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Abstract
Emission line galaxies (ELGs) are crucial for cosmological studies, particularly in understanding the large-scale structure of the Universe and
the role of dark energy. ELGs form an essential component of the target catalogue for the Dark Energy Spectroscopic Instrument (DESI),
a major astronomical survey. However, the accurate selection of ELGs for such surveys is challenging due to the inherent uncertainties
in determining their redshifts with photometric data. In order to improve the accuracy of photometric redshift estimation for ELGs, we
propose a novel approach CNN–MLP that combines convolutional neural networks (CNNs) with multilayer perceptrons (MLPs). This
approach integrates both images and photometric data derived from the DESI Legacy Imaging Surveys Data Release 10. By leveraging the
complementary strengths of CNNs (for image data processing) and MLPs (for photometric feature integration), the CNN–MLP model
achieves a σNMAD (normalised median absolute deviation) of 0.0140 and an outlier fraction of 2.57%. Compared to other models, CNN–
MLP demonstrates a significant improvement in the accuracy of ELG photometric redshift estimation, which directly benefits the target
selection process for DESI. In addition, we explore the photometric redshifts of different galaxy types (Starforming, Starburst, AGN, and
Broadline). Furthermore, this approach will contribute to more reliable photometric redshift estimation in ongoing and future large-scale
sky surveys (e.g. LSST, CSST, and Euclid), enhancing the overall efficiency of cosmological research and galaxy surveys.
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1. Introduction

Redshifts play an important role in studying galaxy evolution
and cosmology. Based on measurement methods, redshifts can
be categorised into two types: spectroscopic redshift (zspec) and
photometric redshift (zphot). zspec is determined by leveraging
multiple characteristic features of spectra, such as emission and
absorption lines, and calculating the stretch amount of their wave-
lengths. With high spectral resolution, for example R= λ/�λ >

200, zspec can offer superior accuracy with precision better than
10−3 (Salvato, Ilbert, & Hoyle 2019). However, obtaining spec-
tra is time-consuming, leading to a substantial fraction of sources
without associated spectra to compute redshifts. In contrast, zphot
measurement relies on fluxes from a set of filters, meaning that we
can derive redshifts for all sources identified in a multi-band imag-
ing survey, making it a popular option for estimating redshifts in
current and future imaging surveys despite its lower precision, e.g.
the Dark Energy Survey (DES; Dark Energy Survey Collaboration
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et al. 2016), the Euclid survey (Euclid Collaboration et al. 2024),
the Vera C. Rubin Observatory Legacy Survey of Space and Time
(LSST; Ivezić et al. 2019) and the China Space Station Telescope
(CSST; Zhan 2011).

Since the idea of zphot first implemented by Baum (1962), many
methods have been proposed to advance the estimation precision.
The modern mainstream methods can be concluded into two pri-
mary approaches: template fitting andmachine learning. Template
fitting methods estimate zphot by comparing the observed spec-
tral energy distributions (SEDs) with a set of reference spectra,
namely templates and zphot is determined by the best fit, like
LePhare (Arnouts et al. 1999; Ilbert et al. 2006), BPZ (Bentez 2000),
HYPERZ (Bolzonella, Miralles, & Pelló 2000), ZEBRA (Feldmann
et al. 2006) and EAZY (Brammer, van Dokkum, & Coppi 2008).
Machine learning, on the other hand, predicts redshifts by learn-
ing a mapping relationship between photometry and zspec based
on vast representative training samples. Classic machine learn-
ing algorithms used in photometric redshift estimation include
Support Vector Machines (SVM; Wadadekar 2005), k nearest
neighbours (kNN; Csabai et al. 2003; Zhang et al. 2013), Random
Forest (RF; Carliles et al. 2010), XGBoost (Li et al. 2022) and
Catboost (Li et al. 2024), etc.

Each approach has its own merits and drawbacks. In a recent
study by Li et al. (2024), they selected two representative methods
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from both template fitting and machine learning approaches,
EAZY and CatBoost respectively, to study the performance of zphot
using the Dark Energy Spectroscopic Instrument Legacy Imaging
Surveys Data Release 10 (DESI LS10; Dey et al. 2019) catalogue.
The results demonstrated that machine learning methods perform
better when trained on a comprehensive dataset that covers a
sufficiently wide parameter space. While for some faint and high-
redshift samples which are underrepresented in the training set,
machine learning methods are constrained by the generalisation
issue. In contrast, template-fitting method can make predictions
over a broader redshift range, as it does not rely on training sam-
ples with a fixed redshift range. Nevertheless, its performance
depends on the completeness of the templates and the assump-
tions on galaxy physics (Dey et al. 2022), making it prone to
producing outliers when confronted with novel galaxy spectral
types or unmatched templates.

The Emission Line Galaxies (ELGs), following the spectral clas-
sification of the Sloan Digital Sky Survey (SDSS; York et al. 2000),
include starforming, starburst, AGN and broadline galaxies. They
contain rich information about the processes occurring within
galaxies, including star formation, ionisation, and chemical evo-
lution. ELGs remain a major focus of DESI experiment (Levi et al.
2013; DESI Collaboration et al. 2016a; DESI Collaboration et al.
2016b), comprising one-third of the survey targets. They serve as
key tracers for probing the large-scale structure over the redshift
range 0.6< z < 1.6, and provide the tightest DESI cosmological
constraints (Raichoor et al. 2023). The primary ELG target selec-
tion is based on two key criteria: a magnitude cut in the g-band
and a colour selection box defined in (g − r) versus (r − z) space.
The complete selection details can be found in Table 2 of Raichoor
et al. (2023). Accurate estimation of zphot plays a crucial role in
the pre-selection of ELG targets, minimising the fraction of non-
ELG sources while simultaneously improving the completeness of
the selected objects. By integrating multi-band photometric data,
estimating zphot avoids the need for direct emission-line detec-
tion. Additionally, it allows for cross-validation with existing zspec
measurements, which enhances the confidence in target selec-
tion, reduces spectroscopic incompleteness, and ultimately sup-
ports the scientific goals of the DESI mission (Newman & Gruen
2022).

