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Abstract

In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential
equation boundary-value problem (BVP)

D¥u(t) + f(t,u(t)) +q(t) =0, O0<r<1,
u() =0, u(l)=pBu

where | <o <2,7€(0,1), B €eR=(—00, +0), ﬂn“‘l # 1, D% is the Riemann—Liouville differential
operator of order «, and f:[0, 1] x R— R is continuous, ¢(¢):[0, 1] — [0, +00) is Lebesgue
integrable. We give some sufficient conditions for the existence of nontrivial solutions to the above
boundary-value problems. Our approach is based on the Leray—Schauder nonlinear alternative.
Particularly, we do not use the nonnegative assumption and monotonicity on f which was essential for
the technique used in almost all existed literature.
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1. Introduction

Fractional calculus has played a significant role in engineering, science, economy,
and other fields. Many papers and books on fractional calculus, fractional differential
equations have appeared recently, (see [1, 2, 10—-12]). It should be noted that most
of papers and books on fractional calculus are devoted to the solvability of linear
initial fractional differential equations in terms of special functions [9]. Recently, some
papers deal with the existence and multiplicity of solutions (or positive solutions) of
nonlinear initial fractional differential equations by the use of techniques of nonlinear
analysis (fixed-point theorems, Leray-Shauder theory, and so on), see [2, 5, 11, 12].
However, there are few papers that consider the three-point problem for linear ordinary
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differential equations of fractional order, see [6, 8]. No contributions exist, as far as we
know, concerning the existence and multiplicity of positive solutions of the following
problem:

D% (t) + f(t,u(@®) +q@)=0, O0<t<l,
u0)=0, u(l)=_Bu(n),

where | <o <2,n€ (0, 1), 8 €R=(—00, +00) are real numbers, ,3770‘_1 # 1, and
Dy  is the Riemann-Liouville differential operator of order o, and f : [0, 1] x R - R
is continuous, ¢ (¢) : [0, 1] — [0, +00) is Lebesgue integrable.

In [2], the authors consider the existence and multiplicity of positive solutions of
the nonlinear fractional differential equation boundary-value problem

(1.1)

D8‘+u(t) + f@t u@)=0, O0<t<l,

u(0) =u(l) =0, (1.2)

where 1 < a < 2 is a real number. D(O)‘ f is the standard Riemann-Liouville fractional
derivative, and f : [0, 1] x [0, +00) — [0, +00) is continuous.

In [5], the authors consider the existence and multiplicity of positive solutions of
the nonlinear fractional differential equation boundary-value problem

D%u(t) +a()f(u(@) =0, 0<t<l,

u(0) =u'(1) =0, (1.3)

where 1 < o <2 is a real number. D¢ is the Riemann—Liouville differential operator
of order &, and f: [0, 1] x [0, +00) — [0, +00) is continuous, a is a positive and
continuous function on [0, 1].

Motivated by the work mentioned above, in this paper, we establish several
sufficient conditions of the existence of nontrivial solutions for the above nonlinear
fractional differential equations (1.1). Here, by a nontrivial solution of (1.1) we
understand a function u(¢) #£ 0 which satisfies (1.1). Our results are new. Particularly,
we do not use the nonnegative assumption and monotonicity which was essential for
the technique used in almost all existing literature on f.

2. Preliminaries

For completeness, in this section, we shall demonstrate and study the definitions
and some fundamental facts of fractional order.

DEFINITION [10, Definition 2.1]. For a positive function f(x) given in the interval
[0, c0), the integral

T f@
L) Jo (x—0)t=s

I f(x)= dt, x>0,

where s > 0, is called the Riemann—Liouville fractional integral of order s.

https://doi.org/10.1017/S0004972709000124 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000124

[3] Solvability for a nonlinear fractional differential equation 127

DEFINITION [10, pp. 36-37]. For a positive function f(x) given in the interval
[0, c0), the expression

s 1 a\"  fo
Df(x)_l"(n—s) (dx) /0 (x — r)s—n+1 ar,

where n = [s] + 1, [s] denotes the integer part of number s, is called the Riemann—
Liouville fractional derivative of order s.

