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Abstract

In this paper, we consider a linear program with only equality constraints but containing
interval and random coefficients. We first address the linear program with interval
coefficients, and establish some structural properties of this linear program. On this
basis, a solution method is proposed. We then move on to consider the linear program
with random coefficients. Using the chance constraint approach and a new approach,
the satisfaction degree approach, we obtain the two respective deterministic equivalent
formulations. Then the results and the numerical solution methods obtained for these
two linear models are applied to the original linear problem which contains both interval
and random coefficients. By way of illustration, we consider a practical problem,
where the optimal mixing proportions need to be determined for the mix slurry in the
production process of aluminium with sintering. This gives rise to a linear program
with interval and random coefficients. Its deterministic equivalent formulations are
presented. Preliminary numerical examples show that the proposed models and the
solution methods are promising.
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1. Introduction

In the past two decades, mix design problems have attracted much attention from
process engineers, researchers and key executives from government and various
industries due to the importance of efficient resource utilization. Some mathematical
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models and solution methods have been constructed and developed (see [1, 4, 10–
12, 15, 20, 22] and the references therein). These models mainly focus on mixing
processes without random parameters. However, the occurrence of uncertainty is
unavoidable in practice. Thus, such deterministic formulations are inadequate. In
this paper, we will develop a new general formulation for a class of mixing problems,
and develop some efficient solution methods.

For each k ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , s}, let pk j denote the amount of the
j th ingredient in the kth raw material. Clearly, pk j ≥ 0. The matrix P = (pk j ) ∈ Rr×s

is called an ingredient matrix. Assuming that no chemical reaction will take place
during the mixing process, the mixture design problem is to find optimal mixing
proportions of the given raw materials such that some desired product qualities
are achieved. A simple case of such a mixture problem is the mixture design of
high-performance concrete in building engineering. For studies of such problems,
see [4, 10, 12, 15, 20, 25] and the references cited therein. However, the mixture
making problems encountered in metallurgical engineering are much more complex.
For example, due to uncertain qualities of some raw materials, it is often difficult to
obtain a mixing scheme that guarantees a consistent product quality.

To find the optimal scheme for the aforementioned mixture problem, a common
approach is to formulate it as an optimization problem (see [1, 12, 21, 22]), where
the objective is to minimize a cost function for the raw materials to be processed,
such as mulling the ore in the metallurgical industry, subject to the constraints of
maintaining product quality specifications. It appears that linear programming is the
most commonly used approach for solving these problems. For other algorithms,
see [1, 12, 22]. The main deficiency of these existing methods is that they do
not take into consideration of the randomness in the mixing process. It is clear
that such omission could have major consequences in a real production. Thus,
the nondeterministic parameters should be taken into account in the mathematical
formulation of the mixture making.

Motivated by the importance of the practical issues mentioned above and recent
developments in the theory and algorithms of random programming and advanced
optimization techniques (see [2, 3, 6–9, 13, 16–19]), this paper will formulate the
above mixing proportion problems as linear programs with only equality constraints
in addition to the box constraints. The equality constraints contain some interval and
random coefficients. This formulation is realistic but is much more complicated than
the existing ones based on ordinary (random) linear programming [13, 18]. We shall
develop a new efficient solution method for this problem.

The remainder of this paper is organized as follows. In Section 2, we will present
sufficient and necessary conditions for admissible mixing designs. Then, in Section 3,
we will formulate the mixture making problem as a new linear program involving
equality constraints in addition to the box constraints, with interval or random
coefficients involved in some of these equality constraints. The uncertainty effects
during the production process will be taken into consideration, from the construction
of models to the development of numerical solution methods. These random effects
will be captured through the introduction of interval and random coefficients in the
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constraints. In Section 4, efficient solution methods will be developed by fully utilizing
the specific features of the models. In Section 5, we apply the models obtained
to a specific real practical problem, where optimal mixing proportions need to be
determined for the mix slurry with sintering. A numerical example is reported in
Section 6, followed by some concluding remarks.

2. Admissibility of mixing design

Let the total weight (kg) of all raw materials be M0, and let xk , k = 1, 2, . . . , r , be
the percentage composition of the kth raw material. Assume that there is no chemical
reaction in the mixing process among the components of the raw materials. The total
weight of the ingredient j after mixture making is given by the formula

u j =

r∑
k=1

M0xk pk j , j = 1, 2, . . . , s, (2.1)

where pk j is the amount of the j th ingredient in the kth raw material. Let u =
[u1, u2, . . . , us]

T and P = (p jk). Then (2.1) can be written compactly as

u = M0 PT x .