However, compared with the Bright Galaxy Sample (BGS) and
Luminous Red Galaxies (LRGs), also major targets in DESI, zphot
estimation for ELGs remains significantly more challenging and
less accurate. For instance, Zhou et al. (2025) reported that the
catastrophic outlier rate (i.e. the fraction of objects whose zphot
deviate significantly from their zspec) reaches 15.78% for ELGs in
the DESI Early Data Release (EDR; DESI Collaboration et al. 2024)
survey validation programme (Raichoor et al. 2023). In contrast,
the corresponding outlier rates for BGS and LRGs are only 0.83%
and 1.07%, respectively. Similar results have also been reported in
Zhou et al. (2023) and Li et al. (2024). Compared with other types
of galaxies, the ELGs are usually fainter in z-band, with higher
redshifts. Moreover, the correlation between photometric features
(e.g. from DESI g,r,z and unWISE W1,W2 bands, as well as half-
light radius) and redshift is substantially weaker, resulting in lower
accuracy of photometric redshifts of ELGs (Zhou et al. 2025).
These findings highlight the importance of developing improved
feature extraction methods for faint, high-redshift ELG sources,
and of identifying photometric features that are more strongly
correlated with redshift for more accurate estimation.

To enhance the performance of zphot estimation, recent
advances in deep neural networks, particularly convolutional

neural networks (CNN; Lecun et al. 1998), have facilitated
significant progress due to their ability to extract image-based
features effectively. Unlike photometric data, imaging data offer
more intuitive insights, including morphology, apparent size, and
surface brightness. Consequently, several studies have explored
the use of multi-band galaxy images as inputs for redshift predic-
tion, instead of relying solely on manually extracted photometric
features (Hoyle 2016; Pasquet et al. 2019; Dey et al. 2022). Given
the complementary nature of photometric and imaging data, a
number of studies have tried to integrate these two data types. This
approach leverages the unique strengths of each type of data, offer-
ing a more comprehensive understanding of galaxy properties,
resolving degeneracies, and achieving superior results compared
to methods that use a single data type (Henghes et al. 2022; Yao
et al. 2023; Zhang et al. 2024; Roster et al. 2024). Inspired by pre-
vious work, we put forward a CNN-MLP model to improve zphot
performance for ELGs.

The paper is organised as follows. In Section 2, we describe
the ELG sample and the corresponding images and photometric
data utilised in this study. In Section 3, we introduce the model
architecture that we propose to combine multi-band images and
photometric features. Section 4 outlines the evaluation metrics
and experimental setup we employ. In Section 5, we present and
analyse the zphot estimation results. Finally, Section 6 provides a
summary of our findings and conclusions.

2. The data

2.1. Photometric data

The DESI Legacy Imaging Surveys (DESI LS) provide galaxy
and quasar targets for follow-up observation by DESI. The orig-
inal Legacy Surveys comprise three individual surveys: the Dark
Energy Camera (DECam) Legacy Survey (DECaLS; Flaugher et al.
2015; Dey et al. 2019), the Beijing-Arizona Sky Survey (BASS; Zou
et al. 2017) and the Mayall z-band Legacy Survey (MzLS; Silva
et al. 2016). Together, these surveys cover 14 000 deg2 in three
optical bands (g, r, z), additionally augmented with four infrared
bands (W1, W2, W3, W4) from the Near-Earth Object Wide-
field Infrared Survey Explorer Reactivation Mission (NEOWISE;
Mainzer et al. 2014). The DESI LS10 is the tenth public data release
of the DESI LS and it comprises two distinct parts, the north of the
galactic plane imaged by BASS/MzLS and the south of the Galactic
plane imaged by DECam. Notably, the data from the southern
sky of DESI LS10 include not only g, r, z-band observations
from DECaLS, but also g, r, i, z-band DECam observations from
several non-DECaLS surveys, i.e. the Dark Energy Survey (DES;
Dark Energy Survey Collaboration et al. 2016), the DECam Local
Volume Exploration Survey (DELVE; Drlica-Wagner et al. 2021)
and the DECam eROSITA Survey (DeROSITAs, PI: A. Zenteno,
Zenteno et al. in prep). These observations expand the coverage to
more than 20 000 deg2. The images and photometric data of the
ELG sources used in this study are from the south of the galactic
plane imaged by DECam in DESI LS10.

The catalogue of DESI LS10 provides aperture and model
fluxes as well as the morphological model types used in the
Tractor fitting procedure. We select galaxies classified as REX
(round exponential galaxies with a variable radius), DEV (deVau-
couleurs elliptical galaxies), EXP (exponential spiral galaxies) and
SER (Sersic profiles). The AB magnitudes corresponding to the
model and aperture fluxes are then computed for the g, r, i, z,
W1 and W2 bands. Sources exceeding the magnitude limits of
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g > 24.0, r > 23.4, z > 22.5 are excluded, aligned with DESI
requirements. Additionally, sources with maskbits ! = 0 are
removed, as the flag indicates issues such as pixel saturation or
contamination from nearby bright stars, globular clusters, or large
galaxies. To ensure data integrity, we also exclude sources with
missing flux values in any bands. Following these criteria, the
photometric data of galaxies are obtained.

2.2. Spectroscopic redshifts

The spectroscopic redshifts are used as the true value labels to
train a supervised photometric redshift estimation model. The
ELGs with known spectroscopic redshifts are mainly composed
of three parts. The first part is from the SDSS DR17 spectro-
scopic catalogue (Abdurro’uf et al. 2022) selecting sources with
CLASS==GALAXY and SUBCLASS as one of STARFORMING,
STARBURST, AGN and BROADLINE. The second part is from
the ELG targets of DESI EDR (DESI Collaboration et al. 2024)
sv1 and sv3. The third part is from different spectroscopic sur-
veys which are cross-matched with SIMBAD within a 1 arcsec
radius, and those sources whose main type is AGN or EmG are
kept. These surveys include the Two Degree Field Galaxy Redshift
Survey (2dFGRS; Colless et al. 2003), the Six Degree Field Galaxy
Survey (6dFGS; Jones et al. 2009), the Complete Calibration of
the Color-Redshift Relation survey (C3R2; Masters et al. 2017),
the VIMOS VLT Deep Survey (VVDS; Le Fèvre et al. 2013),
zCOSMOS (Lilly et al. 2009), the DEEP2 Galaxy Redshift Survey
(DEEP2; Newman et al. 2013), the PRIsm MUlti-object Survey
(PRIMUS; Coil et al. 2011; Cool et al. 2013), the Fiber Multi-
Object Spectrograph COSMOS survey (FCOSMOS; Kashino et al.
2019), the VIMOS Public Extragalactic Redshift Survey (VIPERS;
Scodeggio et al. 2018), the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST; Cui et al. 2012; Luo et al.
2015; Zhao et al. 2012) DR8, the WiggleZ Dark Energy Survey
(WiggleZ; Drinkwater et al. 2010), the Galaxy AndMass Assembly
(GAMA; Liske et al. 2015) DR3 and Optical redshifts for the Dark
Energy Survey (OzDES; Lidman et al. 2020).