REMARK. If f € C[0, 11N L(0, 1), then DSI® f(x) = f(x).

In order to rewrite (1), (2) as an integral equation, we need to know the action of
the fractional integral operator /*° on D* f for a given function f. To this end, we first
note that if A > —1, then

Dstk — F()“ + 1) A—S
TA—s+1)
Dtk =0, k=1,2,...,n,

’

where n = [s].
The following two lemmas, found in [2], are crucial in finding an integral
representation of the boundary-value problem (1.1).

LEMMA 2.1. Leta > 0, u € C[0, 11N L(0, 1), then the differential equation
D%u(t) =0
has solutions
u@®) =ci i Ve eyt i eR,i=0,1,...,n,n=[a] + 1.
From the lemma above, we deduce the following statement.

LEMMA 2.2. Leta >0, u € C[0, 11N L(0, 1), then

a—2

I1D%u(t) = u(t) + 1tV + ot 2 4 - -+ cpt® "

forsomeci eR,i=0,1,...,n,n=[a]+ 1.
The following result will play a major role in our analysis.

LEMMA 2.3 [3, 7]. Let X be a real Banach space, S be a bounded open subset of
X, 0eQ, T:Q2— X is a completely continuous operator. Then, eith_er there exists
x € 02, i > 1 such that T (x) = ux, or there exists a fixed point x* € Q.

3. Main results

In this section, we give our main results. First, we have the following Lemma 3.1.
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LEMMA 3.1. If l <a <2, Bn® ' #£1, u e C[0, 11N L(0, 1). Let h(t) € C[0, 1] be

a given function, then the boundary-value problem
D*u(t) + h(t) =0, O0<t<l, 3.1)

u0)=0, u(l)=PBu(n) ’

has a unique solution

a—1
— BT (a)
/(n—S)“ h(s) ds.

u(t)——m/ (t — ) h(s) ds+
,3[0{ 1
- e 11“(01)

PROOF. By Lemma 2.2 we can reduce the equation of problem (3.1) to an equivalent
integral equation

/( — ) h(s) ds

M(t)——m/ (t—s5)*" lh(S)dS—i—Clta 1+C2ta -2

for some constants c¢1, co € R. As boundary conditions for problem (3.1), we have
¢p =0 and

1 1 1 n
Bt — 1 — a—1 _ / a1 )
“l 1 — "1 I'(a) </0 (1 —5)""h(s)ds — B A (n—$)*""h(s)ds

Therefore, the unique solution of (3.1) is

toz—l
— "' T(@)
f(n—s)“ Yh(s) ds

1
ut) = — o )/( — 5% 1h(s)ds+ /O(l—s)“_lh(s)ds

ﬂla 1
=B T(@)
which completes the proof. O

Let E = C[0, 1] be endowed with the ordering u < vifu(t) < v(¢) forall ¢ € [0, 1],
and the maximum norm, ||| = maxo<,<1 |u(¢)|. Clearly, it follows that (E, || - ||) is a
Banach space.

THEOREM 3.2. Suppose that f(t,0)#0, t [0, 1], Bn* 1 # 1, and there exist
nonnegative functions p, r € L'[0, 1] such that

|ft, u) <p@®)u@)+r), & u) cl0,1] xR, almost everywhere

1 1 ! a—1
ral ([ ml) [ 0o tea

+‘ P '/n(n — )% p(s) ds] < 1.
1—=BnlJo

Then the BVP (1.1) has at least one nontrivial solution u™ € C[0, 1].
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PROOF. Let
F(m[(”‘ — B )/1<1—s>“‘1p(s) ds
‘1 gna i f(n )~ lp(s)ds:|
F(oz) (H‘ - 1>/ (1= ) k(s) ds
‘1 By f (n — )" lk(s)ds]

where k(s) =r(s) + g(s). By hypothesis A < 1. Since f(¢,0) 0, there exists
[a, b] C [0, 1] such that

min |f (¢, 0)] > 0.

a<t<b

On the other hand, from the condition r(¢) > | f (¢, 0)|, almost every where ¢ € [0, 1],
we know that B > 0. Letm = B(1 — A)~', Q,, = {u € C[0, 1] : ||u|| < m}.

