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GENERALIZED VARIATION AND FUNCTIONS OF 
SLOW GROWTH 

ROBERT D. BERMAN 

1. Introduction. Many of the basic results of ¥P theory on the disk 
A = { |z| < 1} are proved using the Cauchy-Stieltjes representation 

(1.1) f(z) = i - J2J K(z, tW(t\ z G A, 

and the Poisson-Stieltjes representation 

(1.2) u(z) = ~ J]" P(z, t)dp(t)9 z e A. 

Here, JU:R —» C is a complex-valued function of a real variable that is of 
bounded variation on [0, 277] such that \i{t + 2m) = /x(/) + IIÇLTT) — /x(0), 
t G R, 

elt 

K(z, t) = , z G A, / G R, 
e — z 

is the Cauchy kernel, and 

P(,, 0 = Re ( J ± f ) = 1 ^ , z e A , ? G R , 

is the Poisson kernel. It is therefore natural to generalize these 
representations in such a way that some of the basic properties and results 
carry over. Such a generalization occurs when the assumption that /A is of 
bounded variation on [0, 2TT] is replaced by the requirement that it is 
measurable and bounded on [0, 2ir] (cf. [9]). The integrals in (1.1) and 
(1.2) are then defined by a formal integration by parts. After some 
preliminaries in Section 2, we catalogue a variety of results which remain 
valid in Section 3. 

It is classical (see [7] ) that all functions in H and h admit 
representations of the form (1.1) and (1.2), where /i is of bounded variation 
on [0, 277]. (The latter is sometimes referred to as the Riesz-Herglotz 
representation.) In Section 4, we define generalizations H\ and h\ based 
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56 ROBERT D. BERMAN 

on ip-bounded variation studied by Musielak and Orlicz [13], 
where ^:[0, oo) —» [0, oo) is an increasing convex function satisfying 
^(0) = G. When 

lim inf ^(t)/t > 0, 
r-K) 

then this reduces to the classical case. We shall be particularly interested 
in functions F e H°° and U e h°° for which the boundary functions are, 
up to multiplication by a constant, of i/z-bounded variation. In this case 

• d F TJ\ A d U , 1 

iz— G H\ and —- e h\. 
dz * de * 

In [6], Caveny and Novinger showed that when F is analytic on A and 
F' e H\ the zero set of the boundary function F* of F is a BCH 
(Beurling-Carleson-Hayman) set. The condition that F ' e Hx is 
equivalent to the assumption that F has a continuous extension to 
A = { \z\ ^ 1} (that is, it is in the disk algebra A) and F* is of 
bounded variation. In Section 5 we prove the corresponding result for the 
generalized spaces H^ in terms of generalized BCH sets (see Section 2). 
The condition F ' <= Hx is replaced by izF\z) G i / | , or equivalently, the 
assumption that F e A and cF* is of ip-bounded variation for some 
c > 0. 

The subclass /z°° of h consists of functions of the form (1.2) for which 
the modulus of continuity co of /x satisfies 

co^O = 0[t] as t -> 0. 

Let /ẑ ° be the subclass of /z| for which 

It is a direct consequence of a result of [5] (see Section 3), that when 
u <E h™, we have 

il/ -1(l - \z\ ) 
(1.3) |M (z) | ^ c * ^ - L l i , z G A, 

1 - |z| 
for some c > 0. In Section 6 we show that a function w in the larger class 
h^ has a similar growth restriction along almost all radii, and for faster 
growth, the exceptional sets have zero Hausdorff measure. This general­
izes a result of Â. Samuelsson [16, pp. 489-490] for positive harmonic 
functions. 

A radial Phragmén-Lindelôf theorem proved in joint work of the author 
with W. Cohn [2] asserts that if a subharmonic function u on A has a limit 
superior of 0 along all except a small exceptional set of radii, then u ^ 0. 
Here, the size of the exceptional set depends on the rate of growth of u. In 
Section 7 we prove two supplementary results for functions w in /i1 for 
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GENERALIZED VARIATION 57 

which u ^f 0. In one, we prove that positive or infinite radial limits must 
exist on a set of nonzero Hausdorff measure, and in a second, we show 
that if the exceptional set is a countable union of generalized BCH sets, 
then the function must grow at least at a given rate along some radius. 

In the final section, Section 8, we give some quantitative relationships 
between the rate at which the maximum modulus M(r\ \f\) of an inner 
function/ tends to 1 as r —> 1, and the size of the set of preimages E^ of f 
under the boundary function/*. For example, we show that if M(r; \f\ ) 
tends to 1 sufficiently slowly as r —» 1, then for each f in the unit circle, the 
set Eç has nonzero Hausdorff measure. 

The author wishes to express his gratitude to William Cohn for many 
helpful conversations. 

2. Preliminaries. In this section we establish notation and recall some 
basic facts that will be useful. 

We assume throughout that w ^ 0 is a continuous modulus of 
continuity on [0, 277]. By definition, co = coh where h is a continuous 
complex-valued function on [0, lir] and 

ooh(t) = sup{ \h(x) - h(y) \:\x - y\ fk t}, f e [0, 2ir]. 

When it is convenient, we assume that co is extended to [0, oo) so that it is 
constant on [277, oo). It is easy to verify that co(0) = 0, co is monotone 
nondecreasing, and co is subadditive, that is, 

co(/ + s) â (o(0 + (oOO, / , ^ 0 . 

In addition, co is its own modulus of continuity, 

lim inf œ(t)/t > 0, 

and 

(2.1) w(0 = w(\0 = (A + 1M/) , A, t ^ 0. 
X + 1 

A continuous, increasing, concave-downward function on [0, 277] vanishing 
at 0 is an example of an allowed co. We say that oo is smooth if it has a 
continuous derivative on (0, 277] and 

lim co'(0 = <o'(0) G (0, +oo]. 
f-H) 

If co < 1, then the function 

1 
(2.2) ojo = / I log[4r ds, t e [0, 2T7], 

is a smooth concave-downward modulus of continuity. 
The following lemmas can be found in [4]. 
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LEMMA 2.1 ([4, Theorem 2.1]). Given e > 0, there exists a smooth, 
concave-downward modulus of continuity cô such that (1/2 — c)co ^ 
CO = CO. 

LEMMA 2.2 ( [4, Theorem 3.2] ). If co is a smooth, concave-downward 
modulus of continuity such that co < 1, then there exists M > 0 such that 

Ott(0 ^ M M o g - L , t e (0,277]. 
«o(0 

We shall frequently refer to two classes of thin subsets of C, those of 
Hausdorff measure 0 and generalized BCH (Beurling-Carleson-Hayman) 
sets. These are defined as follows. 

For an arbitrary Borel subset E of C, the Hausdorff measure HJ^E) of E 
is given by 

Ha(E) = l̂itn Jinf 2 «( |/,| )), 

where the infimum is taken over all countable covers (/•) of E by open arcs 
Ij with length |/.| ^ r. If co(0 = /, then //w is linear Lebesgue meas­
ure m. 

The class of co-sets is defined to be the class of closed subsets K of C 
having m(K) = 0, such that 

2 co( \Jk\ ) < co, 

where (Jk) is an enumeration of the component arcs of C — K. The BCH 
sets arise when 

co(0 = t log[ {2ire)/t]. 

Hausdorff measure and generalized BCH sets are analogously defined on 
closed intervals in R. 

The following is a standard result concerning Hausdorff measure (see 
[12, Théorème III, Chapitre II, p. 27] ). 

