to
what we have shown above, and as a comparison to Figure 5’s four neighbors
to farmer i we show the results in Figure 7 for eight neighbors to i. We can see
that the steady-state results and speed to reach them are generally higher and
faster—because farmers with eight neighbors can learn from more possible
sources. We thus have further support of our results, although an in-depth
exploration of other topologies is beyond the scope of this paper.

To test our third hypothesis, we fix the percentage of farmer types and test
different distributions of soil productivity. In Figure 8 we observe no
evidence to support this hypothesis (the curves with differing soil
productivity overlap each other), which is counterintuitive. It appears that
with these parameter settings, the farmer type drives adoption dynamics
more than the soil productivity does. This is consistent with previous
findings in which farmers’ perceived efficacy is the most important
determent of their BMP adoption decisions (Zhang et al. 2016), but future
research is needed to explore the mechanism behind this result.

The last hypothesis can be shown in an example steady-state adoption map as
in Figure 9, where we observe blocks of black (non-adopter) areas. Without
enough neighbors participating (blue), there is not enough incentive for
participants who are not innovators.

Policy Implications

Our results suggest two ways to use educational campaigns to increase
participation in and attitudes towards performance-based payment programs:
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Figure 6. Number of Participats and Time to Arrive at Steady State Given % of
Innovators in a Community

1) reducing the initial information costs for first-time participants, and/or 2)
increasing farmers’ WTP to participate by helping them see the potential
benefits of payment programs not only for themselves but for the community
in general. Benefits of these educational campaigns can then be multiplied by
the environmental outcome externality through the global spillover effect. We
address the first case in Section 2.4 by showing that farmers with middle or
low level of WTP are more likely to begin participation and those who
participated are also more likely to continue.

For the second situation, we examine the simulation results from varying
levels of types of farmers. For example, when the social leaders (innovators)
are fixed at 10%, increasing the representation of mainstream types from
30% to 32% means motivating 2% of traditionals to act like mainstream
types. If we make the assumption that the average cost to change a person
from traditional (WTP=60) to mainstream (WTP=70) or from mainstream to
social leader (WTP=80) is $10, and from traditional to social leader is $20,
we find the relationships shown in Figure 10. The vertical axis is calculated
using the total program costs divided by the number of increased
participants. The resulting cost differences are mostly driven by the
difference in the underlying WTPs ($10 and $20), but it also depends on the
composition of communities, which can be seen clearly in the curve that
shows payments to convert mainstream types to innovators.

We acknowledge this analysis is most likely underestimating the conversion
cost of farmer types, but the results have significant policy implications in terms
of choosing communities in which to intervene. First of all, regardless of the
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composition of the communities, it is always more cost-effective to use an
education campaign or subsidy program that targets the traditional rather
than mainstream types. The mainstream farmers may participate in payment
programs when enough neighbors are doing so, but traditional farmers will
not do so without such programs to help motivate them. Secondly, it is more
cost-effective to motivate participation when the community has a low
percentage of innovators. In communities like this, motivating people on the
margin will benefit their neighbors and their neighbors’ neighbors through
the global spillover effect. Thirdly, it is more cost-effective to convert more
traditionals with a lower payment to mainstream, rather than paying each
traditional more to convert them to innovators.
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Figure 10. Policy costs per new participant
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Discussion and conclusion

A knowledge spillover creates positive externalities among neighbors as
farmers share information and reduce transaction costs. An environmental
outcome positive externality enhances the return on the spillover, leveraging
the improvements in soil health and water quality. We use an ABM approach
to examine the interactions between these two effects in agricultural
decisions under a generic performance-based payment program. We show
that farmers’ attitudes towards participation play a more important role than
their soil productivities in our calibrated model, and this supports the use of
educational campaigns to increase farmers’ awareness of the environmental
benefits and promote participation. Because communities with a higher
percentage of innovators have greater adoption and faster adoption rates,
these social leaders play an important and non-linear role in the diffusion of
BMP adoption.

We also investigate the policy effects of this emergent outcome. With a model
calibrated to parameter values that we would expect to see in typical
communities, we find that spending on education is better targeted to a
group of “traditionals” who are less likely to have internalized the
community’s benefits. This is counterintuitive from the perspective of the
usual triage approach where the focus would be on the “mainstream”
individuals—those at at the margin. Our results arise from the interaction of
the two spillover effects: mainstream types can benefit from the “role
models” of their innovator neighbors without intervention, while traditional
types left alone create their own follow-on effects of non-adoption; the
benefit of the change in community composition is then magnified through a
global spillover effect, leading to more desirable outcomes. This argument for
educational campaigns that target communities with a lower percentage of
social leaders, and within those communities target the most non-innovative
types, provides policy insights to increase the cost-effectiveness of
performance-based programs.

This stylized framework can be applied to simulate various scenarios. Future
research can, for example, expand the model setup or use different
parameterizations to explore the role of social norms that may be influenced
by non-economic reasoning, the dynamics of soil productivity in linkages to
soil management decisions, and identify the most cost-effective targeted
policies.
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