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Abstract

Let m be a positive integer and p a prime number. We prove the orthogonality of some character sums
over the finite field Fpm or over a subset of a finite field and use this to construct some new approximately
mutually unbiased bases of dimension pm over the complex number field C, especially with p = 2.
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1. Introduction

A basis B = {b1, b2, . . . , bn} of the n-dimensional complex vector space Cn is
orthonormal if

〈bi | b j〉 =

{
1 for 1 ≤ i = j ≤ n,
0 for 1 ≤ i , j ≤ n,

where 〈u | v〉 =
∑n

i=1 uiv̄i is the Hermite inner product of the vectors u = (u1, . . . , un)
and v = (v1, . . . , vn). Two orthonormal bases B and B′ are called mutually unbiased
bases (MUBs) if and only if

|〈b | b′〉|2 = 1/n for all b ∈ B and b′ ∈ B′. (1.1)

The notion of MUBs was initially proposed by Schwinger [20] in 1960. He noticed
that the corresponding (quantum) states of these MUBs are maximally incompatible.
Using such a basis to obtain optimal outcomes leads to maximally random results
compared to other bases. Therefore, MUBs constitute a basic ingredient in many
applications of quantum information processing: quantum tomography, quantum
key distribution in cryptography, discrete Wigner function, quantum teleportation,
and quantum error correction codes (see [7, 9, 18, 19] and the references therein).
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MUBs are also closely related to spherical 2-designs [4, 10], semifields [4], complex
Hadamard matrices [3], orthogonal Latin squares [5], finite geometry [5], frames [3],
planar functions [5] and character sums over finite fields [9, 17].

If B = {B1, . . . , BN} is a collection of pairwise mutually unbiased bases of Cn, then
it can be shown that N ≤ n + 1 (see [1, 9]). An extremal set attaining this bound is
called a complete MUB. Let f (n) denote the maximum cardinality of any set containing
pairwise mutually unbiased bases ofCn. It is known that f (n) = n + 1 when n is a prime
power and it is conjectured that complete MUBs only exist for such n (see [1, 5]).
Little is known about f (n) for other n, even for f (6), but it is conjectured that f (6) = 3
(see [5]). The following results are shown in [5]:

(1) f (n1n2) ≥ min{ f (n1), f (n2)} for all positive integer n1, n2;
(2) f (n) , n, in other words, f (n) = n + 1 or f (n) ≤ n − 1;
(3) f (n2) ≥ L(n) + 2, where L(n) is the maximal number of mutually orthogonal

Latin squares.

When the characteristic of the finite field Fq is odd, Klappenecker and Rötteler
obtained the following two results.

Lemma 1.1 [9]. Let Fq be a finite field of characteristic p ≥ 5. Define sets of vectors

Bα = {bλ,α | λ ∈ Fq} where bλ,α =
1
√

q
(ωtr((k+α)3+λ(k+α))

p )k∈Fq ,

in which ωp is a pth root of unity in C and tr(·) is the absolute trace. Let B∞ =

{e1, . . . , eq} denote the standard basis, where ei has 1 in its ith component and 0
elsewhere. The standard basis B∞ and the sets Bα, with α ∈ Fq, form a complete MUB
of Cq,

Lemma 1.2 [9]. Let Fq be a finite field of odd characteristic p. Define

Ba = {va,b | b ∈ Fq} where va,b =
1
√

q
(ωtr(ax2+bx)

p )x∈Fq .

Then the standard basis B∞ and the sets Ba, with a ∈ Fq, form a complete MUB of Cq.

When the characteristic of the finite field is even, Klappenecker and Rötteler use
Galois rings to construct some complete MUBs.

Since the restriction (1.1) is very strict, Shparlinski and Winterhof [22] propose the
following definition:

Definition 1.3. The orthonormal bases in the set B = {B1, . . . , BN} are called
approximately mutually unbiased bases (AMUBs) if for all u ∈ Bi, v ∈ B j, 1 ≤ i , j ≤
N,

|〈u | v〉| ≤
1 + o(1)
√

n
or O

( 1
√

n

)
or O

( log(n)
√

n

)
.
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After the concept of AMUB was introduced by Shparlinski and Winterhof [22],
AMUBs were constructed by using character sums over finite fields [11, 23, 24]. These
AMUBs are closely related to spherical 2-designs, finite geometry and compressed
sensing matrices.