Among these ELGs, spectroscopic measurements with low-
quality flags or redshifts less than or equal to zero are excluded
based on the quality criteria provided in the respective catalogues.
Thus the ELG sources with known spectroscopic redshifts are
obtained.

2.3. Known ELG sample

The ELG sources with spectroscopic redshifts are cross-matched
with the galaxy photometric data described in Section 2.1 within
a 1 arcsec radius. The nearest matches within this radius are
retained, forming the known ELG sample for training and testing.
The ELG sample comprises 192 375 unique entries. Details of the
spectroscopic surveys and their selection criteria included in the
ELG sample are provided in Table 1. Figure 1 illustrates the dis-
tribution of zspec, and Figure 2 describes the relationship between
zspec and r-band magnitude within this sample. As illustrated in
Figure 1, the zspec values in the sample range from 0 to 4, with
the majority falling below 1.7. The overall redshift distribution
exhibits two prominent peaks, separated approximately at z ∼ 0.7.
The first peak, centred around z ∼ 0.1, corresponds primarily to
sources from the SDSS survey, while the second peak, located
near z ∼ 1.0, mainly reflects contributions from the DESI EDR.
This bimodal distribution is consistent with the sample statistics
summarised in Table 1.

Table 1. Information about the various spectroscopic surveys included in the
dataset. z̃spec denotes the median of zspec. r̃(mag) denotes the median of r-band
magnitude.

Survey No. of sources Quality criterion z̃spec r̃(mag)

SDSS 122 452 zWarning=0 0.11 17.48

DESI SV3 52 491 zWarning=0, ZERR<0.01 1.04 22.73

DESI SV1 10 782 zWarning=0, ZERR<0.01 0.94 22.63

dFGRS 3 220 Q=3,4 0.06 15.57

PRIMUS 909 ZQUALITY=3,4 0.56 21.37

zCOSMOS 716 5≥CC≥3 0.68 21.67

LAMOST 612 Z_ERR≤ 0.01 0.12 16.98

GAMA 442 NQ=4 0.19 18.78

VIPERS 274 zflag=3,4 0.79 21.83

WiggleZ 118 qz=4,5 0.63 20.90

VVDS 109 ZFLAGS=4 0.74 22.13

fCOSMOS 103 ZFLAG≥ 3 1.48 22.73

dFGRS 88 Q=4 0.11 17.38

OzDES 28 qop=4 0.46 20.46

C3R2 19 Qual≥3 0.82 22.43

DEEP2 12 ZQUALITY≥3 0.82 22.67

Total No. 192 375 0.16 18.41

Figure 1. zspec distribution for the ELG sample. Themajority of sources have zspec values
below 1.7, with two prominent peaks in the low-redshift region. The inset panel in the
upper right corner displays the distribution of the relatively rare high-redshift sources
with zspec greater than 1.7.

Additionally, Figure 2 shows that high-redshift galaxies tend
to be faint, with two noticeable clusters in the r-band magnitude
ranges of 16–18 and 22–23.

All relevant parameters of the known ELG sample are sum-
marised in Table 2, including aperture magnitudes, model mag-
nitudes, and galactic extinction values E(B-V). For the imaging
data, we utilise the FITS file cutout service provided by DESI LSa
to download the corresponding images in the g, r, i, z, W1 and

ahttps://www.legacysurvey.org/viewer/fits-cutout.
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Figure 2. zspec v.s. r-bandmagnitude. A clear trend is evident, with low-redshift sources
generally being brighter and high-redshift sources tending to be fainter.

W2 bands, based on the RA and DEC coordinates of a source.
Although the projections of image stacks around the brick cen-
tre are identical in both optical and infrared bands, ensuring
consistent coordinates across different bands, the pixel resolu-
tion differs. The pixel scale is 0.262 arcsec per pixel for g, r, i,
z bands and 2.75 arcsec per pixel for W1 and W2 bands. These
default pixel scales are maintained to ensure consistency with
source detection and photometry configurations. The image size
is chosen to be 64 × 64 pixels, as this size is sufficient to cap-
ture the background sky and the full extent of each galaxy while
minimising contamination from other objects. Each source is cen-
tred in the image through the cutout service. Finally, the resulting
image data obtained from the service have a shape of (192 375,
6, 64, 64), with the bands arranged in the order: g, r, i, z, W1,
andW2.

2.4. Feature construction

Features are an important factor that influences model perfor-
mance. For photometric data, we combine all model magnitudes
with aperture magnitudes listed in Table 2 and compute vari-
ous differences between them, forming 97 features in total. From
these, we select 85 features to construct the optimal feature set
that yields the best performance. Details of the feature selection
procedure and the complete list of selected features is provided
in Appendix A. For imaging data, we combine the raw images
with colour images, resulting in a channel order of g, r, i, z, g − r,
r − i, i− z,W1,W2 andW1−W2, for a total of 10 channels. The
multi-band imaging of an ELG source is shown in Figure 4. In
the end, our final known dataset comprises 192 375 ELG sources,
each containing 10-channel images and 85 photometric features.
The optical-band images have a resolution of 0.262 arcsec per
pixel, while the infrared-band images have a resolution of 2.75
arcsec per pixel, with each image having dimensions of 64 ×
64 pixels.

3. The method

In this study, we put forward a CNN-MLP model, which com-
bines both image and photometric data to enhance the accuracy

of zphot estimation. The CNN-MLP model architecture, as shown
in Figure 3, consists of two main components: one is a paral-
lel set of CNN modules, each handling multi-band imaging data
from optical and infrared bands. The input data cubes for these
modules have shapes of (7, 64, 64) for optical bands and (3, 64,
64) for infrared bands. The other component is an MLP that
processes the 85 photometric features. These features from both
components are concatenated and subsequently passed through
another MLP to estimate zphot in a classification manner. In the
following, we will provide detailed descriptions of the model
structure.

