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Abstract. The purpose of this article is to develop the theory of differential modular forms
introduced by A. Buium. The main points are the construction of many isogeny covariant dif-
ferential modular forms and some auxiliary (nonisogeny covariant) forms and an extension of
the ‘classical theory’ of Serre differential operators on modular forms to a theory of ‘6-Serre
differential operators’ on differential modular forms. As an application, we shall give a
geometric realization of the space of elliptic curves up to isogeny.
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1. Introduction

Let Y(1) be the Riemann surface that classifies the isomorphism classes of elliptic
curves E defined over the field of complex numbers C. Then one has an analytic iso-
morphism j: Y(1) — A!'(C), E— j(E) onto the set of C-points of the affine line,
where j(E) is the j-invariant of the elliptic curve £/C. On A'(C), one can introduce
an equivalence relation as follows: We say that x € A'(C) is isogeneous to
y € AY(C), in notation x'~*y, if there exists an isogeny 7: Ey — E,, defined over
C, where x = j(E,) and y = j(E,). Then we may consider the set A'(C)/isogeny
of cosets of A'(C) modulo "~

We cannot expect to find any reasonable object in the usual algebraic geometry
(even if we allow algebraic spaces, stacks, etc), whose C-points are naturally in bijec-
tion with A!'(C)/isogeny. Indeed, the equivalence classes of '~ are dense in the com-
plex topology. However, if one enlarges as in [2, 3] the usual algebraic geometry by
‘adjoining’ one new operation that plays the role of a derivation, then the situation
changes dramatically. We will be able to find an object in this ‘new’ geometry that
plays the role of a quotient ‘A’ /isogeny’ and we shall embed ‘Al/ isogeny’ into a
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projective space by using some remarkable objects, called isogeny covariant differen-
tial modular forms (cf. [5]), that belong to this ‘new’ geometry.

Let us briefly explain our terminology and results. We start with a prime number
p, assumed for simplicity to be >5. The sign " will always denote p-adic completion.
Let R be a complete discrete valuation ring whose maximal ideal is generated by p,
and with algebraically closed residue field. If ¢: R — R is the (unique) lifting of the
Frobenius ¢— ¢’ of the residue field, then one can define a map J: R— R by the
formula 6x = (¢(x) — x*)/p. Set M(R) := {(a,b) € R*|4a’ +27h*> € R*}. Recall
the following definitions from [5]. A function f: M(R) — R is called a modular
o-function of order < if it can be written as

fla, by := Fla,b,da,0b, ... 0", b, (4a> + 276*)7Y),

where F is a restricted power series with coefficients in 7Z,, i.e. its coefficients con-
verge to 0 in the p-adic topology. A o-character is a group homomorphism
x: R* — R* that can be written as y(1) = G(4,04,...,8"2,27"), where G is a
restricted power series in #n + 2 variables with R-coefficients. We say that the modu-
lar &-function f has weight y if f(4*a, A°b) = %(2) "'f(a, b) for all A € R*. A modular
o-function that has a weight is called a modular J-form. We say that a modular
o-form f of weight y is isogeny covariant if there exists an integer k such that for
any isogeny of degree N, prime to p, from an elliptic curve 12 = x* +ax+b to
an elliptic curve > =x’+ax+b that pulls back dx/y to dx/y we have
fa, l;) = N*fla,b). Note that there are no nonzero isogeny covariant classical
modular forms (cf. [5], Corollary (7.24)).

In Section 2, we review the basic results and examples in the theory of differential
modular forms following [5]. Let us quickly sketch the construction of a sequence of
modular §-forms /X for k > 1, which plays a central role in this theory. Let E be an
elliptic curve given as a cubic in Pi by the inhomogeneous equation
3> = x3 + ax + b. On the de Rham module H := H}y (E/R), there is a ‘Frobenius’
operator ® coming from crystalline cohomology. If we assume that E has ordinary
reduction, then one can find a symplectic basis {a,f} of H such that
®o = o, ®ff = pf. Now, we write dx/y = puo + vfs, for some u,v € R and then set
1,(a.6) = pug(v) — v(u) € R.