In this paper, inspired by Lemmas 1.1 and 1.2, we present more constructions of
AMUBs by using the orthogonality of some character sums over finite fields. Section 2
introduces properties of the character sums. We find that the character sums form an
orthonormal basis of a certain complex function space. That is, every complex-valued
function over a finite field can be decomposed as a linear combination of character
sums. Then, in Section 3, we show how to use these character sums to construct more
AMUBs.

2. Orthogonality of some character sums

In this section we fix a prime number p, a positive odd integer m and a positive
integer k. Throughout, χ denotes the canonical additive character of Fpm . For
a, b ∈ Fpm , the Kloosterman sum Km(a, b) is defined by

Km(a, b) =
∑′

x∈Fpm

χ(ax + bx−1).

For properties of Km(a, b), see, for example, [14, Ch. 5]. It is easy to check that
Km(a, b) = Km(1, ab) = Km(ab, 1) for ab , 0, thus for convenience, we denote Km(1, a)
by Km(a). The Kloosterman sums over F2m are determined by Lachaud and Wolfmann.

Lemma 2.1 [12]. The set {Km(λ) | λ ∈ F2m} is the set of all integers s ≡ −1 (mod 4) in
the range

[−2m/2+1 + 1, 2m/2+1 + 1].

For a, b ∈ F2m , define the character sums:

C(k)
m (a, b) =

∑
x∈F2m

χ(ax2k+1 + bx),

G(k)
m (a, b) =

∑
x∈F2m

χ(ax2k+1 + bx−1).

Many interesting applications of these character sums have been found in coding
theory and combinatorial applications of finite fields (see, for example, [2, 6, 8, 15]).

Lahtonen, McGuire and Ward gave the following evaluation.

Lemma 2.2 [13]. If m is odd and gcd(k,m) = 1, then

C(k)
m (1, 1) =

( 2
m

)
2(m+1)/2 =

{
2(m+1)/2 if m ≡ ±1 (mod 8),
−2(m+1)/2 if m ≡ ±3 (mod 8),

where (2/m) is the Jacobi symbol.
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Define the trace map Trm
1 (a) =

∑m−1
j=0 a2 j

. From Lemma 2.2, follows:

Lemma 2.3 [2]. If m is odd and gcd(k,m) = 1, then:

(1) C(k)
m (a, b) = C(k)

m (1, b/a1/(2k+1));

(2) C(k)
m (1, a) = C(k)

m (1, a2) for all a ∈ F2m ;

(3) C(k)
m (1, a) = 0 if and only if Trm

1 (a) = 0;
(4) if Trm

1 (a) = 1, there is an h ∈ F2m such that a = h2k
+ h2m−k

+ 1 and

C(k)
m (1, a) = χ(h2k+1 + h)C(k)

m (1, 1) = χ(h2k+1 + h)
( 2
m

)
2(m+1)/2.

As a consequence, one has the following bound:

Lemma 2.4. Suppose that q = 2m, m is odd and gcd(k,m) = 1. For all a, b ∈ Fq,

|C(k)
m (a, b)| ≤

√
2q.

Let V = CFq be the set of complex-valued functions from Fq to C. For any pair of
functions f , g ∈ V , define

( f , g) =
∑
c∈Fq

f (c)g(c),

where the bar denotes the complex conjugate. It is easy to check that (·, ·) is an inner
product and V forms a unitary space with this inner product. For every a ∈ Fq, let fa
denote the function

fa : Fq → C; fa(a) = 1, fa(b) = 0 for all b , a.

It is obvious that { fa | a ∈ Fq} forms a basis of V . Thus, dimC(V) = q.
Now consider the set of all normalised additive characters of Fq (here we use

‘normalised’ to denote divided by
√

q). By the orthogonal relation of characters, we
know that this set forms an orthonormal basis of V . Thus every function in V is a
C-linear combination of the additive characters.