3.1. Imaging data network

We aim to incorporate infrared-band data from NEOWISE
to complement the optical-band information. However, our
experiments show that simply concatenating them along the
channel axis, forms a datacube of shape (10, 64, 64), leads to
performance degradation, with results even worse than using
the optical band alone. This can be attributed to the resolution
differences between DESI LS and NEOWISE, as illustrated in
Figure 4. Specifically, DESI LS has a resolution of 0.262”/pixel,
while NEOWISE has a resolution of 2.75”/pixel. The varying
source sizes across different channels may confuse the model
regarding morphological features, resulting in ambiguous learned
visual features. Therefore, we design two independent CNNmod-
ules: one for DESI LS images and another for NEOWISE. Both
modules share the same architecture.

The CNN architecture adopted for imaging data closely follows
and integrates the designs proposed by Pasquet et al. (2019) and
Treyer et al. (2024). The network is initialised with a 5×5 con-
volutional layer followed by an average pooling layer and is then
followed by five inception modules. The inception module is built
on the principle of multi-scale feature extraction, wherein convo-
lutional kernels of varying sizes are leveraged to capture distinct
spatial hierarchical features within images. Each inception module
is structured in two stages. In the first stage, the feature maps are
convolved by three 1 × 1 convolutional layers. The employment
of 1 × 1 convolutions acts as a form of dimensionality reduction,
which is essential for managing the computational complexity
that arises from the subsequent larger convolutions. In the sec-
ond stage, feature maps are processed in parallel through a pooling
layer and a pair of larger convolutional layers with kernel sizes of
3× 3 and 5× 5, motivated by the need to capture larger and more
complex patterns. By combining features extracted from multiple
kernel sizes, the inceptionmodule can capture patterns at different
resolutions.

Following the inception blocks, we append three additional 3
× 3 convolutional layers without padding, accompanied by an
average pooling layer to further compress the spatial information.
To account for the effect of galactic extinction on the observed
imaging data, we incorporate the galactic extinction value E(B-V)
at this stage. Specifically, the flattened image features are con-
catenated with the corresponding E(B-V) value and then passed
through a one-layer MLP to better fuse the image features and
extinction information, thereby enabling the network to correct
for reddening-induced biases in downstream redshift estimation.
Through this sequence of modules, a feature representation of the
imaging data is obtained.

After the two parallel CNN modules separately process the
optical and infrared images, their respective extracted features are
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Table 2. Photometric data corresponding to the known ELG dataset.

Name Definition Catalogue Waveband

MAG_G Model magnitude in g band DESI Optical band

MAG_R Model magnitude in r band DESI Optical band

MAG_I Model magnitude in i band DESI Optical band

MAG_Z Model magnitude in z band DESI Optical band

MAG_W1 Model magnitude inW1 band DESI Infrared band

MAG_W2 Model magnitude inW2 band DESI Infrared band

APMAG_G_(1∼8)a Aperture magnitude in g band DESI Optical band

APMAG_R_(1∼8) Aperture magnitude in r band DESI Optical band

APMAG_I_(1∼8) Aperture magnitude in i band DESI Optical band

APMAG_Z_(1∼8) Aperture magnitude in z band DESI Optical band

APMAG_W1_(1∼5)b Aperture magnitude inW1 band DESI Infrared band

APMAG_W2_(1∼5) Aperture magnitude inW2 band DESI Infrared band

ebv Galactic extinction E(B-V) reddening DESI

z_spec Spectroscopic redshift Known sample
aOptical aperture magnitude suffixes 1∼8 correspond to fluxes measured within circular apertures of radii [0.5, 0.75, 1.0, 1.5, 2.0,
3.5, 5.0, 7.0] arcsec.
bInfrared aperture magnitude suffixes 1∼5 correspond to apertures with radii [3, 5, 7, 9, 11] arcsec.

Figure 3. Schematic diagram of the CNN-MLPmodel. It consists of two distinct networks: the Imaging Data Network, which processes optical- and infrared-band images through
two parallel modules, and the Photometric Data Network, which handles the photometric data. The image features and photometric features are concatenated together and
passed through an MLP to estimate zphot.

flattened and concatenated together. Subsequently, a two-layer
MLP is applied to fuse the features from different bands and
reduce the dimensionality, thereby producing a feature vector that
represents the imaging data.

3.2. Photometric data network

Imaging data capture visual features such as shape and structure
while photometric data provide precise numerical flux and colour
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Figure 4. Example multi-band images of a single ELG source with a zspec of 0.156 from the dataset. The 64× 64 imaging data consist of 10 channels, with the bands ordered from
optical to infrared. Notable resolution discrepancies are observed between the optical and infrared images.

information. They represent different underlying information of
the target sources in different modalities, complementing each
other in zphot estimation. As shown in Figure 3, we employ a sepa-
rate MLP to process the photometric data features and extract the
information independently. As a result, the overall model architec-
ture can be viewed as a combination of two distinct networks. This
structure enables efficient feature extraction from each modal-
ity, while avoiding challenges associated with increased model
complexity and interpretability.

3.3. Feature fusion and redshift estimation

After being processed by the imaging and photometric data net-
works, the resulting features are concatenated and passed through
anMLP to extract the fused representation for redshift estimation.

The redshift estimation task has been approached using regres-
sion, as in Henghes et al. (2022), classification, as in Pasquet et al.
(2019), or a combination of both, as in Treyer et al. (2024). In
a regression-based approach, the model outputs a single value
representing the estimated redshift, and training is performed by
minimising the difference between the predicted and true redshift
values, quantified by mean square error (MSE) or mean absolute
error (MAE). But in a classification method, the known redshift
range is divided into a series of narrow, mutually exclusive bins,
and a classifier is trained to assign each sample to one of these bins.
The classifier outputs confidence scores indicating the likelihood
of the sample belonging to each bin, which can be transformed
into probability values using the softmax function. This provides
a reliable estimate of the zphot probability density function (PDF).
Finally, based on the obtained PDF, the photometric redshift can
be calculated using Equation (1).

zphot =
Nc∑

k=1

zkP(zk) (1)

where Nc is the number of bins, zk is the midpoint value of the k-
th redshift bin, and P(zk) denotes the probability that the sample’s
redshift falls into the k-th bin. Under the classification schema,

the redshift label is one-hot encoded to represent the correspond-
ing bin, and the classifier is trained using the cross-entropy loss
function.