Assume that there are a total of m quality indices for the product. Let fi , i =
1, 2, . . . , m, denote the i th index, which is a function of the variables u1, u2, . . . , us .
In practice, these functions can often be expressed as linear rational functions

fi (u)=
ai1u1 + ai2u2 + · · · + aisus

bi1u1 + bi2u2 + · · · + bisus
, i = 1, 2, . . . , m,

where ai j and bi j are given scalars.
Set A = (ai j ) ∈ Rm×s and B = (bi j ) ∈ Rm×s . Let f̂i be the optimal value of

the i th quality index, where i = 1, 2, . . . , m. Then the mixing proportions xk ,
k = 1, 2, . . . , r , which are required to be chosen such that all the quality indices are
fulfilled, must satisfy the conditions

fi (u)= f̂i , i = 1, 2, . . . , m. (2.2)

Equation (2.2) can be written in a compact matrix form(
A − diag( f̂ )B

)
u = 0, (2.3)

where f̂ = [ f̂1, f̂2, . . . , f̂m]
T . Substituting for u into (2.3) and removing M0 in the

resulting equation yields (
A − diag( f̂ )B

)
PT x = 0. (2.4)

Set
C =

(
A − diag( f̂ )B

)
PT . (2.5)

Then (2.4) can be written as
Cx = 0. (2.6)
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DEFINITION 2.1. We call x = [x1, x2, . . . , xr ]
T
≥ 0 a feasible mixing proportion if

it is a solution of the admissibility conditions (2.6).

Clearly, admissibility conditions (2.6) are the standard homogeneous linear
algebraic equations.

In the following, we will present some sufficient and necessary conditions for
ensuring the existence of nonzero solutions to (2.6). Since these results can be obtained
from the basic theory of linear algebra, we omit the proofs.

PROPOSITION 2.2. Let C = (cik), where cik is defined as in (2.5). Then there exists
a nonzero solution of (2.6) if and only if R(C) <min{m, r}, where R(C) denotes the
rank of the matrix C.

COROLLARY 2.3. Let αk ∈ Rm , k = 1, 2, . . . , r, denote the kth column of C. Then
there exists a nonzero solution of (2.6) if and only if the set of the vectors
{α1, α2, . . . , αr } is linearly dependent.

COROLLARY 2.4. If m < r , then there exists a nonzero solution of (2.6).

REMARK 2.5. In practice, the condition m < r means that the quality indices cannot
be more than the number of distinct raw materials.

COROLLARY 2.6. Assume that min{m, r}> 1. If s = 1, then R(C)≤ 1, and hence
there exists a nonzero solution of (2.6).

PROOF. Denote
c̄i j = ai j − f̂i bi j . (2.7)

So,

cik =

s∑
j=1

c̄i j pk j , c̄i pT
k , (2.8)

where c̄i = [c̄i1, . . . , c̄is] and pk = [pk1, . . . , pks].
If s = 1, then from (2.5), we have

C =


c̄11 p11 c̄11 p21 · · · c̄11 pr1
c̄21 p11 c̄21 p21 · · · c̄21 pr1
...

...
...

c̄m1 p11 c̄m1 p21 · · · c̄m1 pr1

 .
Clearly, R(C)≤ 1. Hence, there exists a nonzero solution of (2.6). 2

Denote C̄ = (c̄i j ) ∈ Rm×s . Then, for s ≥ 1, it follows from (2.8) that

C = C̄ PT , (2.9)

where P = (pk j ) ∈ Rr×s is a given ingredient matrix. Therefore, the admissibility
conditions (2.6) can be expressed in an alternative form

C̄ PT x = 0. (2.10)

For the linear system (2.10), it is easy to prove the following corollary.

https://doi.org/10.1017/S1446181109000145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000145


[5] A class of mix design problems: formulation, solution methods and applications 459

COROLLARY 2.7. If R(C̄) < r , or R(P) < r , then there exists a nonzero solution
of (2.6).

Finally, from the results presented above and Farkas’ lemma, we obtain the
following theorem.

THEOREM 2.8 (Admissibility condition).

(1) If m < r , then there exists an x∗ ∈ Rr such that

Cx = 0, x ≥ 0.

(2) If R(C̄) < r , or R(P) < r , then there exists an x∗ ∈ Rr such that

C̄ PT x = 0, x ≥ 0.

3. Optimization models for the mixing design

In this section, we will formulate the mixing design problem as a new class of
optimization problems.