THEOREM 2.1. Let E be a Borel subset of C. The following are 
equivalent: 

(l)HJE)>0, 
(2) E supports a finite positive Borel measure /x such that 

<oM(0 = O[co(0] as t-*0. 

Recall that to each complex Borel measure \x on C, there is associated a 
function (x:R —» C defined by 

pit) = ju( [0, 0 ) for / e [0, 2<TT] 

with the extension to R made by the requirement that 

(i(t + 2T7) = /x(0 + A(2TT), f e R. 
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GENERALIZED VARIATION 59 

(2.3) D^[i(t) = lim sup t/r , / e R, 

We shall take œ (t) to be 

<°£|[o,2^ t e [0, 2T7]. 
In the sequel, /A will be identified with ju, with the precise interpretation 
being determined by context. 

The relationship between generalized BCH sets and Hausdorff measure 
0 sets is studied in [4]. One result that is of interest here is that every co-set 
K has HJK) = 0. 

For ju,:R —> R a measurable function, let 

Ky) ~ /*(*) 
i/i-V <K/) 

where the 'lim sup' is taken over all nondegenerate closed intervals 
/ = [x, y] with / e (x, y), and 

<KI) = <o( |/| ) or <t>(I) = v[ {elt:t e / } ] 

where v is a real Borel measure on C. The convention 0/0 = 0 is 
understood in (2.3). Similarly, define D^{t) with 'lim sup' replaced by 
'lim inf and write D^fi for the common value when 

The corresponding symmetric derivatives Z)£/x, 2? /̂x, and D^fi are defined 
by assuming that the intervals / are centered at /. The natural inter­
pretation of D^n and D^[x in terms of real and imaginary parts is made 
when \x is complex-valued. If fi(y) — ii(x) is replaced by \fi(y) — JU(X) | 
in (2.3), we use the notation AD^ix(t), AD^ii(t) and AD^(t) and add a 
superscript Y for the corresponding symmetric derivatives. When co(/) = / 
or v is equal to linear Lebesgue measure m on C, then we omit the 
subscript <£ from the notation defined above. 

If /A and v are complex Borel measures on C, then we write /x < v if /x 
is absolutely continuous with respect to v and it _L v if it and *> are mu­
tually singular. The following results are standard and can be found in 
[15, p. 166]. 

THEOREM 2.2. Let ji be a complex Borel measure on C. The following 
assertions are valid: 

(a) D\x exists a.e. [m], 
(b) Dix e Lx[0, 2T7], and 
(c) /or every Borel subset E of C, we have 

tx(E) = ft(£) + jE Dp(t)dt, 

where fis J_ m and Dfis(t) — 0 a.e. [m]. 

COROLLARY 2.1. (i) JU, _L m if and only if D[i(t) = 0 a.e. [m]. 
(ii) {i <t: m if and only if \x(E) = J^ D\x(t)dt for every Borel set E. In this 

case, the derivative D\x coincides a.e. [m] to the Radon-Nikodym derivative. 
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Note that Dfi is the derivative of the function /x:R —» C of bounded 
variation on [0, 277] associated with the measure /A, and the integrals are 
understood to be taken over 

{t G [0, 2<7r]:elt <= E}. 

The next theorem is a direct generalization of a theorem of de la Vallée 
Poussin where linear measure m in the statement and proof given in 
[15, Theorem 8.10] is replaced by v. 

THEOREM 2.3. Let fi and v be finite nonnegative Borel measures on C with 
/A J_ v. Then Dv\x = +oo a.e. [/A]. 

The following version of Riemann-Stieltjes integration will be used for 
the generalized Cauchy-Stieltjes and Poisson-Stieltjes integrals. 

Definition 2.1. Suppose that —oo<a<b< + oo and / , g are 
mappings of R into C. When f is measurable and bounded on [a, b] and g 
is absolutely continuous, define 

/* gdf = g(b)f(b) - g(a)f(a) - j[ fg'dt. 

Note that g' e L [a, b] so that the last integral is defined as a Lebesgue 
integral. The usual linearity properties of fa gdf along with the fact that 

when a = c = b are verified without difficulty. In addition, we note 
that 

1/ 
'b 

gdf] ^ \g(b)f(b) - g(a)f(a) \+(b- a) | | / IUIg ' | | , . 

The proofs of the following results are elementary so we omit them. 

LEMMA 2.3. If g(t + 2TT) = g(t) andf(t + 2TT) = f(t) + /(2TT) - / (0 ) , 
e R, then 

/

b fb + lrm 
gdf = / ,„ gdf n = 0, ± 1 , ± 2 , 

a 3 J J a + 2rvn s J ' 

COROLLARY 2.2. If 0 <= R, f/ze« 

/

2TT r/9 + 77 

LEMMA 2.4. / / 8 > 0 , N R , a«J g(s) = g(—s) for s e R, //jen 

g'(*)[/(0 + 5) - / ( 0 - j ) ]<fc J o 

/ : 0^s[g(S) ~ gifi ~ t)\df(t). 
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3. Generalized representations. Using Definition 2.1, we can write (1.1) 
and (1.2) more explicitly. Recall that /x:R —» C is assumed to be 
measurable and bounded on [0, lir] with 

H(t + 2TT) = / I ( 0 + /X(2T7) - jii(0), t e R, 

and the Cauchy and Poisson kernels K(zy t) and P(z, t) have continuous 
partial derivatives with respect to /. Thus 

(3-1) f(z) 

and 

(3.2) u(z) 

1 p -
2* J° * ( * , t)dix(t) 

/i(2w) - M(0) 1 
- L 

2w 1 - z 

1 p 
2,7 • ' o 

/*(*. t)dn(t) 

M(2TT) - M(0) 1 - Ul2 

2TT H - z l 2 

f2- zelt 

J ° (e" - i 2U0 ( / : , r ( ^ 

i p , 
277 •/ ° l(e" - zfl 

2zielt 

[i(t)dt. 

By standard results (see, for example [11, Ch. V, Section 6] ) these 
define functions analytic and (complex) harmonic in C — C, where 
C = { \z\ = 1} is the circumference of the unit disk A. 

Throughout this section, we assume that / and u are given as in (3.1) 
and (3.2) andp(r, 8) = P(z, t) when z = re1 and 8 = 6 — t. The proofs of 
the following lemma and theorem are omitted since they closely parallel 
the proofs of similar results given in [15, pp. 256-258]. 

LEMMA 3.1. Let 0 e R and let ju, be real-valued. If there exists 8 e (0, 77] 
and a real number k such that 

H(6 + s) - 11(6 - s) < 2sk, s <= (0, S], 

then 

(3.3) u(rel6) < k + \k\p(r, 8) + -p(r, 8)M, 
77 

where M = sup{ |/x(/) \:0 - TT g / ^ 0 + 77}. 

To follow the outline of the proof given in [15], it would be necessary to 
use Corollary 2.2 and Lemma 2.4. 

THEOREM 3.1. If fi is real-valued, then 

2?>(0) ^ lim inf u(reld) ^ lim sup u(reld) ^ Dsy.(0) 
r-*\ r->l 

/or ev^ry # G R. 
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The next lemma is closely related to one given by Samuelsson [16, 
Lemma 4.2]. 