We conduct an experiment to compare the performance of
the two approaches, as detailed in Appendix B. The results show
that the classification method performs better than the regres-
sion method. Therefore, we adopted the classification method to
construct the redshift estimator.

4. Experiment

4.1. Metrics

To evaluate the performance of zphot estimation, we consider the
following commonly used metrics:

• The normalised residuals �z, following Cohen et al. (2000):

�z = zspec − zphot
1+ zspec

(2)

• The prediction Bias: the median of the normalised residu-
als. We adopt the median-based definition following Roster
et al. (2024), as the median offers a robust measure of central
tendency that is less sensitive to extreme values;

• The normalisedmedian absolute deviation (σNMAD), following
Brammer et al. (2008), as it is less sensitive to outliers:

σNMAD = 1.48×median|�z −median(�z)| (3)

• The outlier fraction η, following Hildebrandt et al. (2012):

η = N|�z|>0.15

Ntotal
(4)

whereN|�z|>0.15 denotes the number of samples for which |�z|
is larger than 0.15. Ntotal is the total number of samples.
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Table 3. Optimal hyperparameters for CNN-MLP model and its sub-networks. The imaging data network (CNN) and the photometric
data network (MLP) are first trained separately, followed by joint fine-tuning of the full CNN-MLPmodel.

Hyperparameter Imaging data network Photometric data network CNN-MLP

Number of convolutional layers after Inception modules 3 – –

Number of channels in each convolutional layer after Inception
modules

96 – –

Number of MLP layers – 2 –

Number of neurons in each MLP layer – 512 –

Number of bins in classification-based estimation – – 770

Dropout rate 0.3 0.1 –

Activation function ReLU GELU ReLU

Initial learning rate 0.0005 0.0009 0.0001

Step size in StepLR scheduler 15 10 10

Gamma in StepLR scheduler 0.1 0.1 0.1

Weight decay in optimiser 1e-3 1e-5 1e-5

Number of training epochs 50 30 30

Batch size 32 32 32

4.2. Experiment setup and hyperparameter tuning

The CNN-MLP approach is implemented using the Pytorch
framework (Ansel et al. 2024), and all experiments are per-
formed in a high-performance computing cluster provided by the
National Astronomical Data Center (NADC; Li et al. 2017).

The known ELG sample is partitioned into training, validation,
and test sets in an approximate ratio of 75:5:20, corresponding to
144 663, 9 237, and 38 475 samples, respectively. Moreover, the
redshift distribution of training, validation, and test sets is con-
sistent. In addition, to reduce the effect of galaxy orientation on
our imaging data model, we augment the training set by applying
random flips and rotations (in 90◦ increments) to the images.

A number of hyperparameters play a critical role in deter-
mining the network architecture and influencing convergence of
the training. To optimise model performance, we utilise Weights
& Bias sweep tool (Biewald 2020) to perform a hyperparameter
search based on the validation set, aiming to identify the optimal
combination that yields the best results. The key parameters with
the most significant impact are outlined below:

• Imaging data network architecture:

− Number of convolutional layers after inception modules:
[1, 2, 3]

− Number of channels in each convolutional layer after
Inception modules: [64, 96, 128]

• Photometric data network architecture:

− Number of MLP layers: [1, 2, 3]
− Number of neurons in each MLP layer: [512, 1024, 2048]

• Training configuration:

− Dropout rate: [0.1, 0.3, 0.5]
− Activation function: [ReLU, GELU, LeakyReLU]
− Initial learning rate: [1 × 10−5 – 1×10−3]
− Step size in StepLR learning rate scheduler: [5, 10, 15]
− Gamma in StepLR scheduler (learning rate decay factor):

[0.1, 0.3, 0.5]
− Weight decay in optimiser: [1×10−6 – 1×10−2]

Table 4. The performance comparison of different models.

Method Data Bias σNMAD η

CNN-MLP Multimodal data 0.0002 0.0140 0.0257

MLP Photometric data 0.0000 0.0160 0.0284

CNN Imaging data 0.0001 0.0164 0.0316

− Batch size: [32–128]
− Number of training epochs: [30–50]

In addition to the hyperparameter values obtained from the
search, there are several other model hyperparameter settings as
follows: Xavier initialisation for the network’s weights is employed,
and the bias is set to a constant value of 0.1. The Adam optimiser
is used during training. The number of bins in the final estimation,
as described in Section 3.3, is 770, covering the redshift range from
0 to 3.85, with each bin having a width of �z = 0.005.

Rather than training the entire CNN-MLP model in an end-
to-end manner from the beginning, we adopt a staged training
strategy. Specifically, the imaging data network and the photo-
metric data network are first trained and fine-tuned separately to
obtain optimal parameters for each modality. These pretrained
weights are then loaded into the full CNN-MLP, followed by
end-to-end fine-tuning with a small learning rate. This staged
approach improves both efficiency and performance. By first fine-
tuning each modality-specific module independently, the feature
extraction capacity of each network is maximised, resulting in
more stable training and faster convergence. Building upon pre-
trained weights, the fusion and redshift estimation layers can
then be optimised at minimal cost. The final joint fine-tuning
step allows the two modalities to adapt cooperatively, enhancing
feature complementarity and mitigating potential distributional
biases introduced during separate training.

The optimal hyperparameters for each network and the joint
fine-tuning stage are shown in Table 3. Subsequently, the model
is built using these hyperparameters to construct the final CNN-
MLP model.
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Figure 5. zphot computed with CNN-MLP, MLP, and CNN. Top:zphot versus zspec. Bottom: normalised residuals across the redshift range. The black solid line represents the one-to-
one relation with no residuals, while the blue dashed lines correspond to zphot at± 0.15(1+zspec). Sources outside the dashed lines are identified as outliers. The colour intensity
indicates the density of samples. Left panel: CNN-MLPmodel, middle panel: MLPmodel, right panel: CNNmodel.

5. Results and discussion

5.1. Results

To highlight the superiority of the CNN-MLP architecture, we
construct two single-modality baseline models by removing either
the CNN or MLP component: one retains only the MLP for pro-
cessing photometric data, and the other retains only the CNN for
imaging data. Their performances are then compared with the full
model on the same dataset.

Table 4 presents the results of the performance comparison.
The use of multimodal data by CNN-MLP yields the best per-
formance across all three metrics, with significant improvements
of 12.5% and 14.6% in σNMAD compared to the MLP using only
photometric data and CNN using only imaging data, respectively.