Similarly, if one takes W = CF
∗
q , then W is a (q − 1)-dimensional vector space. In

this case, the set of all normalised multiplicative characters of Fq forms an orthonormal
basis of W.

In this section, we will show that some of the character sums considered here also
contribute to orthogonal bases of V .

Proposition 2.5. For every element h1, h2 ∈ L = Fq with q = pm,∑
x∈L

Km(1, h1x)Km(1, h2x) =

{
q2 if h1 = h2 , 0,
0 otherwise.
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Proof. If h1h2 = 0, the result is obvious. For h1h2 , 0, we compute∑
x∈L

Km(1, h1x)Km(1, h2x) =
∑

x,y,z∈L

χ(h1xy + h2xz + y−1 + z−1)

=
∑
y,z∈L

χ(y−1 + z−1)
∑
x∈L

χ(x(h1y + h2z))

= q
∑
z∈L

χ(z−1(1 + (h2/h1)−1))

=

{
q2 if h1 = h2,
0 otherwise. �

The Kloosterman sum is a bridge linking C(k)
m (1, a) and G(k)

m (1, a).

Proposition 2.6. Set L = Fq with q = 2m. For any positive integer k,

G(k)
m (1, a) =

1
q

∑
x∈L

Km(x)C(k)
m (1, xa−1) for all a ∈ L∗, (2.1)

C(k)
m (1, a) =

1
q

∑
x∈L

Km(x)G(k)
m (1, xa−1) for all a ∈ L∗. (2.2)

Proof. Observe that∑
x∈L

Km(x)C(k)
m (1, xa−1) =

∑
x∈L

∑
y∈L

χ(y + xy−1)
∑
z∈L

χ(z2k+1 + a−1xz)

=
∑
y∈L

∑
z∈L

χ(z2k+1 + y)
∑
x∈L

χ(x(y−1 + a−1z))

= q
∑
z∈L

χ(z2k+1 + az−1) = qG(k)
m (1, a).

This proves (2.1), and (2.2) follows from the orthogonality relations. �

In the sequel, we tacitly assume that the elements of Fq are listed in some fixed
order and this order will be used whenever an object indexed by elements of Fq

appears. For every a , 0, denote the vector q−1(Km(ax))x∈Fq by
→

Ka. Denote the vector

q−1/2(1, 1, . . . , 1) by
→

I . Proposition 2.5 shows that {
→

Ka| a ∈ F∗pm} ∪ {
→

I } contributes to
an orthonormal basis of V . So, when q = 2m, we have

G(k)
m (1, a) =

∑
x∈L

(G(k)
m (1, a), q−1Km(ax))q−1Km(ax) =

1
q2

∑
x∈L

(G(k)
m (1, a),Km(x))Km(x).

Thus Proposition 2.6 may be rewritten as

C(k)
m (1, xa−1) = (G(k)

m (1, a), q−1Km(x)), G(k)
m (1, xa−1) = (C(k)

m (1, a), q−1Km(x)).

Note that here one uses

(Km(1, a),
→

I ) = (C(k)
m (1, a),

→

I ) = (G(k)
m (1, a),

→

I ) = 0.
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Proposition 2.7. Let k be an integer and m an odd integer with gcd(k,m) = 1. For
h1, h2 ∈ F2m , ∑

x∈L

C(k)
m (1, h1x)C(k)

m (1, h2x) =

{
q2 if h1 = h2,
0 otherwise,∑

x∈L

G(k)
m (1, h1x)G(k)

m (1, h2x) =

{
q2 if h1 = h2,
0 otherwise.

The proof of this proposition is similar to that of Proposition 2.6.

For a , 0, denote by
→

Ga and
→

Ca the vectors q−1(G(k)
m (ax))x∈Fq and q−1(C(k)

m (ax))x∈Fq ,

respectively. By Proposition 2.7, {
→

Ga| a ∈ F2m} ∪ {
→

I } and {
→

Ca| a ∈ F2m} ∪ {
→

I } are
orthogonal bases of V . Using these orthogonal relations, we have the following
proposition whose proof is similar to that of propositions above.