L E M M A 3.2. Let 6 e R and let JU be complex-valued. There exists a 
constant c > 0 {independent of 0, /x, and LO) such that 

1 - r 
lim sup \u(ré") | ë cADlvifi). 

r-^l co(l — r) 

Proof. By Lemma 2.1, we can assume without loss of generality that co is 
concave downward so that 00(f)ft is a monotone nonincreasing function on 
(0, 00). If 

Zz5>(0) < k < + 00, 

then there exists 8 e (0, 77) such that 

|/A(0 + J ) - /x(0 - 5) I â kœ(2s\ s e (0, 8]. 

F rom Lemma 2.4, it follows that 

ro+8 I 

/
0+0 

0-0 
P(z,t)dp(t)\ ^ p(r, 8) |/i(0 4 8) - /x(0 - S) I 

4- / 0 |/i(0 4 s) - ix(0 - s) I [ - A ( r , 5) ]<fc 

ë Ap(r, 8)co(28) 

4 k J0œ(2s)[-ps(r9S)]ds. 

If 1 — r G (0, 8), then using (2.1) and the monotonici ty of co(t)/t, 
we have 

1 

r\ J 0 co(l - r ) 

= ( l - r ) 

(o(25)[-/75(r, j)]<fc 

[-&(>-, s)]<& 

/ : 

/•'-'• "(2.) 
•> ° w(l - r) 

u(2s) 1 - r 
+ 2 / , _ r - r - ^ — -*[-A(r,*)]<fc 

1 r is co(\ — r) 

- 3(1 " r ) / l Vft(>%*)]̂  + 2 / 
= 3(1 - r)[p(r, 0) - / ? ( r , 1 - r ) ] 

- 2 ^ ( r , ^) |f_ r + 2 J]rp(r,s)ds 

2 ' i - r ^ [ ~ A ^ • * ) ] * 

^ 3(1 - r ) 
[1 4 r 

p(r, 1 - r) 
11 - r 

28/? (r, 8) 4 2(1 - r)/?(r, 1 - r ) 4 2<77 ^ 6 4 2T7. 
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Since P(z, /) ^ p(r, 8) and Pt(z, t) < 0 for 8 ^ 6 - t ^ TT, we have 

/

0 + 1T 

0 + 8 P(z9 t)dix{t) 

/

0 + 7T 

3M/?(r, S) 

where 

M = sup{ |/x(0 \:0 - ir ^ t ^ 0 + IT}. 

A similar argument also shows that 

1/ 
'O £ 1 

P(z, t)dii(t)\ ^ 3Mp(r9 8). 
0-7T 

By Corollary 2.2, we have 

1 f6^"77 

u(reld) = — J e_m P(z9 t)dfi(t). 
2<7T 

Putting together the results obtained above, we see that 

1 ~ r , / A < fc(l - r)/7(r, 8)co(2fi) fc(6 + 2TT) 
|«(re ) I ^ H  

co(l — r) 277co(l — r) 277 
3(1 - r)Mp(r, 8) 

77co(l — r) 

for 1 — r e (0, ô). Since p(r, 8) —» 0 as r —» 1 and 

1 - ^ lim sup < +00, 
r-*\ <o(l — r) 

the first and third term approach 0 and the lemma follows. 

The following proposition and theorem are analogues of results 
appearing in [7, pp. 39-41]. We omit the proofs. 

PROPOSITION 3.1. If z e C - (C u {0} ), then 

u(z) = f(z) - / ( 1 / z ) . 

THEOREM 3.2. The following statements are equivalent. 
(i) fl" ën,dii(t) = 0, n = 1 , 2 , . . . , 

( i i ) / (z) = 0, \z\ > 1, 
(iii) w(z) w analytic on A. 
J/" (i), (ii), £wd (iii) /zo/d, //*£>« w(z) = / ( z ) , z G A. 

Let w be a function of the form (3.2). Then u{z) = u(z) — w(0) 
is a function admitting a similar representation with p replaced by 
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MO = MO u(0)t. If u is not constant and jit is continuous with 
"y(0 = ° M 0 ], then co^O = O[w(0 ] (as f -» 0) as well. By (3.2) applied 
to w, we see that 

1 P" 
2w 

de 

Re 
2zie" 

he" - zf 
]î(t)dt 

where 

(3.4) U(z) 
2TT 

civ 

Jo P(z, t)%t)dt, z = rée 

The result of Brudnyi and Gopengauz alluded to in Section 1 asserts that 
when U(z) is given by (3.4) with JL(t) continuous, we have 

de (z) c\z\ 
,co(l - \z\) 

1 - \z\ ' 
z G A, 

for some c > 0. An immediate consequence is the following: If u is given 
by (3.2) and \± is continuous, then 

^ a - 1*1) 
Hz) 

l 
z e A, 

for some c > 0. 
If u(z) = f(z) as in Theorem 3.2, then 

du of 
— = iz—, 
de dz 

Thus it follows that 

Z Œ A . 

df\ 
dz\ 

to„(l kl) 
1 

A, 

for some c > 0. 
In connection with these results and for use later, we state a result of 

H. S. Shapiro [17] and P. Ahern [1, Lemma 1.2] for the case when fi is 
monotone nondecreasing. 

THEOREM 3.3. If \x is a finite nonnegative Borel measure, then there exist 
constants c h c2 > 0 such that 

"/*(! - 1*1) < w, . , A < "MO ~ 1*1 ) ,— ^ M( z ; u) ^ c7—- , 
1 1 - Izl 2 1 - \z\ 

z e A, 

where 

M(r; u) = max w( rO , r e [ 0 , l ) , « R 
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4. Generalized variation. We start by giving some background concern­
ing generalized variation (see [13] ). 

Let v :̂[0, oo) —» [0, oo) be an increasing convex function with \p(0) = 0 
such that \p o <o as well as w is a modulus of continuity. Recall that 
jtt:R —> C is measurable and bounded on [0, 27T] and satisfies 

fi(t + 2TT) = p(t) + /X(2TT-) - JLA(0), / <E R. 

Definition 4.1. The function \x is said to be of -^-bounded variation (on 
[0, 277] ) if there exists M > 0 such that 

(4.1) 2 tf Hyk) - ii(xk) I ] =i M 

whenever n is a positive integer and 0 ^ JCJ < yx ^ . . . ^ xn < yn ^ 2m. 
Also, 

\p BV = {/x:c/x is of ^-bounded variation for some c > 0}. 

It is not difficult to show that if/i e i(/ BV, then it is regulated. This 
means that jit has both one-sided limits at each point of R. In particular, /x 
is bounded on any closed interval with at most countably many 
discontinuities, each of these being a jump discontinuity. In this 
connection we also note that Goffman, Moran, and Waterman [8] have 
shown that each regulated function jit is contained in xp BV for some \p. 

Definition 4.2. Let h, denote the class of harmonic functions u defined 
by (3.2) for which jit e \p BV. The subclass of analytic functions in h^ is 
denoted H,. 

Observe that Theorem 3.2 shows that H, can be defined equivalently 
as the functions f(z) admitting a representation (3.1) with f(z) = 0 for 
\z\ > 1. We note that in case 

lim inf \fct)/t > 0, 

we have h,, respectively //^, is the classical Hardy space h , respec­
tively Hx. 

In the sequel, A denotes the class of analytic functions F on A admitting 
a continuous extension to A. For any analytic function f on A of bounded 
characteristic, l e t /* denote the radial limit function off. The next lemma 
and corollary are classical so we omit their proofs. 