Let pk denote the price of the kth raw material, where k = 1, 2, . . . , r . Then the
total cost for all the raw materials M0 is

f (x)= M0 pT x,

where p = [p1, p2, . . . , pr ]
T is a given price vector. By virtue of the discussions in

Section 2, the optimal mixing design problem can be described as the linear program

min f (x)

subject to C̄ PT x = 0,
r∑

k=1

xk = 1, l ≤ x ≤ u, (3.1)

where l, u ∈ Rr are, respectively, given lower and upper bounds for x . Note that,
without loss of generality, M0 can be removed from f .

Let

A =

[
C
eT

]
,

where C is defined in (2.9) and e denotes the vector of ones. Suppose that the rank of
the matrix A is r0. Then Ax = [0, 1]T can be rewritten as

(AB, AN )

[
xB
xN

]
=

[
0
1

]
, (3.2)

where the matrices (AB, AN ) and (xB, xN ) are the reordering of A and x . Here, AB
is a nonsingular r0 × r0 square submatrix of A and xA consists of the components of x
corresponding to the columns of AB . From (3.2), we obtain

xB = A−1
B

[
0
1

]
− A−1

B AN xN .
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Substituting xB into the objective function, Problem (3.1) is reduced to an
equivalent lower-dimensional problem

min f̃ (xN )= pT
B

[
A−1

B

[
0
1

]
− A−1

B AN xN

]
+ pT

N xN

subject to 0≤ A−1
B

[
0
1

]
− A−1

B AN xN ≤ 1, lN ≤ xN ≤ uN .

(3.3)

We can further simplify (3.3), yielding

min f̃ (xN )=
(

pT
N − pT

B A−1
B AN

)
xN

subject to 0≤ A−1
B

[
0
1

]
− A−1

B AN xN ≤ 1, lN ≤ xN ≤ uN .

Clearly, this equivalent optimization problem is more compact and provides a better
platform for the development of efficient algorithms.

In practice, conditions (2.2) do not need to be satisfied exactly. It suffices for f̂i
in (2.7) to be replaced by an interval [l f̂i , u f̂i ] for each i ∈ {1, 2, . . . , m}. By doing
so, C̄ turns out to be a so-called interval matrix given by

C̄ =
([

c̄i j , c̄i j
])

where c̄i j and c̄i j denote the lower and the upper bounds of the interval number c̄i j ,
respectively. Thus, the mathematical model for the optimal mixing design problem is
expressed as the following linear program with interval coefficients:

min f (x)

subject to
r∑

k=1

( s∑
j=1

(
c̄i j , c̄i j

)
pk j

)
xk = 0, i = 1, 2, . . . , m,

r∑
k=1

xk = 1, l ≤ x ≤ u.

(3.4)

For some k ∈ {1, 2, . . . , r}, the amounts of the ingredients pk j , j = 1, 2, . . . , s, of
the kth raw material could be probabilistic in nature. This is the case, for example,
during the aluminium production process with sintering, because some raw materials
are recycled. Thus, Problem (3.1) should be modified to give the following random
linear program:

min f (x)

subject to C̄ P(d)x (d) + C̄ P(p)x (p) = 0,
r∑

k=1

xk = 1, l ≤ x ≤ u, (3.5)

where P(d) and P(p), which are the two submatrices of PT , are partitioned in
accordance with the deterministic and probabilistic columns of P . x (d) and x (p) are
defined similarly.

https://doi.org/10.1017/S1446181109000145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000145


[7] A class of mix design problems: formulation, solution methods and applications 461

Combining (3.4) with (3.5), we obtain the following model for the mixture design
problem:

min f (x)

subject to
∑
l∈Id

( s∑
j=1

(
c̄i j , c̄i j

)
pl j

)
x (d)l +

∑
q∈Ip

( s∑
j=1

(
c̄i j , c̄i j

)
pq j

)
x (p)q = 0,

i = 1, 2, . . . , m,
r∑

k=1

xk = 1, l ≤ x ≤ u,

(3.6)

where Id and Ip are, respectively, the index sets of the deterministic and probabilistic
columns of PT , obtained from proper partitions of the set {1, 2, . . . , r}.

4. Solution methods

This section is devoted to the development of an efficient numerical solution method
for solving the optimization model obtained above.

For a linear program (3.1), the software LINDO or the lp command in MATLAB
can be used. However, for a linear program with interval or random coefficients, it
cannot be solved directly as such. New solution methods need to be developed.

For a linear program with interval coefficients, the convexity of the feasible region
is, in general, not valid. For example, consider the set{

[x1, x2]
T
: x1 + x2 = 0

}
⊆ R2

which is clearly convex. However, the set{
[x1, x2]

T
: [0.5, 1]x1 + [2, 1]x2 = 0

}
(4.1)

is nonconvex (see Figure 1) in R2. Fortunately, with the structural properties of
model (3.4), we can prove that the feasible region of the problem (3.4) is convex.