Proposition 2.8. For k an integer, m an odd integer with gcd(k,m) = 1 and a ∈ F∗2m ,

C(k)
m (1, a) =

1
q

∑
x∈F2m

G(k)
m (1, a−1x)Km(x),

Km(a) =
1
q

∑
x∈F2m

G(k)
m (1, x)C(k)

m (a, x).

3. The constructions

In this section let Fq be a finite field of order q = pm and characteristic p. We give
several constructions of AMUBs of Cq. The first construction is over any finite field.

Theorem 3.1 (Construction A). Suppose that n is a positive integer with gcd(n, p) = 1
and f (x) ∈ Fq[x] is a permutation polynomial of degree n over Fq. Denote by
Ba = {va,b | b ∈ Fq} the set of vectors given by

va,b =
θ(a)
√

q
( χ(ax + b f (x)))x∈Fq ,

where θ is a map from Fq to C such that |θ(a)| = 1 for all a ∈ Fq. Then the standard
basis and the sets Ba, with a ∈ Fq, form an AMUB of Cq.

Remark 3.2. The polynomial f is a permutation polynomial if f : a 7−→ f (a) for a ∈ Fq

is a permutation. An example is the Dickson polynomial

Dn(x) =

bn/2c∑
k=0

n
n − k

(
n − k

k

)
xn−2k

with gcd(n, q2 − 1) = 1 (see [14]).
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Proof. By definition, for a, a′, b, b′ ∈ Fq,

〈va,b | va′,b′〉 =
θ(a)θ(a′)

q

∑
x∈Fq

χ((a − a′)x + (b − b′) f (x)).

If a = a′, then 〈va,b | va′,b′〉 = δb,b′ . Here δ is the delta function: δb,b′ = 1 if b = b′ and 0
otherwise. Thus Ba is an orthonormal basis for each a ∈ Fq. For every vector ec in the
standard basis,

|〈va,b | ec〉| =
1
√

q
| χ(ac + b f (c))| =

1
√

q
.

Finally, if a , a′, by Weil’s bound [14, Theorem 5.38],

|〈va,b | va′,b′〉| =
1
q

∣∣∣∣∣∑
x∈Fq

χ((a − a′)x + (b − b′) f (x))
∣∣∣∣∣ ≤ n − 1

√
q
. �

In this construction, n is fixed and independent of q. In the case of the Dickson
polynomial Dn(x), the coefficients also do not depend on q. On the other hand, consider
f (x) = xq−2 which is trivially a permutation polynomial over Fq. Applying Weil’s
bound in the last step in the proof gives a bound of (q − 3)/

√
q . However, if we write

f (x) = x−1, with the convention 0−1 = 0, then

va,b =
θ(a)
√

q
( χ(ax + bx−1))x∈Fq ,

where |θ(a)| = 1 for all a ∈ Fq. The standard basis and the sets Ba = {va,b | b ∈ Fq}, with
a ∈ Fq, form an AMUB of Cq. Indeed, by Proposition 2.5, when a , a′,

|〈va,b | va′,b′〉| =
1
q

∣∣∣∣∣∑
x∈Fq

χ((a + a′)x + (b + b′)x−1)
∣∣∣∣∣ =

1
q
|Km((a + a′)(b + b′))| ≤

2
√

q
.

In the following constructions, we consider p = 2 and q = 2m.

Theorem 3.3 (Construction B). Suppose that q = 2m where m is an odd positive integer
and k is a positive integer relatively prime to m. Set Ba = {va,b | b ∈ Fq}, where

va,b =
1
√

q
( χ(ax + bx2k+1))x∈Fq .

Then the standard basis and the sets Ba, with a ∈ Fq, form an AMUB of Cq.

Proof. By definition, for a, a′, b, b′ ∈ Fq,

〈va,b | va′,b′〉 =
1
q

∑
x∈Fq

χ((a − a′)x)χ((b − b′)x2k+1).

Suppose that a = a′. Since gcd(2k + 1, 2m − 1) = 1, we have 〈va,b | va′,b′〉 = δb,b′ . Thus
Ba is an orthogonal basis for each a ∈ Fq. Moreover,

〈va,b | ec〉 =
1
√

q
| χ(ac + bc2k+1)| =

1
√

q
.
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On the other hand, if a , a′,

〈va,b | va′,b′〉 =
1
q

∑
x∈Fq

χ((a − a′)x)χ((b − b′)x2k+1) =
1
q

C(k)
m (a − a′, b − b′).