LEMMA 4.1. If F e H°° and JU:R —» C has period ITT with 

F*(elt) = /x(0 a.e., 

then /x cannot have a jump discontinuity. 
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COROLLARY 4.1. Let fi be a regulated function. If F <E H°° and 

FV') = /*(') a.e., 

then F G A and 

FV') = MO* ' ^ R-
The following proposition parallels a well-known classical result (for 

H\ = / / ' ) • 

PROPOSITION 4.1. v4« analytic function F on À satisfies izF\z) e / / , // 
awrf <w/y ifF<=A and F V ' ) <= ^ BV. 

Proof. U F ^ A and F*(elt) e ^ BV, then a direct calculation shows that 
/ ( z ) = izF'(z) admits a representation (3.1) with 

li(t) = F V ' ) , / G R. 

Conversely, if izF\z) e //^, t hen / ( z ) = izF\z) has a representation 
(3.1) with /x(0) = /I(2TT) = 0 (since/(0) = 0) and \x e ^ BV. Hence 

1 f2" 
F(z) = — J Q K(z, t)ii(t)dt + c, z G A, 

where c is a complex constant. In particular, we have F G 7/°° and 

F V 7 ) ~ <? = M(0 a.e. 

Corollary 4.1 now implies that F ^ A and F*(elt) e ^ BV as required. 

5. A generalization of a theorem of Caveny and Novinger. We start with 
a lemma. 

LEMMA 5.1. Let a e (0, 1) and suppose that co = \p l[0 2w] ^ a smooth 
concave-downward modulus of continuity such that 0 =£ co < 1. F/ẑ /7 

lim — = 0. 

*-K) xP[u(t)a] 

Proof By l'Hopital's rule 
%(t) \og[\/œ(t))o>Wu(t)a)] lim = hm —: 

>-X) ^[w(/)a] r-H) aco(0" <o'(/) 

l im(o 1 _ a (0 log[l/<o1 - a(0] 
(1 — a)a -̂̂ o 

x co'Mu(tf) 
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^ lim (o1"^) \og[\/^-a(t) ] 
(1 — a)a /-K) 

= 0. 

Here we used the fact that \p[(o(t)a] ^ /, cof is a monotone nonincreasing 
function, and 

lim s log(l/s) = 0. 

This completes the proof. 

The following generalizes a theorem and proof of Caveny and Novinger 
which corresponds to the case when i//(/) = /. 

THEOREM 5.1. Let F ^ 0 be an analytic function on A such that 

izF(z) G H\. 

Then F e A and Z(F*) = {F* = 0} is a $u-set, where 

Proof. By Lemma 2.1 we can assume without loss of generality that co is 
a smooth concave-downward modulus of continuity with 0 ^ co < 1. 

Proposition 4.1 implies that F ^ A and F*(elt) <E \p BV. We suppose, as 
we may, that |F| = 1 and F*(elt) is of ^-bounded variation. Since F ^ O 
and F e A, the set Z(F*) is a closed set of measure 0. Let a <E (0, 1). 
Divide the component arcs of C — Z(F*) into two subsequences (Ik) and 
(J/) such that 

(5.1) |F*(i,)| ^ c o ( | / J ) a , T] G / „ 

and 

(5.2) |F*(£7)| > c o ( | / / | f 

for some £/ e 7/. Since F is of bounded characteristic (see [7, Theorem 
2.2] ), we have 

' / c |F*(T?) I co( 141 ) 

M 

for some M > 0 using (5.1) and Lemma 2.2. 
It remains to prove that 2 Ow( 17/1 ) < oo. For each /, let £7 be as in (5.2) 

and let 7/*be the closed subarc of Jl having one common endpoint i]h and 
one endpoint £/. Since F*(e11) is of ^-bounded variation and F*(T//) = 0 for 
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each /, there exists a constant M > 0 such that for every positive integer n, 
we have 

M^M |F*(|,) | ] + . . . + ft \F*(t„) | ] 

g ^ M 1.7,1 )«] + . . . + ^M|y„|)a] 

using (5.2) and the monotonicity of \p. By Lemma 5.1 and the fact that 

lim 1̂ 1 = 0, 
/^oo 

it follows that 2 Ow( \Jt\ ) < oo as required. 
Theorem 5.1 is established. 

We note that only the fact that \F*(elt) | <E \p BV has been used in the 
second part of the proof. Also, the sharpness of Theorem 5.1 is established 
by a theorem of Shirokov [18] which insures that for any Ow-set K, there 
exists F e A with modulus of continuity CÛF ^ œ such that Z(F*) = K. 

6. Radial growth of functions in /zj. Recall that co g= 0 is a continuous 
modulus of continuity and ^:[0, oo) —» [0, oo) is an increasing convex 
function that vanishes at 0. With /x as before, let 

El = {t e (0, 2w):ÂD°oli(t) ^ R), R e [0, oo]. 

The following is a generalization of [16, Lemma 4.3]. 

THEOREM 6.1. If [x is of -^-bounded variation, then 

H+oJLEÎ) < OO > f l / / ] { G ( l , o o ) and 

R^oo 

In particular, H^E™) = 0. 

Note that in the case when \p(t) = r , ft e [1, oo), the condition 
R e (1, oo) can be replaced by /? e (0, oo). In fact, the theorem for 
R G (1, oo) can be applied to eco for any 6 e (0, 1], and the more general 
result follows from the observation that 

^ c c o = KJ a n d ^ o ( e ( 0 ) = € H+oa-

Proof. By assumption, there exists a constant M > 0 such that whenever 
n is a positive integer and 0 ^ Xj < yx ^ . . . ^ xw < yn = 2T7, we 
have 

(6.1) S ^ I M U ) - /*(**) M ̂ M . 
Suppose that ô, JC e (0, oo), # > 1, and H^OC0(E^) = oo. Then there 

exists a compact set K Q E^ such that H^ooi(K) > x (see [14, p. 50] ). By 
the definition of Is,,, there exists for each t e AT a closed interval 
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with 8t 

[t - 8„ t + *,]£ (0, 2w) 

G (0, 8) such that 

Ht + st) - n(t -" 8,) 1 > 1 + R 
(6.2) 

<o(2Ô,) 2 

Since AT is compact, it can be covered by finitely many of the open 
intervals (/ — 8t, t + 8t). Consider the corresponding finite sequence of 
closed intervals ( [tk — 8k, tk + 8k\) (where the notation 8k is used in 
place of 8t ). If there is a point of (0, 27r) that lies in three of these intervals, 
then one of the three is contained in the other two and it can be removed 
without altering the union. In this fashion, some of the intervals can be 
removed if necessary so that no point of (0, 277-) lies in more than two of 
them and the union of the closed intervals contains K. Since H,(K) > x 
(and finite sets have zero H^ measure), it follows that for 8 sufficiently 
small, 

2 ^ o co(28k) i? x. 

Since each point in (0, 277) is contained in at most two intervals, there 
exists a finite, mutually disjoint subcollection 

such that 

(6.3) 2 * o u>(28k) g ^. 

By (6.1)-(6.3) and the fact that ip(/cjc) ^ k^(x) when k e [1, oo), we 
have 

(6.4) M ^ f l Htk + 8k)- n(tk. - 8k) | ] 
/ J J J 

\\ + R 
2*1 

L 2 

1 + R 

-œ(28k) 

2 

1 + R 

2 $ o co(28k ) 

-x. 