Firstly, given a set D with interval parameters

D =
{
[x1, x2]

T
: [a, a]x1 + [b, b]x2 = 0

}
,

we prove the following two lemmas.

LEMMA 4.1. For given [a, a] and [b, b], let α = [a
¯
, b̄]T , β = [ā, b

¯
]
T and

C =
{

x ∈ R2
: x = k1α + k2β, ki ∈ R, ki ≥ 0, i = 1, 2

}
.

Then

D = NC (x
(0))=

x ∈ R2

∣∣∣∣∣∣
ax1 + bx2 ≤ 0,
ax1 + bx2 ≥ 0,
x2 ≥ 0

 ∪
x ∈ R2

∣∣∣∣∣∣
ax1 + bx2 ≥ 0,
ax1 + bx2 ≤ 0,
x2 ≤ 0


(4.2)
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FIGURE 1. Nonconvex region determined by constraint (4.1) with interval coefficients.

where x (0) = [0, 0]T and NC (x (0)) represents the normal cone to C at x (0).
Furthermore, except for the case of α = β, the set D is nonconvex.

PROOF. Clearly, x = [x1, x2]
T
∈ D if and only if there exist a ∈ [a, a], b ∈ [b, b] such

that

ax1 + bx2 = 0, that is, [a, b]

[
x1
x2

]
= 0.

Suppose x2 ≥ 0. Then, by virtue of a ≤ a and b ≥ b,

[a, b]

[
x1
x2

]
≤ 0, [a, b]

[
x1
x2

]
≥ 0.

Otherwise,

[a, b]

[
x1
x2

]
≥ 0, [a, b]

[
x1
x2

]
≤ 0.

Thus, the second equality in (4.2) holds.
By the definition of a normal cone, we obtain the first equality in (4.2). (See

Figure 2.)
The last conclusion of Lemma 4.1 is obvious. 2

The conclusions of Lemma 4.1 can be extended to the n-dimensional case. Let

D =
{

x ∈ Rn
: [a1, a1 ]x1 + [a2, a2 ]x2 + · · · + [an, an ]xn = 0

}
.

Then we have the following lemma.
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FIGURE 2. D = NC (x (0)) defined by (4.2).

LEMMA 4.2. For given [ai , ai ], i = 1, 2 . . . , n, let

α =
[
a1, a2, . . . , an−1, an

]T
, β =

[
a1, a2, . . . , an−1, an

]T
,

C = {x ∈ Rn
| x = k1α + k2β, ki ∈ R, ki ≥ 0, i = 1, 2}.

Then

D = NC (x
(0))

=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
i=1

ai xi + anxn ≤ 0

n−1∑
i=1

ai xi + anxn ≥ 0,

xn ≥ 0


∪


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
i=1

ai xi + anxn ≥ 0

n−1∑
i=1

ai xi + anxn ≤ 0,

xn ≤ 0


where x (0) is the zero vector in Rn . Furthermore, except for the case of α = β, the
set D is nonconvex.

The proof of this lemma is similar to that given for Lemma 4.1, and hence is
omitted.

In the following, we give an alternative approach to prove the second equality of
the desired conclusion in Lemma 4.2.
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PROOF. x ∈ D ⊆ Rn if and only if there exists a = [a1, a2, . . . , an]
T
∈ Rn , where

ai ∈ [ai , ai ] for i = 1, 2, . . . , n, such that

a1x1 + a2x2 + · · · + anxn = 0. (4.3)

The value of the cosine angle of the normal vector a of the hyperplane (4.3) with
the axes xn is

cos γ =
an√

a2
1 + a2

2 + · · · + a2
n

.

Hence,

cos2 γ =
a2

n

a2
1 + a2

2 + · · · + a2
n

=
1

(a2
1 + · · · + a2

n−1)/a
2
n + 1

. (4.4)

From (4.4), it follows readily that the maximal angle between a and the positive
direction of the axes xn is

γmax = arc cos
an√

a1
2
+ a2

2
+ · · · + an

2
,

while the minimal angle is

γmin = arc cos
an√

a1
2 + a2

2 + · · · + an
2
.

By the continuity property, we know that the points on the hyperplane in D are
located in the set (see Figure 3)

D = NC (x
(0))

=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
i=1

ai xi + anxn ≤ 0

n−1∑
i=1

ai xi + anxn ≥ 0,

xn ≥ 0


∪


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
i=1

ai xi + anxn ≥ 0

n−1∑
i=1

ai xi + anxn ≤ 0,

xn ≤ 0


.