By Lemma 2.4, |C(k)
m (a, b)| ≤

√
2q for all a, b ∈ Fq and the desired result follows. �

Theorem 3.4 (Construction C). Suppose that q = 2m where m > 1 is an integer. Set
Ba = {va,b | b ∈ F∗q} ∪ {λa}, where va,b and λa are given by

va,b =
1
q

( χ(ax)Km(1, bx))x∈Fq , λa =
1
√

q
( χ(ax))x∈Fq .

Then the standard basis and the sets Ba, with a ∈ Fq, form an AMUB of Cq.

Proof. For a, a′ ∈ Fq, b, b′ ∈ F∗q,

〈va,b | va′,b′〉 =
1
q2

∑
x∈Fq

χ((a − a′)x)Km(1, bx)Km(1, b′x).

Suppose first that a = a′. By Proposition 2.5, we have 〈va,b | va′,b′〉 = δb,b′ . Moreover,

〈va,b | λa〉 =
1

q3/2

∑
x∈Fq

Km(1, bx) = 0 and 〈λa | λa〉 = 1.

Thus Ba is an orthonormal basis for each a ∈ Fq. On the other hand, if a , a′, then

〈λa | λ
′
a〉 =

1
q

∑
x∈Fq

χ((a − a′)x) = 0,

and

〈va,b | va′,b′〉 =
1
q2

∑
x∈Fq

χ((a − a′)x)Km(1, bx)Km(1, b′x)

=
1
q2

∑
y,z∈Fq

χ(y−1 + z−1)
∑
x∈Fq

χ(((a − a′) + by + b′z)x)

=
1
q

∑
y∈Fq

χ
(a1 + b1y

y2 + a1y

)
,

where a1 = (a − a′)/b, b1 = (b − b′)/b. By [16, Theorem 2],∣∣∣∣∣∑
y∈Fq

χ
(a1 + b1y

y2 + a1y

)∣∣∣∣∣ ≤ 4
√

q.

Thus we have |〈va,b | va′,b′〉| ≤ 4/
√

q. Further,

〈va,b | λa′〉 =
1

q3/2

∑
y∈Fq

χ(y−1)
∑
x∈Fq

χ((by + a − a′)x) =
1
√

q
χ(b/(a − a′)),
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and it follows that |〈va,b | λa′〉| = 1/
√

q. Finally, it is obvious that

|〈va,b | ec〉| =
1
q
|Km(1, bc)| ≤

2
√

q
and |〈λa | ec〉| =

1
√

q
.

The desired result now follows. �

Using the same method, we can also obtain the following Construction D.

Theorem 3.5 (Construction D). Suppose that q = 2m where m is an odd positive integer
and k is an integer satisfying gcd(m, k) = 1. Set Ba = {va,b | b ∈ F∗q} ∪ λa, where

va,b =
1
q

( χ(ax)C(k)
m (1, bx))x∈Fq .

Then the standard basis and the sets Ba, with a ∈ Fq, form an AMUB of Cq.

A bound for the character sum G(k)
m (a, b) is given in [21]:

|G(k)
m (a, b)| ≤ (2k + 2)

√
q,

If gcd(m, k) = 1, Johansen et al. [8] conjectured that

|G(k)
m (a, b)| ≤ 4

√
q. (3.1)

Thus if k is relatively small or (3.1) is true, we also have the following construction.

Theorem 3.6 (Construction E). Suppose that q = 2m where m is an odd positive integer
and k is an integer satisfying gcd(m, k) = 1. Set Ba = {va,b | b ∈ F∗q} ∪ λa, where

va,b =
1
q

( χ(ax)G(k)
m (1, bx))x∈Fq .

Then the standard basis and the sets Ba, with a ∈ Fq, form an AMUB of Cq.

Our last construction is based on Gaussian sums. We show that some character
sums are orthogonal over a subset of a finite field, and then we use this orthogonality
to construct AMUBs.