Since x e (0, oo) was arbitrary, we get a contradiction. 
For the second assertion, assume (to get a contradiction) that there 

exists x e (0, oo) and a sequence (R:)^° in (1, oo) such that 

lim R = oo and 

*W££-0 >x, 7 = 1 , 2 , 
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Proceeding as before, we arrive at the inequalities 

M §= i - ± - ^ j c , 7 = 1,2, 
8 

Since 

lim Rj 
j—*oo 

we have a contradiction. 
The last assertion of the theorem follows from the preceding one, and 

the proof is complete. 

C O R O L L A R Y 6.1. Let u G h\. Then for R G (0, oo) sufficiently large, 

H+JLW*) < oo and lim H,0„(WRJ = 0, 

where 

\ — r 
w* = {*! G C:lim sup |w(nj) | ^ jR}, jR G [0, oo]. 

/—>l co(l — r) 
Proof. This follows directly from Theorem 6.1 and Lemma 3.2. 

l 
C O R O L L A R Y 6.2. 7/"w G /jl, //ze^ 

m(E%) = m(W^) = 0 w/z^ <o = ^ ^[o^] -

In particular, there exists a constant c > 0 swc/z that 

xb~l(l - r) 
\u(rq) | ^ S ^ ^, r G [0, 1), 

1 — r 
for almost all r\ in C. 

We note that Corollaries 6.1 and 6.2 apply to dU/d0 and dF/dz when 
U G h°° and F G / / ° ° with £/* and F * equal almost everywhere to a 
function in ^ BV. 

Though the next theorem does not have a direct application to the radial 
growth of functions in h^ it is of interest in relation to Theorem 6.1. 
Let 

L* = [t G [0, 2ir]:ADji(t) g R), R G [0, oo], 

and recall that ^ o œ is assumed to be a modulus of continuity. 

T H E O R E M 6.2. If jit is a continuous function of \\J-bounded variation and 

lim \p o o)(t)/t = oo, 

//ẑ A? //IÉT^ exists a sequence (Kn)^° of \p o co-sets (in [0, 277] ) such that 

Z* c y ^ / o r * G ( l , o o ) . 
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Proof. For each R e (1, oo) we have 

I * ç £* u {0, 2^} 

so that Theorem 6.1 implies H^J^L^) < oo. Since 

lim *// o co(t)/t = oo, 

it follows that m(L^) = 0. For each positive integer /?, let 

Kn = ( r e [0, 2 f f ] > ° 0 " ^ ' ^ 1 + - whenever 

x < / < v and y — x < - >. 
«J 

It is evident that 

L* ç u #„ for each R e (1, oo). 

Since 

we have m(Kn) = 0 for all A. Also by the continuity of ju, we see that each 
Kn is closed. Let « be a positive integer and let { (xy, j^) } be an 
enumeration of the open intervals of (0, ITT) — Kn. Suppose that 

2 ^ o co( u — x ) = oo. 

Then there exists a positive integer TV such that 

yj - Xj g 1/(2/?) for7 ^ W. 

Let P be a positive integer greater than N and 

P 

xp = 2 ^ o œ(yj - Xj). 
j = N 

Since fi is of ^-bounded variation, there exists a constant M > 0 such 
that 

p 

From the definition of #w, we have 
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1 + - 2 ^O <0(U- - X:) 
\ nl j = N 

Since these inequalities hold for all P > TV and 

lim x = oo, 
P-+oo F 

we have a contradiction. Thus each Kn is a ^ o co-set and the proof is 
complete. 

We note that Theorem 6.2 remains valid with essentially the same proof 
if in the definition of ADW< we consider only intervals with one endpoint 
equal to /. 

7. A subclass of /z1. Let &, denote the class of all subharmonic functions 
CO 

won A satisfying the growth condition 

(7.1) «(*) * c«±-^±, z e A, 
1 - \z\ 

where c is a positive constant (depending on u). In [2], the following 
Phragmén-Lindelôf theorem was proved. 

THEOREM 7.1. Let E Q C with H JE) = 0.Ifu e S^ satisfies 

(7.2) lim sup u(n\) ^ 0, Î| e C - £, 
A—M 

then u = 0. 

This result was demonstrated to be sharp in [2] by showing that when E 
is a Borel set with H JE) > 0, there exists a positive harmonic function 
u <= 5^ for which (7.2) holds. 

In this section we prove two results concerning a subclass of h n 5^ 
that relate to Theorem 7.1. Define ^ ^ to be the class of functions h that 
can be written in the form h = u — v where u and v are nonnegative 
harmonic functions on A and u satisfies (7.1). 

Theorem 7.1 asserts that if u is any subharmonic function in Sœ such 
that u(z) > 0 for some z e A, then there exists a Borel subset E of C with 
H JE) > 0 such that 

lim sup u(n\) > 0, r\ e E. 
/—»i 

The next theorem shows that more can be said for the functions in 

THEOREM 7.2. If h e &Jtf^ and h(z) > 0 for some z e A, then there 
exists a Borel subset E of C with IIJE) > 0 such that h has radial limits 

/2*(TJ) e (0, +oo], 7/ e E. 
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The proof relies on the following result concerning measures. 

THEOREM 7.3. Let o be a complex Borel measure on C and X a finite 
nonnegative Borel measure on C. Suppose that o _L A and \x = a + X. 
Then 

(7.3) 0 < DX ^ +oo a.e. [A] 

and 

(7.4) Dfi = DX a.e. [A]. 

Note that a consistent interpretation of an infinite derivative in (7.4) 
must be given in case jit is not real. 

Proof. By Theorem 2.2 we have X = Xa + Xs, where Xs _L m and Xa < m 
with 

\a(E) = jf DA(r)Jr 

for all Borel subsets E of C. Also 

Z)A = Z)^ a.e. [m] and Z)\fl e Lx{ [0, 2TT] ). 

Clearly 

DXa > 0 a.e. [AJ. 

By Corollary 2.1 we have 

DXS = 0 a.e. [m] 

so that 

DXS = 0 a.e. [AJ. 

Hence 

(7.5) 0 < DA < +oo a.e. [AJ. 

From Theorem 2.3 it follows that 

DXS = oo a.e. [Xs] 

and hence 

(7.6) DX = +oo a.e. [AJ. 

We conclude from (7.5) and (7.6) that (7.3) holds. 
It also follows from Theorem 2.3 that 

(7.7) Dxo = 0 a.e. [A]. 

Now for any nondegenerate closed arc I such that X(I) > 0, we have 
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MOO = X(I) + a(/) 

l/l 1/1 
X(7) 1 + o W 

A(/)J 

Equality (7.4) now follows from (7.3), (7.7), and (7.8). The theorem is 
thereby established. 

Proof of Theorem 7.2. Suppose that u e âiïJti?^ E is a Borel subset of C 
with HJ^E) = 0, and (7.2) holds. Let /x be the real Borel measure in the 
Riesz-Herglotz representation of /z, that is, 

1 (*« 
h(z) = — J0 P(z9tW(0, * e A. 

Let jit = X — o be the Jordan decomposition of /x where X and a are 
nonnegative measures such that o _L X (see [15, p. 128] ). By Theorem 7.3 
we have 

0 < Dix ^ +oo a.e. [A]. 

By the assumption on u and Theorem 3.3, it follows that u\(t) = cco(t) for 
some c > 0. We conclude from Theorem 2.1 that 0 < D[i ^ +oo on a 
Borel set Wwith //w( W) > 0. By the Fatou radial limit theorem (Theorem 
3.1), we have h*(ri) > 0 for 17 e W and this completes the proof. 