It can be shown that f!  extends to any pair (a,b), not necessarily corresponding
to elliptic curves with ordinary reduction. Note that £  is a modular J-form of
order one and weight A— 1/(4¢(2)). By a similar construction, one can define a
modular -form f¥  for any integer k > 1. The modular §-forms f* k> 1 are
isogeny covariant. Recall also that to any modular é-function f one associates in [5]
its ‘Fourier’ (q,¢,...,q™)-expansion f(¢,q,...,¢") € Z,((9))[¢---,q4"™]" (see
also Section 2).

Section 3 contains the construction of some new interesting modular J-
forms f1, . /1. /oS 7, S, that will help us prove our main theorems about the forms
% . k>=1. The major difference between the f* ’s and the modular §-forms

oo Sas Sy 15 that the latter are not isogeny covariant. The modular é-forms /7, f;
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are defined only ‘outside E,_;” in the same way the p-adic modular forms are. As we
shall see in Section 5, they have an interesting property, their ‘Fourier’ expansions
are equal to 1.

In Section 4, we shall introduce an operator 9%, which we shall call the 5-Serre
operator, that plays the same role in the theory of modular d-forms as the Serre
operator does in the ‘classical’ theory of modular forms. In particular, for any mod-
ular §-form f we have (cf. Proposition 4.2)

0
aq(")

which should be viewed as the analogue of 120f = kP(q)f + (0F)(gq), where F is a
‘classical’ modular form, f'= F(q) is its Fourier expansion and P is the Ramanujan
P-function (cf. [11], p. 115).

In Section 5 we shall find some of the connections among the modular é-forms
oo S S /25 fo. For example, the modular é-forms f, and f,, are liftings in
the ring of differential modular forms of the modular forms modulo p E,_; and
— ﬁEI,H, respectively. As an application, we obtain a result which should be viewed
as a lifting to characteristic 0 of a congruence due to Robert [14] (Robert’s con-
gruence we are referring at says that if =: £’ — E is an isogeny of degree prime
to p, defined over R and normalized by the condition 7*w = ' then

(g, 4",

(map"f&" (P) + 87 (/@ - - - - 4"™) = 124" (g)

(degm)Ep1(E'/R, o) = Eppi(E/R,w) (mod p)

if the elliptic curve E/R satisfies the additional condition E,_;(E/R,w) = 0 (mod p),
that is, £,,; is isogeny covariant on supersingular elliptic curves modulo p).

Section 6 contains our main results about the forms /¥ . To explain them we intro-
duce the rings 7 and J, as follows. Let wi R* — R*, for any i > 0 be the weights
defined by w;(1) = 1/(¢'(2)), for any 1 € R*, and let W be the free multiplicative
Abelian group generated by the symbols wg, wi, wy,..., viewed as embedded into
the group of all d-characters. For any weight y let I(y) be the Z,-module of all iso-
geny covariant modular J-forms of weight y. One can define the ring I by
1= .zt Lwg” ... wyn). Note that I becomes graded by W. As it will be
explained in the last section, the ring / should be viewed, morally, as containing
all ‘sections’ over the space ‘A! /isogeny’ of the ‘canonical bundle of that space’.
One can also define the following subring of I: J:= 7, [ @y, I(ww))] i.e. the
7,-subalgebra of I generated by all /(w;w;). The ring J contains all the ‘interesting
elements’ that can be defined with the help of the modular -forms f¥,,k > 1. In par-
ticular, J contains the entire ‘crystalline information’ on elliptic curves.

Our main results are Theorem 1.1 and Theorem 1.2 about the generators of J and
about the relations among the generators, respectively. Here is the result on generators:

THEOREM 1.1. The ring J is generated as a Z,-algebra by d)i(f;{)(o) € I(wiwiy;) for
iz0andj>1.
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To explain the result about relations consider the following epimorphism of rings

p: Zp[{XijYis1 js1] — . Xij— &)

where 7, [{X; j};~ ;=] is the ring of polynomials in the variables {X; ;};., ;- . Let
also J be the ideal of 7,[{X;;},. ;-] generated by the polynomials of the form
Xtz Xeprr — Xoggr - Xi—rg02 +p X1 - Xiayys for k> 1,120, e

T = X2 - Xigrr — Xouo1 - Xicvm2 +pXm1 - Xe203)kes 150,
We define the ideal J : X7°,, by
T X0 =10 € Zp[{Xi iz 12111 X5 ... XV @ € T, for some

nonnegative integers miy, ..., ny}.