(4.5)

2

REMARK 4.3. With Lemma 4.2, and noting the nonnegative constraints xn ≥ 0
in (3.4), it can be seen that the feasible region of model (3.4) is a convex set defined
by finite inequalities.

Actually, we have the following result.

THEOREM 4.4. Linear program (3.4) with interval equality constraints and
nonnegative bound constraints is equivalent to an ordinary linear program only with
finite inequality constraints and an equality.
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FIGURE 3. Nonconvex region in R3 determined by constraint (4.5) with interval coefficients.

Based on Theorem 4.4, linear programs with interval coefficients can be solved by
the following algorithm.

ALGORITHM 1. Step 1. Write out the equivalent expression of each of the interval
equality constraints in (3.4).

Step 2. Find the solution of the standard linear program obtained from Step 1.

We now move on to consider linear programs with probabilistic constraints given by

Pr{ξ : hi (x, ξ)≥ 0} ≥ p, i = 1, 2, . . . , m, (4.6)

where ξ denotes the vector of random coefficients, and p ∈ (0, 1) is referred to as a
probability level. These constraints are known in the literature as chance constraints;
see, for example, [13]. They indicate that, for each i = 1, 2, . . . , m, the probability of
those ξ such that the constraint

hi (x, ξ)≥ 0

is satisfied is greater than or equal to p.
Suppose that the probability distribution function of the random vector ξ is known.

Then constraints (4.6) become

αi (x)≥ p, i = 1, 2, . . . , m,

where
αi (x)= Pr{ξ : hi (x, ξ)≥ 0}, i = 1, 2, . . . , m.

However, it is in general difficult to obtain explicit expressions for αi (x), i =
1, 2, . . . , m. Thus, the values and the derivatives of these functions are difficult to
calculate.
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Assume, for example, that hi (x, ξ) is affine with respect to x , that is,

hi (x, ξ)= ai1x1 + ai2x2 + · · · + ainxn − bi .

However, αi (x), i = 1, 2, . . . , m, are not necessary affine, and they are often
nonconvex. Their deterministic equivalent formulations (DEFs), even if they can be
obtained, are without some nice properties. See [13, 14, 18, 19] for details on the
relevant issues. Here, we shall propose a new approach, called the satisfaction degree
method, to a class of linear programs with random variables.

For clarity of presentation, we consider a linear program with only one constraint,
whose coefficients are random variables:

min f (x)
subject to a11x1 + a12x2 + · · · + a1nxn ≤ b1,

(4.7)

where a1 j and b1 are random coefficients. The extension to multiple constraints is
straightforward. The existing approaches to obtaining the deterministic equivalent
formulation of (4.7) often require that the distribution functions of these coefficients
are given and are statistically mutually independent. However, such requirements may
not be satisfied in practice. The satisfaction degree approach to be introduced below is
in response to the absence of these assumptions.

DEFINITION 4.5. For any random variables x , y, we call λ(x ≤ y), defined by

λ(x ≤ y)=
E(y − x)
√

D(y − x)
,

the satisfaction degree of the random inequality x ≤ y.

REMARK 4.6.

(1) In Definition 4.5, it is required that D(y − x) 6= 0. If D(y − x)= 0, then P(y −
x = E(y − x))= 1, which implies that x is almost the same as y regardless of
the constant scalar.

(2) The possible values of λ are as follows:

λ(x ≤ y)



∈ (−∞, 0) E(x) > E(y) – it is said that x > y;
= 0, E(x)= E(y) – the “sizes” of x and y need

further measurement;
∈ (0, 1) E(x) < E(y) and E(y − x) <

√
D(y − x)

– the size of λ is called satisfaction degree of
x ≤ y;

∈ [1,+∞) E(x) < E(y) and E(y − x) >
√

D(y − x)
– x is said to be absolutely less than y.

(3) If λ(x ≤ y)= 0 when D(x) > D(y), it indicates that the deterministic degree of
y is greater than that of x . Thus, it is clear that y is superior to x for a decision-
maker.

(4) λ(x ≤ y)≤ 0 is equivalent to λ(y ≤ x)≥ 0.
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(5) If “x ≤ y” is regarded as equivalent to “λ(x ≤ y)≥ 0”, then such an ordering
relation between two random numbers is of reflexivity and transitivity.

On the basis of Definition 4.5, a new deterministic equivalent formulation of
random constraint is obtained.