By Lemma 3.1, problem (1.1) has a solution # = u(¢) if and only if u solves the
operator equation

(Tu)(t)—_m/ = £ s, () + g)] ds
toz—l .
+W% (1= 9 f (s + )] ds
IBt(x—l

Wr(a) / (= )7 [f (s, u(s)) + g ()] ds

in E. So we only need to seek a fixed point of 7 in E. By the Ascoli—Arzela theorem,
it is well known that this operator T : E — E is a completely continuous operator.
Suppose u € 9€2;,,, i > 1 such that Tu = pu; then

pm = pllull =[|Tull = max [(Tu)()]
0<r<l1

1 ! a—1
foril?i‘lmfo (6 — )" f (s, u(s)) + q(s)] ds

ta—l 1 wl
+ max |1—,3n“—1|F(a)/ (1= 92 £ (s, us)) +q(s)] ds
Bl

a—1
s [N s + g1 ds

< ﬁfo (1= 9% (£ (s, uls)| + q(s)) ds

1 ! ! a—1
+ |1_,377a_1|r((1) /0 (1—1s) (IfGs, u(s)|+q(s))ds
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* 1_5,7a_1 F(la) fonm—s)“‘1(|f<s,u(s)>|+q(s)> ds

= (H‘l_ﬂlna_] )F(la) /Ola—s)“—l[p(s>|u<s>|+r<s>+q<s>] ds
+'1_§m—1F;)AQ”_ﬂQIW@NMﬂP+Nﬂ+qGHm
+ # /0 "= 5 ps) ds} lul

1
) / (1 —5)*7r(s) + q(s)ds
0

1 O ‘ 1
+W[ * 1 — B!

_F /n(n — ) r(s) + q()] ds]
1—Bne=t Jo

< Alull+ B=Am + B.

+

Therefore
B

B
=t =AY A

=A+(1—A)=1.

This contradicts & > 1. By Lemma 2.4, T has a fixed point u* € Q. Since f(t, 0) # 0,
the BVP (1.1) has a nontrivial solution u* € C[0, 1]. This completes the proof. O

THEOREM 3.3. Suppose that f(t,0)2£0,t€[0, 1], Bn*~ ' <1, and there exist
nonnegative functions p, r € L'[0, 1] such that

[ f(t, W) < p@®|u@)|+r@), (, u)el0,1] xR, almost everywhere

and one of the following conditions holds.
(1) There exists a constant . > 1 such that

! L)1 — B D[ +x(@—DIVT /1 1
A —_ —_ =
./o Pes) ds<[ 2 — Bl + B/ ] ( * 1)'

(2) The function p(s) satisfies

T(@)a(l — pn*h)
PO = e+ |
T(a)a(l — ﬁn‘“)}
>
2— Bt +|BIn”

, s €[0, 1], almost everywhere

mes{s e [0, 1]; p(s) <
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(3) There exists a constant i > —a such that

sy < L@@+ W - pr
T2 B (Bl — (1 =)t
s €10, 1], almost everywhere

T(@) (@ +m)(1 - Bn*1
Bt + |BI[1 — (1 — n)etu]

(1 —s)*,

mes{s € [0, 1]; p(s) < 5 (1 - s)”} > 0.

(4) There exists a constant u > —1 such that

sy < LA+ WA= prh s
2= Bt (1 =)t
s € [0, 1], almost everywhere
C)(1+md —pn* Y st } -0
2= Bne Bt (1 =)ot '

mes{s e [0, 1]; p(s) <

Then the BVP (1.1) has at least one nontrivial solution u* € C[0, 1].