Let JV^ be the class of analytic functions / on A of bounded 
characteristic which can be represented in the form f = Bg where B is a 
Blaschke product whose zeros (ak) in A — {0} (counted according to 
multiplicity) satisfy 

(7.9) 2co( l - \ak\) < 00, 

and g is a nonvanishing analytic function for which 

u = log|g| e <*j£. 

Recall that a Blaschke product B is a function of the form 

n 00 

zmU(âk/\ak\)L or zm H (ak/\ak\ )Lak 
1 k 1 * 

where m and « are nonnegative integers, (ak)^° is a sequence taking val­
ues in A — {0} satisfying the Blaschke condition 

0 0 

2 ( 1 - \ak\ ) < +00, and 
1 

La(z) = (a — z)/( l — az), a e A, z G C. 
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(The convention 

o 

i k 

is used.) For background concerning functions of bounded characteristic, 
see [7, Chapter 2]. 

COROLLARY 7.1. Suppose the modulus of continuity to has a continuous 
derivative on (0, ITT] and satisfies 

(7.10) l i m i n f - ^ - > 1. 
t-^0 tu'(t) 

Iff e JV^ and there exists z e A such that \f(z) | > 1, then there is a Borel 
subset E of C with Hj(E) > 0 such that f* exists and has modulus greater 
than 1 (andpossibly infinite) at each point of E. 

The proof of Corollary 7.1 is easily given using the proof of Theorem 7.2 
and the following result appearing in [3] that is a generalized form of a 
result of Frostman and Carleson. 

THEOREM 7.4. Suppose that co is a modulus of continuity that has a 
continuous derivative in (0, 2IT] and (7.10) holds. If B is a Blaschke product 
with zeros (ak) (enumerated according to multiplicity) satisfying (7.9), then 
there exists a subset E of C with HJ^E) = 0 such that B and all of its 
subproducts have radial limits of modulus 1 at each point of C — E. 

Condition (7.10) is unnecessary if we restrict to the subclass of 
nonvanishing functions in J/^. 

We consider next the minimum m(r\ h) = —M(r; —h),r e [0, 1), for 
h e CftJ^l, where v g= 0 is a continuous modulus of continuity with 
v = O[CÛ]. Theorem 7.1 insures that if h(z) < 0 for some z e À and 

(7.11) lim inf h(rq) â 0, TJ <E C - E9 
r->l 

with HJ(E) = 0, then 

HI - r) 
-m(r\ h) # 0\ 1. 

1 - r 

A stronger conclusion is obtained in the following result. 

THEOREM 7.5. Let <o, v ^ 0 be continuous moduli of continuity with 

v(t) = o[u(t) ] as t —> 0. 

Let E be a countable union of cc-sets and let h G 0tJ^v such that (7.11) holds. 
Then there exists r\ e C and a constant c > 0 such that 
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(7.12) -h(n\) ^ c— — 
1 — r 

and 

(7.13) —m(r; h) ^ c 
1 — r 

for r e [0, 1) sufficiently close to 1. 

By setting *>(0 = /, we arrive at the next corollary. 

COROLLARY 7.2. Suppose co'(0) = oo and E is a countable union of co-sets. 
If u is a harmonic function bounded below such that u(z) > 0 for some 
z e À and (7.2) holds, then there exists i) Œ C and a constant c > 0 such 
that 

> co(l ~ r) 

1 — r 

and 

M(r\ u) ^ c 
1 — r 

for r e [0, 1) sufficiently close to 1. 

Note that by Theorem 7.1, the corollary is vacuous for the case co(t) = /. 
The proof of Theorem 7.5 depends on Theorem 3.3 and two other results, 
the first a lemma that was given by Samuelsson (see [16, Lemma 4.2] ). 

LEMMA 7.1. Let fi be a finite nonnegative Borel measure in C and let 

i n« 
"00 = — J 0 ^(^ 0*M0, * e A. 

77z£/7 there exists a constant c > 0 si/c/z //zûtf 

1 — r 
Dji(t) â c lim inf w(re"), / e R. 

r->i co(l — r) 
The next result is central to the proof of Theorem 7.5 [cf. Theorem 6.2 

with xp(t) = t]. 

THEOREM 7.6. Let \xbe a nonnegative finite Borel measure on C and let K 
be an cô-set. Then there exists a constant 8 > 0 such that for every Borel 
subset W of K we have 

Dji i= 8 a.e. [/x] on W. 

Proof. Putting aside the trivial case, assume that fi(W) > 0. For each 
8 e (0, oo), let 
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W(S) = {elt G ^:Z>ji(f) < 8}. 

We shall show that i*[W(8) ] = 0 for 8 sufficiently small. If this is not the 
case, then there exists £ > 0 such that /x[ W(8) ] > e for all 8. 

Let (Ij) be an enumeration of the component arcs of C — K and fix 8. 
By the regularity of JU, there is a compact subset #(8) of W(8) such that 

/*[*(«) ] > €. 

From the definition of W(8)y there exists for each t] G AT(8) an open arc J 
containing 77 such that 

ti(Jv)/o>( 1̂ 1 ) < 8. 

By the compactness of K(8), the open cover (J^ITJ G AT(8) ) has a finite 
subcover {/l5 . . . ,Jn) (where the subscript k is used in place of 7]k for 
k = 1 , . . . , « ) for which each point of C is contained in at most two of 
these arcs and each arc I- has nonempty intersection with at most two 
of them. Then 

€ < 2 ll(Jk) g 8 2 C0( \Jk\ ) ^ 5 2 J 2 |/;l) 

^ 8 2 2 co( |/.| ) ^ 28 2 a>( |/,| ) 
A: 7 ,0 /^0 

using the subadditivity of co. Since AT is an co-set, we have 

2 «( |/y| ) < CO. 

Therefore, because e is independent of 8 and the inequalities hold for all 
8 G (0, oo), we get a contradiction. This completes the proof. 

Proof of Theorem 7.5. Let jii be the real Borel measure in the 
Riesz-Herglotz representation of h. Let ju = X — a be the Jordan 
decomposition of /A into a difference of mutually singular nonnegative 
Borel measures and let u and v be the nonnegative harmonic functions 
which are the Poisson integrals with respect to X and a. Then h = u — v 
and it follows from the assumption h G &J?V that 

v(l - r) 
(7.14) M(r; u) â c- -, r G [0, 1), 

\ — r 
for some constant c > 0. 

By Theorem 7.3 and the Fatou radial limit theorem, we have 

D/x G [ -oo ,0 ) and h*(i\) G [-oo, 0) a.e. [a]. 

From (7.11), it follows that a is concentrated on E. Because 

oo 

E = UK: 
/ = 1 ' 
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where each Kt is an co-set, we must have o(Kn) > 0 for some n. Applying 
Theorem 7.6 and Lemma 7.1, we obtain (7.12) with v replacing h. 
However, by (7.14) and the fact that 

v{t) = o[o)(t) ] as / -> 0, 

we conclude that (7.12) holds for h. Inequality (7.13) is an immediate 
consequence of (7.12). 