THEOREM 4.7. For a given λ0, the deterministic equivalent formulation of the
random constraint in (4.7), that is,

a11x1 + a12x2 + · · · + a1nxn ≤ b1,

obtained by the satisfaction degree approach is

µz + λ0

√
zT V z ≤ 0,

where V denotes the covariance, zT
= [x1, . . . , xn,−1], and µ= [µ1, . . . , µn+1]

T

is the expectation of the random vector [a11, a12, . . . , a1n, b1]
T .

With Theorems 4.4 and 4.7, an efficient method is proposed in the next section for
solving the mixture problems with uncertain parameters.

5. Applications

Consider a mixing design problem arising from the production process of
aluminium with sintering. Due to the delay that occurs in the composition detection
and the uncertainty that arises during the mixing process of the raw materials, the
quality of the raw mineral slurry that comes out of the pipy grinder mixer may
not satisfy the quality requirements for the consequent alumina sintering. For some
relevant literature, see [5, 23, 24].

Consider a typical mixture problem, where there are six kinds of raw minerals,
namely aluminiferous ore, lime, alkali, coal, alkali lye and silica slags. The mixture
of these raw minerals is carried out in a pipy grinder mixer, where the raw mix
slurry is formed. The goal is to determine the proportions xr of the raw minerals
for r = 1, 2, 3, 4, 5, 6, such that certain quality indices are satisfied. In practice, the
quality indices usually include the ratio of Na2O in both of Al2O3 and Fe2O3, the ratio
of CaO in SiO2, the ratio of Fe2O3 in Al2O3, the ratio of Al2O3 in SiO2 and the ratio
of water in the raw mix slurry. Here, the number of quality indices m = 3. Let f̂i ,
i = 1, 2, 3, denote the desired values of these three ratios.

Furthermore, we take

a11 =
1
62 , a12 = a13 = a14 = a15 = 0,

b12 =
1

102 , b13 =
1

160 , b11 = b14 = b15 = 0;

a24 =
1
56 , a21 = a22 = a23 = a25 = 0,

b25 =
1
60 , b21 = b22 = b23 = b24 = 0;

a32 =
1

102 , a31 = a33 = a34 = a35 = 0,

b35 =
1

60 , b31 = b32 = b33 = b34 = 0.
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Let P ∈ Rr×s be the ingredient matrix, where pk j denotes the amount of the j th
ingredient in the kth raw material. Then r = 6 and s = 5, and we obtain the matrix C
from (2.5) as

C = C̄ PT
=

a11 − f̂1b12 0 0 0 0
0 0 0 a24 − f̂2b25 0
0 a32 0 0 − f̂3b35 0

 PT

=

a11 p11 − f̂1b12 p12 a11 p21 − f̂1b12 p22 · · · a11 p61 − f̂1b12 p62

a24 p14 − f̂2b25 p15 a24 p24 − f̂2b25 p25 · · · a24 p64 − f̂2b25 p65

a32 p12 − f̂3b35 p15 a32 p22 − f̂3b35 p25 · · · a32 p62 − f̂3b35 p65

 .
In practice, f̂i , i = 1, 2, 3, should be interval parameters, while p6 j , j =

1, 2, . . . , 5, should be random parameters. So, the constraints C PT x = 0 in
model (3.1) should be replaced by

6∑
i=1

(
a11 pi1 −

[
f̂1, f̂1

])
b12 pi2xi = 0

6∑
i=1

(
a24 pi4 −

[
f̂2, f̂2

])
b25 pi5xi = 0

6∑
i=1

(
a32 pi2 −

[
f̂3, f̂3

])
b35 pi5xi = 0.

From model (3.6) and Lemma 4.2, the above mixture design problem with uncertain
parameters should read

min f (x)

such that
5∑

i=1

(
a11 pi1 − f̂1b12 pi2

)
xi +

(
a11 p61 − f̂1b12 p62

)
x6 ≥ 0,

5∑
i=1

(
a11 pi1 − f̂1b12 pi2

)
xi +

(
a11 p61 − f̂1b12 p62

)
x6 ≤ 0,

5∑
i=1

(
a24 pi4 − f̂2b25 pi5

)
xi +

(
a24 p64 − f̂2b25 p65

)
x6 ≥ 0,

5∑
i=1

(
a24 pi4 − f̂2b25 pi5

)
xi +

(
a24 p64 − f̂2b25 p65

)
x6 ≤ 0,

5∑
i=1

(
a32 pi2 − f̂3b35 pi5

)
xi +

(
a32 p62 − f̂3b35 p65

)
x6 ≥ 0,

5∑
i=1

(
a32 pi2 − f̂3b35 pi5

)
xi +

(
a32 p62 − f̂3b35 p65

)
x6 ≤ 0,

6∑
k=1

xk = 1, l ≤ x ≤ u.