PROOF. Let A be as in Theorem 3.2, we only need to prove A < 1. Note that
Bn*~! < 1. We have the following cases.
(1) In this case, by using the Holder inequality,

1
) / (1 —5)*""p(s) ds
0

i 1
“W_(”\—l—,sna—l

ﬂ " o—
+’1—ﬂn“‘1 /o("_s) lp(s)ds}
1 Tr! N 1/A 2_’Bna—1 1 1) 1/k
L I et [ O]
18] n o Le
+ 1 — pne-! [/0 =) l)ds} }
1 1 N 1/A 2_’37701—1 1 1/x
T /0 Pes) ds] :1—ﬂn“‘1[1+/<(a—1)]
14k (—1) 1/k
N 18] [ n ] }
1= B[ 1+k(@—1)
L g 2= B 1Bl
*Tw /0 Pes) ds] (I — Bre=D[1 + k(e — DIV
__ L T@U=pn* Dl te@— DIV 2-pn* " + |l
T(a) 2 — Bl 4| Blnt/x (1 — B D[ + «(a — D]/*
=1.
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(2) In this case,

_ a—1 _ a—1 1
_ 1 T@a(—py ){2 B /(l_s)alds
()2 — Bt 4+ [BIn* [ 1= Bn*=t Jo

1Bl o
l—ﬁ‘“/( ds}

I Teall—pn*™ 2 pn*' +18In" _
T T@ 2= P 1Bl =B

(3) In this case,

_ a—1 1
! [2 il / (1 — )% (1 — s)" ds
0

<
C(a) | 1 —pne-!
18I 7 o

L Te@e+md—pnh
2= Bt IBIL = (1= et

_ a—1 1
! [2 il / (1 — )% (1 = 5)* ds
0

<
@1 - pn*!
1Al ! a
W‘/O (I—S) 1(1—s)“ds:|

L T@@+md =
2— Bl 4+ |BI[1 — (1 — p)ete]
L [2=ppt 1 1Bl 1—(1—ptr
_F(a)[l—ﬂn"“lwrﬂ 1—Bne=l a+p }
5 T'(o) (e + pw)(1 = pn*~h
2 — el 4+ |BI[1 — (1 — p)*te]

=1

(4) In this case,

2 — B! w1 = SH
F(a)[l—ﬁn“ lf(l_s) st
L ds]l"(a)(1+u)(1—ﬁn°‘“)
T et = T T B T B

1 [2— B! B Iﬁl T e St
<F(a)[1—ﬁn"“1/o ’ ds+1—ﬁn"“1/o(l ST ds]

D@+ - pn- b
2 — Byl 4 |BIntte
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1 [2— gt 1 |B] plte ] Td+wd — B
S D@Ll =B+ 1=Bnetl4+pu|  2—pnet+|BInlits
—1.

Then, from Theorem 3.2, we know the BVP (1.1) has at least one nontrivial solution
u* e C[0, 1]. d

THEOREM 3.4. Suppose that f(t,0)%£0,t€[0, 1], Bn*" ' > 1, and there exist
nonnegative functions p, r € L'[0, 1] such that

[, w)| < p@®|u@)|+r@), (& u)el0,1] xR, almost everywhere

and one of the following conditions holds.
(1) There exists a constant ). > 1 such that

1 a—1 _ _ 1/k A
/ p(s): ds < |:F(Ol)(,377 DI+ x(a — 1)] :| (l n 1_ 1>.
0

B(n=1 + nl/x)

(2) The function p(s) satisfies

_T@a@r -1

ps) < B 1) s € [0, 1], almost everywhere
a—1 _
mesis € [0, 1]; p(s) < F(g)(z"(f?—i— ) 1)} >0

(3) There exists a constant | > —a such that

o) < L@@+ WG — 1
T B+ 1 — (1 — petH]
s € [0, 1], almost everywhere

T(@)(e+m B = 1)
Bln*~! + 1 — (1 —mti]

(1 - S)Ma

mes{s e [0, 1T; p(s) < = s)"} > 0.

(4) There exists a constant i > —1 such that

) < T@U ARG =) 5
N Bt + nl+r) (1—s)yet”
s € [0, 1], almost everywhere

D) (1 +m)Bn* =1 sk } 0
Bt +pltey (1 —s)e! '

mes{s € [0, 1]; p(s) <

Then the BVP (1.1) has at least one nontrivial solution u* € C[0, 1].
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PROOF. Let A be as in Theorem 3.2, we only need to prove A < 1. Note that
Bn*~! > 1. We have the following cases.