Theorem 3.7 (Construction F). Let q = 2m. For a ∈ F∗q2 , denote

Ea = {α ∈ Fq2 : Tr2m
m (α) = a}.

Let I be a subset of F∗q with cardinality |I| = s ≥ 1 and define the set D =
⋃

a∈I Ea (so
that |D| = qs). Write D = {x1, . . . , xqs} and for χ ∈ (F∗q2 )∧, the group of multiplicative
characters of Fq2 , define the complex vectors of dimension n:

uχ =
1
√
`

( χ(x1), . . . , χ(xqs),w) ∈ Cn, (3.2)

where n = qs + 1, ` = qs + s and w ∈ C satisfies |w|2 = s. Let ψ be a generator of (F∗q2 )∧,
let ui,l be the vector corresponding to the character ψi+l(q−1) in (3.2), for 0 ≤ i ≤ q and
0 ≤ l ≤ q − 1, and set Bi = {ui,l : l = 0,1, . . . ,q}. Then B0, . . . ,Bq and the standard basis
form an AMUB of Cq.
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Proof. If uχ and uχ′ are both in Bi, then χ = ψi+l(q−1), χ′ = ψi+l′(q−1). Thus

〈uχ | uχ′〉 =
1
`

(
|w|2 +

∑
x∈D

χ̄χ′(x)
)

=
1
`

(
s +

∑
x∈D

λ(x)
)

(3.3)

where λ = χ̄χ′ = ψ(l−l′)(q−1) which is not the principal character. For every y ∈ F∗q, one
has λ(y) = ψl−l′(yq−1) = 1. Now, we compute∑

x∈D

λ(x) =
∑
a∈I

∑
x∈Ea

λ(x)

=
1
q

∑
a∈I

∑
x∈F∗

q2

λ(x)
∑
y∈Fq

(−1)Trm
1 (y(Tr2m

m (x)−a))

=
1
q

∑
a∈I

∑
x∈F∗

q2

λ(x)
∑
y∈F∗q

(−1)Trm
1 (y(Tr2m

m (x)−a)) +
1
q

∑
a∈I

∑
x∈F∗

q2

λ(x)

=
1
q

∑
a∈I

∑
y∈F∗q

(−1)Trm
1 (ay)λ(y)

∑
x∈F∗

q2

(−1)Tr2m
1 (xy)λ(xy)

=
1
q

Gq2 (λ)
∑
a∈I

∑
y∈F∗q

(−1)Trm
1 (ay) = −

1
q

Gq2 (λ)s,

where Gq2 (λ) =
∑

x∈F∗
q2

(−1)Tr2m
1 (x)λ(x) is the Gaussian sum. Since the order of λ divides

q + 1, by Stickelberger’s theorem (see, for example, [14, Theorem 5.16]), we know
that Gq2 (λ) = q, and thus by (3.3), 〈uχ | uχ′〉 = 0. Thus each Bi forms an orthonormal
basis of Cn. Moreover, it is easy to see that

|〈uχ | e j〉|
2 =

{
1/` if 1 ≤ j ≤ qs,
s/(q + 1) if j = qs + 1.

Obviously, |〈uχ | ei〉|
2 = O(1/n) as q→∞.

For uχ ∈ Bi, uχ′ ∈ Bi′ , i , i′,

〈uχ | uχ′〉 =
1
`

(
s +

∑
x∈D

λ(x)
)

where λ = χχ′ is not the principal character. A calculation similar to that above shows
that

〈uχ | uχ′〉 =
1
`

(
s −

1
q

Gq2 (λ)Gq(λ)
)
,

where Gq(λ) is a Gaussian sum over Fq. By [14, Theorem 5.11],

|〈uχ | uχ′〉|2 ≤
1
n2 (s +

√
q)2 = O

(1
n

)
as q→∞.

Therefore, B0, . . . , Bq and the standard basis form an AMUB. �
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Remark 3.8.

(1) If we take w as (1, 1, . . . , 1) of dimension s instead of the number w in
Construction F, then we can similarly show that the bases B0, . . . , Bq and the
standard basis form an AMUB.

(2) If we take s = 1, then the above construction is just that of [23, Theorem 3].
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