(5.1)
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Suppose that the distribution functions of p6 j , j = 1, 2, . . . , 5, are known. For
example, let

p6 j ∼ N (µ j , σ
2
j ), j = 1, 2, 3, 4, 5.

Then, for a given confidence level p, the chance constraint

Pr
{
(p61, p62)

∣∣∣∣ 5∑
i=1

(
a11 pi1 − f̂1b12 pi2

)
xi +

(
a11 p61 − f̂1b12 p62

)
x6 ≥ 0

}
≥ p

is equivalent to(
a11 p11 − f̂1b12 p12

)
x1 + · · · +

(
a11 p51 − f̂1b12 p52

)
x5

+

(
E
[
a11 p61 − f̂1b12 p62

]
+8−1(p)

√
V
[
a11 p61 − f̂1b12 p62

] )
x6

≤ 0, (5.2)

where E(·) and V [·] represent, respectively, the expectation and the variance of the
random variable, and 8−1 is the inverse of standard normal distribution function.

Generally, it is true that

E
[
a11 p61 − f̂1b12 p62

]
= a11 E[p61] − f̂1b21 E[p62] = a11µ1 − f̂1b21µ2,

and

V
[
a11 p61 − f̂1b12 p62

]
= a2

11 E[p2
61] +

(
f̂1b12

)2 E[p2
62] − 2a11 f̂1b12 E[p61 p62]

−
(
a11µ1 − f̂1b21µ2

)2
.

Furthermore, under the assumption that p61 and p62 are two mutually independent
random variables,

V
[
a11 p61 − f̂1b12 p62

]
= a2

11σ
2
1 +

(
f̂1b21

)2
σ 2

2 .

Thus, (5.2) can be written as

5∑
i=1

(
a11 pi1 − f̂1b12 pi2

)
xi

+

(
a11µ1 − f̂1b21µ2 +8

−1(p)
√

a2
11σ

2
1 +

(
f̂1b21

)2
σ 2

2

)
x6 ≤ 0.

Similarly to how we deal with the first chance constraint, we can obtain the
deterministic equivalent linear expressions of the other five chance constraints in (5.1).
Therefore, the chance constrained program (5.1) is equivalent to an ordinary linear
program. Solving such a linear programming problem, we obtain the solution of the
original mixture problem with uncertain parameters.
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In the case where P6i , i = 1, 2, 3, 4, 5, 6, are not mutually independent random
variables with unknown distributions except that their expectation and covariance can
be evaluated from sampling, the satisfaction degree method proposed in this paper can
find the deterministic equivalent formulation of the constructed random model.

Denote

c61 = f̂1b12 p62 − a11 p61, c62 = a11 p61 − f̂1b12 p62, c63 = f̂2b25 p65 − a24 p64,

c64 = a24 p64 − f̂2b25 p65, c65 = f̂3b35 p65 − a32 p62, c66 = a32 p62 − f̂3b35 p65.

Note that

E(c61) = f̂1b12 E(p62)− a11 E(p61),

D(c61) =
(

f̂1b12
)2 D(p62)+ a2

11 D(p61)− 2 f̂1b12a11cov(p61, p62),

where E(·) represents the expectation, D(·) denotes the variance, and cov(·) denotes
the covariance.

From the satisfaction degree method, the deterministic equivalent formulation of
the first random inequality constraint in (5.1) is given by

5∑
i=1

(
f̂1b12 pi2 − a11 pi1

)
xi +

(
E(c1)+ λ

√
D(c1)

)
x6 ≤ 0,

where λ is the satisfaction degree.
Similarly, we obtain

E(c62) = a11 E(p61)− f̂1b12 E(p62),

D(c62) = a2
11 D(p61)+

(
f̂1b12

)2 D(p62)− 2 f̂1b12a11cov(p61, p62);

E(c63) = f̂2b25 E(p65)− a24 E(p64),

D(c63) =
(

f̂2b25
)2 D(p65)+ a2

24 D(p64)− 2 f̂2b25a24cov(p64, p65);

E(c64) = a24 E(p64)− f̂2b25 E(p65),

D(c64) = a2
24 D(p64)+

(
f̂2b25

)2 D(p65)− 2 f̂2b25a24cov(p64, p65);