8. Covering properties of the boundary function of an inner function. A 
classical result (see [19, pp. 283-284] ) asserts that an inner function / is 
either a finite Blaschke product or else its radial limit function / * covers 
the circumference C infinitely often. In this section we obtain some 
quantitative relationships between the covering properties of / * and the 
maximum and minimum modulus 

M(n l / l ) = m a x { | / ( z ) | : \z\ = r) 

and 

m(r; | / | ) = min{ | / (z) |: \z\ = r) 

for r e [0, 1). 
Recall that an inner function / is, by definition, a bounded analytic 

function on À for which | /* | = 1 a.e. (with respect to linear measure) on 
C. The two primary subclasses of inner functions consist of the Blaschke 
products (the definitions of which were given in Section 7) and singular 
inner functions. The latter are functions of the form 

i 1 P77 eu + z \ 
(8.1) S^z) = e x p ( - — J0 -—-d^t)^ z -e C - C, 

where \i is a real-valued monotone nondecreasing function on R that is 
singular, i.e., 

D\k = 0 a.e. and /x(/ -f 277) = p(t) H- /x(27r), t e R. 

In general, every inner function / has a canonical factorization / = -qBS^ 
where B is a Blaschke product, S is a singular inner function, and 17 is a 
constant of modulus 1. For these and other facts concerning inner 
functions, see [7, Chapter 2]. 

In the sequel, 

Es = {T] G C: f*(7i) = a f G Â, 

when / is an inner function. 

THEOREM 8.1. Let f be a nonconstant inner function and suppose f e A 
such that f(z) = J for only finitely many z in A. If 
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<o(l - r ) 
c (8.2) m(r; l/l ) S exp - c — - , r -> 1, 

L 1 — r J 

/or some constant c > 0, //ẑ w HJ<Eç) > 0. 

Proof. Since £ is taken on only finitely often by / we have 

Lf o / = TJBS,, 

where 

L^(z) = (f - z)/( l - ?z), 

B is a finite Blaschke product, \K\\ = 1, and S is a singular inner function 
given by (8.1). Furthermore, Lç o f/(if]B) also satisfies a condition of 
the type (8.2) so we can assume without loss of generality that f = 0 and 
/ = S^. From (8.2), we have 

w(l - r) 
M(r; u) S c— -, r G [0, 1), 

1 — r 
where u = log(l/|Xj ), and Theorem 3.3 implies that 

(0^(0 ^ C(0(0, ' ^ [0, 277], 

for some constant c > 0. By Theorem 2.3, we have 

Z)jLt = -hoo a.e. [ju] 

and it follows from Theorem 2.1 that HU(I) > 0 where 

/ = {elt: Z)/x(0 = +oo}. 

We conclude from the Fatou radial limit theorem that HJ^EQ) > 0 as 
required. 

Next we consider f G C and give a sufficient condition for Hj(Eç) > 0 
depending on the descent rate of m(r; f — J) to 0 as r —> 1. 

THEOREM 8.2. If f is a nonconstant inner function and { G C .SI/C/Z that 

(8.3) »i(r; 1/ - ?| ) â c ) ~ r r G (0, 1], 
w(l - r) 

/or se>ra£ constant c > 0, //z£rt HJJL^) > 0. 

Proof. Consider the function 

? + /(*)1 
g(z) = exp 

f - /(*) 
Z G A . 

It is straightforward to verify that g is a singular inner function and that 
g*(rj) = 0 implies /*(TJ) = f for 77 G C. By (8.3) there exists a constant 
c > 0 such that 
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lg(*) exp 

exp 

\s 
\f(z) 
m i 

-2 

»(/•; 1 / - ?l ) 

exp 

exp 
u(l - r) 

1 - r 

where r = |z|. Applying Theorem 8.1, we arrive at the desired conclusion 

that Ha(Es) > 0. 

An immediate consequence of Theorem 8.2 and the inequality 

m{r; \f - ?| ) â 1 - M(r; \f\ ), r e [0, 1), 

is the following. 

C O R O L L A R Y 8.1. If f is a nonconstant inner function and c > 0 such 
that 

1 M(r; l/l ) 
1 

[0, 1), 
co(l - r) 

then HJ^Eç) > 0 for every { E C. 

The next two results show that for any nonconstant inner function f, 
there exists a modulus of continuity <o(^0) such that 1 — M(r; \f\ ) is 
equivalent to (1 — r)/co(l — r). By definition, two functions vx, v2 defined 
on a subset of R are said to be equivalent (denoted vx ~ v2) if there exist 
constants c b c2 > 0 such that 

C]V \y2 Vx ^ C2V2-

L E M M A 8.1. Let v{t), t G [0, 277], be a real-valued function that vanishes 
only at 0 and let t/v{t), t e (0, 277], be extended to [0, 2TT] by defining it to be 
0 when t = 0. TTzett ^ /s equivalent to a nontrivial modulus of continuity if and 
only if the same is true of t/v. Furthermore, v (respectively t/v) is equivalent 
to t if and only if t/v (respectively v) is equivalent to a discontinuous modulus 
of continuity. 

In connection with Lemma 8.1 and its proof, we recall that if v =̂ 0 is a 
modulus of continuity, then either v ^ /, v is equivalent to a discontinuous 
modulus of continuity, or else v is continuous with vf(0) = 00; see, for 
example [4]. 

Proof The last assertion is verified without difficulty. We shall assume 
for the remainder of the proof that w is a continuous modulus of 
continuity with cof(0) = 00. 

Suppose v ^ co. By Lemma 2.1 we can assume without loss of generality 
that OÙ is concave downward. Then t/v ^ t/œ and the latter is monotone 
nondecreasing by the concavity of 00. Also [t/œ(t)]/t = \/oj(t) is a 
monotone nonincreasing function on (0, 277] and it is easy to verify that 
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this implies the subadditivity of t/ct. Hence t/co is a modulus of continuity 
with which t/v is equivalent. 

Conversely, if t/v ^ to, then t/co ~ v. By what was just proved, t/oo is 
equivalent to a modulus of continuity and the same conclusion follows for 
p. The proof is thereby completed. 

THEOREM 8.3. Iff is a nonconstant inner function, then there exists a 
continuous modulus of continuity co =̂ 0 such that 

1 - M(r; l/l ) « co(l - r), r G [0, 1). 

Proof. It suffices to prove *>(/) = log[l/M(l — f; | / | ) ] is equivalent to a 
modulus of continuity co for / > 0 near 0. By Hardy's convexity theorem 
(see [7, Theorem 1.5] ), the function 

<o(0 = log[l/M(éT'; l / l ) ] 

is a monotone nondecreasing concave-downward function on (0, oo). 
Therefore, 

(o(20 g 2<o(0 for / G (0, oo). 

Using the inequalities 

exp( —20 < 1 - / < exp( —0 

for t > 0 near 0 and the monotonicity of the functions involved, we see 
that v(t) ^ w(2/) ^ 2co(0 and KO = " ( 0 for / > 0 near 0 as required. 

COROLLARY 8.2. If f is a nonconstant inner function such that 

1 - r = o[\ - M(r; | / | ) ], r -> 1, 

then there exists a continuous modulus of continuity co such that HJ^Eç) > 0 
for every f e C. 

This corollary follows immediately from Corollary 8.1, Lemma 8.1, and 
Theorem 8.3. In our next theorem, we show that if co ^ 0 is any 
continuous modulus of continuity, there exists a nonconstant singular 
inner function S„ such that 

r 
1 - M(r; l/l ) â W(l - r), r G [0, 1). 

The following lemma is elementary. We omit the proof since it involves 
only a trivial estimate of the Poisson kernel. 

LEMMA 8.2. There exists a constant c > 0 such that for every nonnegative 
Borel measure fx on C and any nondegenerate closed arc A of C having length 
\A\, we have 

\A\ 

where \z\ = 1 — \A\l1m and z/\z\ e A. 
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THEOREM 8.4. Let co ^ 0 be a continuous modulus of continuity such that 
co < 1. Then there exists a singular inner function f = S such that 

1 - M(r; l/l ) ^ co(l - r) /or r G [0, 1). 