(1) In this case, by using the Holder inequality,

_L _ o1
A= (1 lrm]) [0 v as
+‘W / (n—s)“" 1P(S)d5i|
1/x a—1 1/k
ol p(s)kds] o [/ (1= as]
1/
SE/DU

Bn
| [ el | 1/
r_>[ ”(s) ds] {ﬂnal—l[lﬂm—l)}

14k (a—1) 1/k
n Ui
Bn*- 1—1[14"((06—1)} }

1 1 r g 1/n /377“_1+,3771/K
Ta)[/o Pe) S] B — DI+ (@ — D]/

I L@@ = DI+ — D]V B! + 1'%
I(e) BO=1 + /) (Bn*~! = DIL+ic(e — DIV

IA

IA

IA

(2) In this case,

a—1 _
- 1 T'(w)a(Bn |: f(l 97 ds
L) Bm*t+n® [Bp*!—1

,3 _ ooe—1
+—,377°‘_1—1/0 (n—y1) ds:|

_ 1 T@a@n* =1 po*~ ' +n%) _
L@ B +n*)  aBn® ' =1

(3) In this case,

1 B! : a—1 w
- F(a)[ﬁn"‘_l—l./o (1— )11 — 5 ds
. B L)@+ m B~ =1
a1 _\M .
/ =" =-y) ds] Bl + 1 — (1 — n)atu]
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1 ﬂna—l 1 vl
< T |:,377"‘_1 — ‘/(; (1= —-s)"ds

B g wel (@)@ +p)(Bn* ' = 1)
+ BT 1 /0 (I R € ) dsi| BT 1= (=)
1 pn*! 1 B 1— (1 —npeth
_F(a)[ﬂn“—l—loz+u+ﬂn“‘l—1 o+ @ ]
L L@@+ w)(Bn*~1 = 1)
Bl +1— (1 —netr]

=1.

(4) In this case,

1 ,Bn"‘_l o 1 sk
= F(a)[ﬁno‘l—l /( R

/( -t 5" ds].F(a)(1+M)(ﬁn“‘l—l)
n s)afl ﬁ(nafl + n1+u)

1 ,377 o 1 sk
F(oz)|:ﬁ a1_1/ st ds+ / (1—y) st dsj|

T@d+m@n! - 1)
B! + 't
_ 1 [ B! 1 B n”’“‘].l“(a)(lJru)(ﬂn“‘]—l)

= -
P[B! =11+pu  Bp*t—11+npn Bt +nlte)
=1.

A

Then, from Theorem 3.2, we know the BVP (1.1) has at least one nontrivial solution
u* e C[0, 1]. O

THEOREM 3.5. Suppose that f(t,0) £ 0, and there exist nonnegative functions p €
L0, 1] such that

|f(t ur) — f@,u2)| < p(Olur —uzl, (1, u;) €[0, 1] xR G =1, 2),
almost everywhere
1

1 ! a—1 1 1 a1
(@) fo 1—=y) p(ls) ds;i— T AT T@ /0 (1 —=5)*""p(s)ds
+ L / (n—s5)*"ps)ds <1.
0

11— B! T(a)
Then the BVP (1.1) has at least one nontrivial solution u™ € C[0, 1].

PROOF. In fact, if up =0, then we have | f (¢, uy)| < p(®)|ui] + | f(t, 0)], (¢, uy) €
[0, 1] x R almost everywhere. From Theorem 3.1, we know the BVP (1.1) has a
nontrivial solution u* € C'[0, 1].
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But in this case, we prefer to concentrate on the uniqueness of nontrivial solutions
for the BVP (1.1). Let T be given in Theorem 3.2, we shall show that T is a
contraction. In fact,

|Tuy — Tus|
= max [(Tu)(t) — (Tu) ()]