These results can be attributed to several factors. First, imaging
data not only provide flux and colour, which are directly related to
redshift estimation, but also contain additional information such
as the galaxy’s apparent size, extended features, morphology, and
spatial structure. These characteristics, which cannot be captured
in photometric data alone, are also valuable for predicting red-
shifts. However, there are limitations when solely using imaging
data. Galaxies vary in size, and the limited field of view in images
may lead to contamination from background sources, introducing
additional flux that can affect the redshift estimation of the central
galaxy.

On the other hand, while photometric data are typically derived
from images, they undergo careful photometric processing and
extinction corrections, making the information on flux and colour
more accurate. The flux measurements include both model flux
and aperture flux, providing richer information on luminosity
distribution. This is why traditional machine learning methods
can achieve relatively good performance with photometric data
alone.

The distribution of zphot versus zspec for CNN-MLP, MLP, and
CNN is shown in Figure 5. The densities for all three models
are largely concentrated along the zphot = zspec lines, indicating
high prediction accuracy. However, the CNN model exhibits
an increased dispersion around zspec, consistent with the higher
σNMAD reported in Table 4 and the trends observed across different
redshift ranges discussed in Section 5.2.

Figure 6. Performance of differentmodels as a function of zspec and r-bandmodelmag-
nitude. Gray histograms in the background show the distributions of zspec and r-band
model magnitudes for the sample.

In addition to the excellent performance of the CNN-MLP
model, the CNN model using only imaging data achieves solid
performance. As a result, it is particularly promising for parame-
ter estimation directly using imaging data from future multi-band
imaging surveys, such as CSST and LSST.

5.2. Performance in different redshift andmagnitude ranges

The performance of the three models (CNN-MLP, MLP, and
CNN) as a function of redshift and r-band magnitude is shown
in Figure 6. The metrics analysed include bias, σNMAD and η.

It can be observed from Figure 6 that all three metrics exhibit
a consistent trend. For redshifts below 0.5, where sample den-
sity is highest, redshift predictions exhibit the greatest accuracy.
In contrast, for redshifts above 1.5, where sample density is lower,
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Table 5. Performance of bright and faint sources using the two-part model and
one-part model.

Model Sources Bias σNMAD η

MAG_R< 21.5 0.0000 0.0089 0.0044

Two-part model MAG_R> 21.5 0.0010 0.0494 0.0715

All 0.0001 0.0139 0.0270

MAG_R< 21.5 0.0003 0.0090 0.0041

One-part model MAG_R> 21.5 0.0000 0.0479 0.0691

All 0.0002 0.0140 0.0257

prediction accuracy diminishes significantly. The moderate degra-
dation in metrics within the 0.5–1.0 range can be attributed to
the relatively sparse sample density in this interval. The observed
performance degradation due to uneven sample distribution is
a well-known challenge in machine learning: models tend to
perform better on classes with abundant samples while general-
ising less effectively to those with fewer samples. Future work
should focus on enhancing performance in the sparsely sampled
high-redshift regime by employing techniques such as data aug-
mentation, synthetic data generation, or other strategies to address
the issue of data imbalance.

As for magnitude, it is clear that redshift estimation accu-
racy is generally higher in the bright magnitude region compared
to the faint magnitude region, as observed across all three met-
rics. The CNN-MLP model consistently achieves the best perfor-
mance across nearly all magnitude intervals. This suggests that
the CNN-MLP model effectively integrates limited information to
optimise redshift estimation accuracy for faint sources, even when
the morphological and photometric information is not highly
precise.

In addition, we apply a two-part model to assess whether train-
ing separate models for bright and faint sources could yield an
optimal solution. Specifically, the two-part model is trained inde-
pendently for both bright (r-band model magnitude < 21.5) and
faint (r-band model magnitude > 21.5) data groups, while the
previous model, trained on the entire dataset, is referred to as
the one-part model. The performance of bright and faint sources
with the one-part model and the two-part model is summarised in
Table 5.

For the bright sources, the two-part model achieves nearly
identical performance to the one-part model. However, for the
faint sources, it obtains a slight performance deterioration com-
pared to the one-part model. This phenomenon can be attributed
to two factors: firstly, the data from bright sources are more
easily leveraged to extract effective information, whereas faint
sources are both fewer in number and intrinsically dim, mak-
ing it inherently challenging to extract accurate and reliable
information and thus limiting the model’s ability to learn suf-
ficiently from them. This issue is mitigated when training on
the entire dataset. Second, there are some shared features and
patterns between bright and faint sources. These features that
may not be readily extracted from faint images could still be
learned from the intrinsic similarities shared with bright and
high-quality images. Training on the entire dataset allows the
model to fully leverage those shared features, whereas training
exclusively by faint sources restricts this ability. These findings
suggest that when using CNN-MLP, incorporating information
from both bright and faint sources with the one-part model

Table 6. Performance for different galaxy types.

Galaxy type No. of sources Bias σNMAD η

Starforming 15 944 0.0003 0.0083 0.0023

Starburst 5 738 0.0003 0.0101 0.0052

AGN 1 512 0.0030 0.0134 0.0040

Broadline 803 −0.0027 0.0103 0.0050

All 23 997 0.0003 0.0090 0.0032

Figure 7. Performance for different galaxy types. Top:zphot versus zspec. Bottom: nor-
malised residuals across the redshift range.

may provide a more balanced and robust solution for redshift
prediction.

5.3. Performance for different ELG types

The ELG types in the SDSS include starforming, starburst, AGN,
and broadline galaxies, as described in Section 2.2. To gain a
deeper understanding of performance across different ELG types,
we select different types of SDSS ELGs from the test set and cal-
culate the three metrics for each ELG type group. The results
are presented in Table 6 and Figure 7. As shown in Figure 7,
the majority of SDSS galaxy sources are concentrated in the low-
redshift region, in contrast to the broader distribution in the
full test set. Consequently, the redshift estimation performance
on the SDSS dataset is superior to that on the entire dataset, as
discussed in Section 5.2. Additionally, Table 6 reveals minor vari-
ations in performance across different ELG types. These discrep-
ancies can largely be attributed to differences in their respective
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Figure 8. Distributions of zspec and r-bandmodel magnitude for different galaxy types in the test set.

redshift and brightness distributions. Figure 8 illustrates these dis-
tributions, showing that the best-performing starforming galaxies
are predominantly located at lower redshifts and are generally
brighter. In contrast, AGN and broadline galaxies, which per-
form relatively poorly, exhibit broader redshift distributions and
more balanced magnitude distributions, with comparable num-
bers of bright and faint sources. As discussed in Section 5.2,
zphot prediction becomes more challenging for galaxies at higher
redshifts and with lower brightness. Moreover, the sample size
of each galaxy type also plays a role in model performance:
starforming galaxies constitute more than half of the training
dataset, which facilitates more effective model learning for this
population.