Proof If / = 5^ is a singular inner function, then 

log[l/M(r; l/l ) ] « 1 - M(r; \f\ ) for r e [0, 1). 

Observing that 

log[l/M(r; l/l ) ] - m(r; P[J/x] ) for r e [0, 1), 

we see that it suffices to construct a singular measure \x on C such that 

(8.4) P[4i](z) ^ oo(l - |z| ), z <= A, 

for some constant c > 0. (We can then multiply JU, by a suitably large 
positive number to insure that the constant c can be omitted.) By Theorem 
8.3 and the observations made above, we have m(P[d\i]\ 1 — r) is 
equivalent to a modulus of continuity, so by (2.1) it is enough to insure 
that (8.4) holds for |z| = 1 - 2"w , /i = 1, 2, 

We shall construct /x in the form of a monotone nondecreasing 'jump' 
function satisfying 

(8.5) fi(t + 2T7) = /i(f) + /I(2TT), f e R. 

We start by defining \x on [0, 27r] as a sum of monotone nondecreas­
ing functions /!„ having 2W jumps for n = 1, 2, . . . . For each positive 
integer «, let 

ft,(0 

f 0 r e [0,772""], 

I k2~n[u(2~n) - œ(2~n~1)] t e (ir(2k - \)2~n, <n(2k + 1)2""] 
| A: = 1 2W — 1, 

[co(2~") - o ^ " " " 1 ) / e (77(2" + 1 - 1)2"", 2T7]. 

Clearly each /xw is a monotone nondecreasing singular function with 

M„(0) = 0 and ^ ( 2 * ) = «(2"") - « (2"" - 1 ) . 

Thus 
oo 

2 ft,(27r) = co(2"]) 
n = \ 

and 
OO 

M = 2 ft, 
« = 1 
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is a singular monotone nondecreasing function on [0, 2TT] which we can 
extend to R by the requirement that it satisfy (8.5). 

A direct calculation shows that for each positive integer n, we have 

li[TT(2k)2~n] - tfvilk - 2)2""] 

oo 

^ 2 2j2-n-j[a(2-n-j) - aQTn-j-x)\ 
7=0 

- 2~nu(2~nX k = l9... ,2". 

Taken together with Lemma 8.2, this yields (8.4) for \z\ = 1 — 2~n, 
n = 1, 2, . . . . The required conclusion follows and the proof is 
complete. 

From Corollary 8.1, Lemma 8.1, and Theorem 8.4, we obtain the next 
result. 

COROLLARY 8.3. If to is a continuous modulus of continuity with 
to'(0) = oo, then there exists an inner function f such that 

H»(Eç) > 0 for every f e C 

In the remainder of this section, we give some consequences of the 
assumption that E^ is contained in a countable union of co-sets. 

THEOREM 8.5. Suppose that fis a nonconstant inner function, J" E A, and 
f(z) = I for at most finitely many z in IS.. If 

oo 

where each Kn is an œ-set, then 

<o(l - r) 
m(r; \f\ ) ^ exp [0, 1), 

1 - r J 

for some constant c > 0. 

Proof. By considering Lç o f/(r]B) in place of / if necessary (where B 
is a suitable finite Blaschke product and |TJ| = 1), we can assume without 
loss of generality that f = 0 and / is a singular inner function. Since 

oo 

{elt:Dii(t) = + œ } ç ^ ç y Kn 

and Dfi = +co a.e. [//,], we see that fi(Kn) > 0 for some n. Using Theorem 
7.6 and Lemma 7.1 we obtain the desired result. 

THEOREM 8.6. If fis a nonconstant inner function, f e C, and 

oo 
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where each Kn is an u-set, then 

m{r; | / - ?| ) 
<o(l - r) 

for some constant c > 0. 

Proof. As before, the function 

c— —, r e [0, 1), 

g(z) = exp 
S " /(z)J' 

is a singular inner function for which 

oo 

E0(g) £ V K«-

Therefore by Theorem 8.5 we have 

(o(l - r) 

A, 

exp 1 — r J 

1 -

= rn(r\ \g\) 

\f(z)\2} 
min exp, 

min exp 
\z\=r 

exp 
2 

[0, 1). 
1 m(r; | / - ?|)J 

This leads immediately to the inequality we set out to prove. 

COROLLARY 8.4. If f is a nonconstant inner function such that for some 
f e C we have 

oo 

ESQ U K„, 

where each Kn is an u-set, then 

1 - r 
l - M(n l/l ) g c 

for some constant c > 0. 

< o ( l - # • ) • 

REFERENCES 

[0, 1), 

1. P. Ahem, The mean modulus of the derivative of an inner function, Indiana Math. J. 28 
(1979), 311-347. 

2. R. Berman and W. Cohn, A radial Phragmén-Lindelôf theorem, Complex Variables, 
Theory and Application 6 (1986), 299-307. 

https://doi.org/10.4153/CJM-1988-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-003-7


GENERALIZED VARIATION 85 

3. Tangential limits of Blaschke products and functions of bounded mean oscillation, 
Illinois J. Math. 31 (1987), 218-239. 

4. R. Berman, L. Brown and W. Cohn, Moduli of continuity and generalized BCH sets, 
Rocky Mountain J. Math. 17 (1987), 315-338. 

5. U. A. Brudnyi and I. E. Gopengauz, A generalization of a theorem of Hardy and 
Littlewood, Mat. Sb. 52 (1960), 891-894. 

6. D. J. Caveny and W. P. Novinger, Boundary zeros of functions with derivative in hP', Proc. 
Amer. Math. Soc. 25 (1970), 776-780. 

7. P. Duren, Theory of Hp spaces (Academic Press, New York, 1970). 
8. C. Goffman, G. Moran and D. Waterman, The structure of regulated functions, Proc. 

Amer. Math. Soc. 57 (1976), 61-65. 
9. W. K. Hayman and B. Korenblum, An extension of the Riesz-Herglotz formula, Ann. 

Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 175-201. 
10. M. Heins, The minimum modulus of a bounded analytic functions, Duke Math. J. 14 (1947), 

179-215. 
11. Complex function theory (Academic Press, New York, 1968). 
12. J. P. Kahane and R. Salem, Ensembles parfaits et series trigonometriques (Hermann, Paris, 

1963). 
13. J. Musielak and W. Orlicz, On generalized variation I, Studia Math. 18 (1959), 11-41. 
14. C. A. Rogers, Hausdorff measures (Cambridge Univ. Press, 1970). 
15. W. Rudin, Real and complex analysis, 2nd ed. (McGraw-Hill, New York, 1974). 
16. Â. Samuelsson, On radial zeros of Blaschke products, Ark. Math. 7 (1968), 477-494. 
17. H. S. Shapiro, Weakly invertible elements in certain function spaces and generators in l', 

Mich. Math. J. 11 (1964), 161-165. 
18. N. A. Shirokov, Zero sets for functions from Aw, Zap. Nauchn. Sem. Leningrad. Otdel. 

Math. Inst. Steklov. (LOMI) 707(1982), 178-188, 232. 
19. A. Zygmund, Trigonometric series, 2nd ed. (Cambridge, 1959). 

Wayne State University, 
Detroit, Michigan 

https://doi.org/10.4153/CJM-1988-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-003-7