<0IE?<Xl () /( ) f (s, ui () = f (s, ua(s)| ds
! a—1
+ 02e2] 1 — Bne— 1|F(a)/ (1 =) f(s, u1(s)) — f(s, ua(s))| ds

IBlt
4+ max
0=r=<I Il—ﬁn"‘ ' T ()

/ =) (s, ur(s)) — f (s, ua(s))| ds

< max

_ el B
~o<i<t I'(a) O(t ) T p($)|ur —uzlds

o1 _
+ 0<t<1 [1— Bne— IIF(a)/ (1 =) " p(s)lur — uzlds

1Bl

_|_
o<za<1 11— BT T (@)

f =) "p(s)|uy —uz| ds

= T@ J (1 —)*  p($)|ur — uo| ds
1 1
11— A1 T(a) / (1= 9)* "' p(&)|uy — ua| ds
|1—|§r|;“ ‘|r(a>/ (n—)*"" p(s)lur — ual ds
_ ol 1 / et
[F(a)/ (I—19) P(s)a’s+| 1= B T@ Jo (1 —)*""p(s)ds
T —lgilva—w F(a) /0 (=) p(s) dS} luy — ua|

< lluy — uz|l.

So T is indeed a contraction. Finally we use the Banach fixed point theorem to
deduce the existence of a unique solution to the BVP (1.1). O

COROLLARY 3.6. Suppose that f(t,0) 0, and

ol
] ’
M+1—¢ IBIn“ ]
1+ + 1
o (@) [ =B 1= gt~

0<M=1im SUP|y |- +00 MaAX0<r<1

)
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where ¢ > 0 such that M + 1 — & > 0. Then (1.1) has at least one nontrivial solution
u* e C[0, 1].

PROOF. Let ¢ > O such that M 4+ 1 — & > 0. By (*), there exists H > 0 such that
lft, w)=M+1—-e)ul, |ul=H 0<r=1.
Let N = max;eo,17,|uj<# | f (¢, u)|. Then for any (¢, u) € [0, 1] x R, we have
[ft, ) <(M~+1—-¢)|ul+ N.
From Theorem 3.5 we know the BVP (1.1) has at least one nontrivial solution
u* e C[O0, 1]. O
4. Examples

EXAMPLE 4.1. Consider the following third-order three-point problem:

312 sint
D3/2)’(f):y2—t+t3+cost, 0<t<l,

1 4.1)
y0)=0, y()= ﬁy(i),

where > 34+/2/9, f(t, y) = y3t2sint/2J/1 —14+13.  We choose p(t) =312/
21 =1, r(t) =13, then

1 \/E 1 352
A_F(3/2)|:<1+—/3—«/§)/0 \/l—s—2 —l—sds

«/E,B 1/2 352
ok =]

+

1 [ ( B ) 1 V28 1 } 1 17
< : e =< —<1
I'(3/2) ﬁ_ﬁ 2 Ig_ﬁ 16 ra/2) 20
Then, by Theorem 3.2, we know (4.1) has a nontrivial solution y* € C[0, 1].

EXAMPLE 4.2. Consider the following third-order boundary value problem:

2
t
D3 2y(1) = lfyz —3t?+13, 0<t<l,
+y L1 (4.2)
0)=0, DH=-y(=
y(0) y(D) 2y<4)

where f(t, y) =/1y?/(1 +y?) = 3te?, p(t) = /1/2, r(t) =3te?. Set k =1 =2.
Now | f(t, u)| < p(®)|lu| +r(t), (t,u) €[0, 1] x Rand

1 ls 1
/p(s))‘ds=/ Zds=-=0.125,
A 0 4 8

[r(oo(l — Bn* DI 4k (a — 1)]1/K]* [m/z)(l - ﬁ)ﬁ]z 9
= = — ~x(0.2208.
2— et + 1Bt/ 2-31+;
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Therefore

/1 p(s)* ds < |:F(a)(1 = B[ +«(a — 1)]1/K:|k
0 2 — Bn+1BInt/* .

Then, by Theorem 3.3(1), (4.2) has a unique nontrivial solution y* € C[0, 1].

(9]
[10]
[11]

[12]
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