5.4. Outliers

As discussed in Section 4.1, samples with |�z| larger than 0.15 are
classified as outliers, while those with smaller values are considered
inliers. To investigate the differences between inliers and outliers
predicted by the model, Uniform Manifold Approximation and
Projection (UMAP; McInnes, Healy, & Melville 2018) is applied
to reduce the high-dimensional feature space to two dimensions
for visualisation, as shown in Figure 9.

Figure 9 shows the distribution of inliers, colour-coded by
their matched zspec values, alone with the outliers (represented
as orange crosses) in the projected space. This analysis aims to
determine whether the two groups exhibit distinguishable clus-
tering or separation patterns, potentially revealing underlying
feature characteristics that contribute to prediction errors. For
the majority of samples, the model has effectively learned red-
shift representations, with well-defined clusters corresponding to
both low- and high-redshift sources. However, the presence of
outlier clusters suggests that certain intrinsic features of these
sources lead to prediction errors. Notably, many outliers are con-
centrated in the high-redshift region, indicating that their learned
representations are similar to those of high-redshift galaxies, even
though they belong to the low-redshift group. This overlap high-
lights potential degeneracies in the dataset, where sources from

Figure 9. Two-dimensional UMAP projection of the 1024-dimensional network output,
colour-coded by zspec. Outliers are marked as orange crosses.

both high and low-redshift populations share similar character-
istics, complicating the model’s ability to distinguish between
them.

The distribution of outliers in the zspec versus r-band magni-
tude space is described in Figure 10. In addition to the challenges
associated with faint high-redshift sources discussed in Section 5.2,
we also observe a notable concentration of outliers in the lower-
right region, corresponding to faint sources at low redshifts. This
pattern likely arises due to the under-representation of such galax-
ies in the training set, as illustrated in Figure 2. This imbalance
introduces a training bias, where the model tends to associate
faintness with higher redshifts. As a result, faint low-redshift galax-
ies are more prone to being misclassified, contributing to the
observed outliers.

https://doi.org/10.1017/pasa.2025.10056 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10056


Publications of the Astronomical Society of Australia 11

Figure 10. Distribution of outliers in the zspec vs. r-bandmagnitude diagram.

We also conclude that accurately estimating zphot for faint
galaxies – whether at high or low redshifts – is particularly chal-
lenging due to several compounding factors. First, a low signal-to-
noise ratio (SNR) hampers the precision of redshift measurements.
We examined the SNR distributions of inliers and outliers and
found that outliers exhibit significantly lower SNRs across all
photometric bands. Furthermore, the limited depth of the sur-
vey restricts both the detectability and measurement quality of
faint sources, which in turn contributes to low SNR and reduced
estimation accuracy. In addition, cosmic dust and extinction fur-
ther degrade the already weak photometric images, making them
even less reliable. Finally, contamination from nearby objects
introduces extra fluxes, affecting photometric measurements and
reducing the accuracy of zphot estimation.

6. Conclusion

In this paper, we propose a multimodal deep learning model
CNN-MLP that integrates imaging and photometric data to
enhance the redshift estimation of ELGs. Compared to single-
modal approaches, the multimodal model achieves better perfor-
mance, with the bias = 0.0002, σNMAD = 0.0140 and outlier frac-
tion η = 0.0257. This result demonstrates that visual and photo-
metric information complement each other, significantly improv-
ing zphot estimation. Additionally, we find that model performance
degrades with increasing redshift and fainter magnitudes, high-
lighting the inherent difficulties in extracting information and
accurately estimating photometric redshifts for high-redshift and
faint sources. This degradation also reflects the impact of data
imbalance, as such sources are underrepresented in the dataset.
Moreover, we compare photometric redshift estimation perfor-
mance across different ELG types, showing that starforming galax-
ies – typically brighter, at lower redshift, and more numerous –
exhibit better performance than other ELG types.

With the help of the CNN-MLP model, we can estimate the
redshifts of DESI’s ELG targets to further optimise the selection
of observation targets. Additionally, this model may be applied to
ongoing and upcoming surveys such as Euclid, LSST, and CSST.
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Appendix A. Photometric features

Photometric data provide rich information on galaxy luminosi-
ties across multiple bands. To fully exploit this information for
zphot estimation, we construct a set of 97 features by combining the
model magnitudes with the aperture magnitudes listed in Table 2,
and computing various differences between them. Specifically, the
features include:

• Model magnitudes in all bands;
• Colours derived from model magnitudes, computed both

between adjacent and non-adjacent bands (e.g. MAG_G−
MAG_R,MAG_G−MAG_I,MAG_G−MAG_Z)

• Differences between model magnitudes and the smallest aper-
ture magnitude in the corresponding bands (e.g. MAG_G−
APMAG_G_1,MAG_R−APMAG_R_1);

• Colours between adjacent bands measured within the
same aperture size (e.g. APMAG_G_1−APMAG_R_1,
APMAG_R_1−APMAG_I_1).

Appendix A.1. Selection of photometric features

To identify the most informative features for zphot estimation, we
employ the Permutation Feature Importance (PFI) method. PFI
quantifies the contribution of each feature to the performance of
a trained model. It is based on the principle that permuting (i.e.
randomly shuffling) the values of a single feature disrupts the rela-
tionship between that feature and the target. The resulting drop in
model performance indicates the importance of the feature.

We conduct feature selection on the validation set using the
validation loss as the evaluation metric. In this process, only the
photometric data network is utilised, as we focus exclusively on
photometric data features. We first train the model using all 97
features, and then apply the PFI method by individually shuf-
fling each feature andmeasuring the resulting change in validation
loss. The features are then ranked by their performance impact in
descending order, and feature subsets are iteratively selected from
top to bottom to identify an optimal combination. Ultimately, a
subset of 85 features is selected, which yields the best performance
on the validation set. The selected feature patterns are listed in
Appendix A.2.