E(c65) = f̂3b35 E(p65)− a32 E(p62),

D(c65) =
(

f̂3b35
)2 D(p65)+ a2

32 D(p62)− 2 f̂3b35a32cov(p62, p65);

E(c66) = a32 E(p62)− f̂3b35 E(p65),

D(c66) = a2
32 D(p62)+

(
f̂3b35

)2 D(p65)− 2 f̂3b35a32cov(p62, p65).
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Thus, the deterministic equivalent formulation of the original model with interval
and random coefficients is

min f (x)= pT x

s.t.
5∑

i=1

(
f̂1b12 pi2 − a11 pi1

)
xi +

(
E(c16)+ λ

√
D(c16)

)
x6 ≤ 0,

5∑
i=1

(
a11 pi1 − f̂1b12 pi2

)
xi +

(
E(c26)+ λ

√
D(c26)

)
x6 ≤ 0,

5∑
i=1

(
f̂2b25 pi5 − a24 pi4

)
xi +

(
E(c36)+ λ

√
D(c36)

)
x6 ≤ 0,

5∑
i=1

(
a24 pi4 − f̂2b25 pi5

)
xi +

(
E(c46)+ λ

√
D(c46)

)
x6 ≤ 0,

5∑
i=1

(
f̂3b35 pi5 − a32 pi2

)
xi +

(
E(c56)+ λ

√
D(c56)

)
x6 ≤ 0,

5∑
i=1

(
a32 pi2 − f̂3b35 pi5

)
xi +

(
E(c66)+ λ

√
D(c66)

)
x6 ≤ 0,

x1 + x2 + x3 + x4 + x5 + x6 = 1, li ≤ xi ≤ ui , i = 1, 2, . . . , 6.

(5.3)

Clearly, model (5.3) is a standard linear program. Thus, it can be solved by standard
techniques for linear programs.

6. Numerical examples

In this section, we adapt the methods developed in Section 4 to solve the
optimization problems arising from the mixing design in the production process of
aluminium with sintering.

Assume that the ingredients of the stable raw materials are given by
0 0.5 0.35 0.15 0.2

0.02 0.54 0.01 0.15 0
0.30 0.25 0.10 0 0.03

0 0.05 0 0 0.02
0 0 0 0.03 0.08

 ,
which consists of the submatrix of the first five rows in P . The last row of P , denoted
as P6•, is a random vector with expected value

E(p61, p62, p63, p64, p65)=
[
0.1067 0.1950 0.0900 0.2117 0.1550

]
,

and variance

D(p61, p62, p63, p64, p65)=
[
0.0006 0.0007 0.0006 0.0026 0.0011

]T
.

https://doi.org/10.1017/S1446181109000145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000145


472 Z. Wan, K. L. Teo, L. Kong and C. Yang [18]

The covariance matrix of P6• is

V =


0.0006 −0.0003 0.0005 −0.0006 0.0001
−0.0003 0.0007 −0.0004 −0.0002 0.0001

0.0005 −0.0004 0.0006 −0.0006 0.0000
−0.0006 −0.0002 −0.0006 0.0026 −0.0001

0.0001 0.0001 0.0000 −0.0001 0.0011

 .

Suppose that the price vector p =
[
1 0.3 1.5 0.95 0.8 1.2

]T . Set

l =
[
0.01 0.01 0 0 0 0.04

]T
, u =

[
0.25 0.3 0.3 0.7 0.4 0.6

]T
.

Assume that the three interval coefficients are

f̂1 = [0.15, 0.4], f̂1 = [0.32, 0.85], f̂1 = [0.5, 0.7].

Given the satisfaction degree λ= 0.5, then by solving (5.3), the solution of the
original model with interval and random parameters is obtained.

In the above setting, using the lp command in MATLAB, we obtain the optimal
solution

x∗ =
[
0.01 0.051 858 97 0.074 141 84 0.423 9992 0.4 0.04

]T
.

The minimal cost f ∗ = 0.907 569 7.
Taking λ= 0.99, we obtain the optimal solution

x∗ =
[
0.01 0.049 870 91 0.075 936 17 0.424 1929 0.360 0769 0.04

]T
,

and the minimal cost f ∗ = 0.909 8488, which is greater than that for λ= 0.5.

7. Final remarks

In this paper, we have formulated a mixture making problem as a new class of
linear programs, where there are only equality constraints with interval or random
coefficients in addition to box constraints. We have also presented some admissibility
conditions for this class of problems.

In the models constructed, we have taken into account the uncertainty effects that
often occur during the production process. Efficient methods fully utilizing the specific
features of the models were presented. It was shown that these models are reducible,
and can be reformulated as linear or nonlinear deterministic optimization programs.

We have applied the models and solution methods to a mixing proportion problem
arising from aluminium production with sintering. Numerical tests showed that the
models and the solution methods are promising.
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