Based on the selected set of 85 features, we further evaluate
two simplified subsets: one containing only model magnitude fea-
tures, and the other including model magnitude features along
with adjacent-band colour features only. The results of the com-
parison are presented in Table A1. Both subsets result in degraded
performance relative to the full 85-feature set, suggesting that
the selected features are complementary and not significantly
redundant. Consequently, all model evaluations in this study are
conducted using the full set of 85 features.

Table A1. Performance comparison across different photometric
features.

Feature set Bias σNMAD η

Optimal features 0.0000 0.0160 0.0284

Only magnitude features 0.0006 0.0280 0.0365

Only magnitude and adjacent-band
Colour features

−0.0001 0.0178 0.0313

Appendix A.2. List of selected photometric features

The 85 photometric features from the DESI LS10 catalogue
ranked by PFI, used as the input to the model are as
follows:MAG_R−MAG_W2,MAG_I −MAG_W1,
MAG_R−MAG_W1,MAG_I −MAG_W2,
MAG_Z −MAG_W1, −MAG_R−MAG_I,
MAG_G−MAG_W2,MAG_Z −MAG_W2,
MAG_G−MAG_R,MAG_I −MAG_Z,MAG_G−MAG_I,
APMAG_W1_2−APMAG_W2_2,MAG_R−APMAG_R_1,
MAG_R−MAG_Z,MAG_G−APMAG_G_1,
APMAG_Z_5−APMAG_W1_5,MAG_G,
MAG_G−MAG_W1,MAG_I −APMAG_I_1,
APMAG_W1_3−APMAG_W2_3,MAG_I,MAG_Z,
APMAG_I_7−APMAG_Z_7,MAG_Z −APMAG_Z_1,
APMAG_R_6−APMAG_I_6, APMAG_I_6−APMAG_Z_6,
APMAG_W1_1−APMAG_W2_1,MAG_R,
APMAG_W2_1−APMAG_W2_2,
APMAG_I_8−APMAG_Z_8, APMAG_R_7−APMAG_I_7,
APMAG_Z_4−APMAG_W1_4, APMAG_G_6−APMAG_R_6,
APMAG_G_7−APMAG_R_7, APMAG_G_1−APMAG_R_1,
APMAG_W1_4−APMAG_W2_4,
APMAG_Z_1−APMAG_W1_1, APMAG_R_8−APMAG_I_8,
APMAG_I_1−APMAG_I_2,
APMAG_W1_1−APMAG_W1_2,
APMAG_W2_3−APMAG_W2_4,
APMAG_R_5−APMAG_I_5,
APMAG_W2_2−APMAG_W2_3,
APMAG_R_1−APMAG_I_1, APMAG_G_5−APMAG_R_5,
APMAG_I_2−APMAG_Z_2,
APMAG_W2_4−APMAG_W2_5,
APMAG_G_8−APMAG_R_8,MAG_W1−APMAG_W1_1,
APMAG_R_2−APMAG_I_2, APMAG_I_5−APMAG_Z_5,
APMAG_G_1−APMAG_G_2,MAG_W2−APMAG_W2_1,
APMAG_W1_4−APMAG_W1_5,
APMAG_R_1−APMAG_R_2, APMAG_I_1−APMAG_Z_1,
MAG_W2,MAG_G−MAG_Z, APMAG_Z_1−APMAG_Z_2,
APMAG_G_4−APMAG_R_4, APMAG_R_4−APMAG_I_4,
MAG_W1, APMAG_Z_3−APMAG_W1_3,
APMAG_I_7−APMAG_I_8,MAG_W1−MAG_W2,
APMAG_Z_2− APMAG_W1_2, APMAG_Z_5−APMAG_Z_6,
APMAG_I_4−APMAG_Z_4, APMAG_G_2−APMAG_R_2,
APMAG_R_3−APMAG_R_4, APMAG_I_3−APMAG_Z_3,
APMAG_Z_7−APMAG_Z_8, APMAG_R_7−APMAG_R_8,
APMAG_G_4−APMAG_G_5, APMAG_G_3−APMAG_R_3,
APMAG_W1_5−APMAG_W2_5,
APMAG_W1_2−APMAG_W1_3,
APMAG_W1_3−APMAG_W1_4,
APMAG_R_5−APMAG_R_6, APMAG_I_5−APMAG_I_6,
APMAG_G_2−APMAG_G_3, APMAG_Z_3−APMAG_Z_4,
APMAG_R_3−APMAG_I_3, APMAG_Z_6−APMAG_Z_7,
APMAG_I_4−APMAG_I_5.
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Table B1. Performance comparison for classifica-
tion and regression approaches.

Model Bias σNMAD η

Classification 0.0002 0.0140 0.0257

Regression −0.0025 0.0222 0.0259

Appendix B. Classification and Regression in photometric
redshift estimation

In the redshift estimation task, two primary approaches are
commonly employed: classification and regression. The distinct
nature of these approaches results in different outputs from the
final layer of the MLP. To assess which method yields supe-
rior performance, we conduct an experiment comparing both
approaches. Bothmodels are trained on the same dataset, and their

performance metrics are computed. The results are presented
in Table B1.

The classification approach demonstrates superior statistical
performance compared to the regression method. This advantage
likely arises from the inherent limitations of regression, where col-
lapsing the prediction result into a single point estimate fails to
account for the underlying uncertainty, often resulting in larger
errors. Although the evaluation of the classification approach is
also based on point estimates derived from the PDF, the calcula-
tion incorporates the shape of the full PDF. This allows the final
point estimate to retain richer information, thereby enhancing
prediction accuracy.

Moreover, the classification approach enables the direct output
of a PDF, which facilitates the estimation of uncertainty – a critical
aspect of zphot estimation. This ability to quantify uncertainty is
particularly important for scientific analyses. For these reasons, we
adopt the classification approach for estimating zphot in this study.

https://doi.org/10.1017/pasa.2025.10056 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10056

	
	Introduction
	The data
	Photometric data
	Spectroscopic redshifts
	Known ELG sample
	Feature construction
	The method
	Imaging data network
	Photometric data network
	Feature fusion and redshift estimation
	Experiment
	Metrics
	Experiment setup and hyperparameter tuning
	Results and discussion
	Results
	Performance in different redshift and magnitude ranges
	Performance for different ELG types
	Outliers
	Conclusion
	Selection of photometric features
	List of selected photometric features