THEOREM 1.2. The kernel of the epimorphism p: 7,,)[{X; j}i>1 j=1] —> J is the ideal
T X7

In the last section we shall discuss a geometric realisation of the space of elliptic
curves up to isogeny. We shall briefly explain it in what follows. Let A; be the stack
of elliptic curves over schemes. Then one has the following bijection of sets:
A (C)/isomorphism ~ A'(C). Using the d-forms in J we may fit A|(R)/isogeny into
a geometric picture as follows. Let fy, . .., fy be a basis of a subspace of I(w), where w
is a given weight, and then consider the partially defined map

A(R) — PY(R) (1.1)

described in the following way. Let E£/R be an elliptic curve and let w be a basis for
the 1-forms; then E is defined in Pi by an equation of the form y*> = x3 4 ax + b. We
send E— [fo(a,b) : ...: fx(a,b)].

Note that the latter point in PY(R) is well defined due to the fact that all £y, ..., fy
have the same weight w. In addition, the map (1.1) is constant on isogeny classes, so
that we obtain a partially defined map

Ai(R)/isogeny — PV(R). (1.2)

We will show that for w = wyw;wyw; the image of (1.2) is ‘large’ (cf. Theorem 7.1).

2. Review of Differential Modular Forms [5]

In this section we record some of the basic definitions and results about differential
modular forms contained in [5]. In what follows p will always denote a prime integer,
assumed for simplicity to be > 5. For any ring S we denote by S its completion in the
p-adic topology. By a p-adic ring we will understand a ring S such that S = S; any
p-adic ring has a natural structure of a Z,-algebra.

Let ¢: A — B be a ring homomorphism. A p — derivation 5: A — B of ¢ is a map
satisfying
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O(x +y) = 0(x) + 0(») + Cp(@(x), (1)),
5(xy) = (x)'6(y) + @(¥Y'6(x) + po(x)5(y),

for all x,y € A, where
Cp(x,y) =(XP+ Y’ —(X+ Y))/pe Z[X, Y]

If 6 is a p-derivation of ¢ as above, we will always denote by ¢: A — B the map
defined by ¢(x) = @(x)" + pd(x), which is a ring homomorphism. The ring 7, has
a unique p-derivation of the identity, defined by the formula 6(x) = (x — x”)/p.

NOTATION. Let R denote (throughout the paper) a fixed complete discrete
valuation ring with maximal ideal generated by p and with algebraically closed
residue field k. Let ¢: R — R denote the (unique) lifting of the Frobenius F: k — k,
F(x) = x?. Define the map 0: R— R by the formula 6(x) = (¢(x) — x”)/p. Then 0 is
the unique p-derivation of the identity of R (This is the basic example considered
in [2]).

By a prolongation sequence of rings S* we mean a sequence of ring homomor-
phisms

0 1 n
§O Ly st Oy e Dol

together with p-derivations J, of ¢” such that ¢" o6, | = J, 0 ¢"~!. By abuse we
shall denote all ¢™s and J,’s by the same letters, ¢ and o, respectively.
A morphism of prolongation sequences S* — S* is simply a sequence of ring homo-
morphisms 7,: S” — §" which is compatible with the ring homomorphisms ¢ and
the p-derivations d in S* and S*. By abuse we shall denote all ,,’s by the same letter,
n. Denote by Prol, the class of all prolongation sequences S* with S$” Noetherian,
p-adically complete, and flat over Z,. If S is a p-adic ring and 6: § — S is a p-deri-
vation of the identity then one can form a prolongation sequence of rings S* by
letting all the rings S” be S and all the p-derivations be equal to §. We say that S*
is defined by (S, 9).

By a multiplicative d-character of order <n, y we mean a rule that associates to
any prolongation sequence S*€ Prol, a group homomorphism y: (S%)* — (S")*
which is ‘functorial in S*’ in the obvious sense. In order to describe them, let us con-
sider arbitrary vectors m = (my, ...,my) € 7. X ’7; For each such vector we define
Im = Loy (- 1) € Zyp[t,... 10 171]" by the formula

. lmo (@)ml <¢n([)>m,,
Am ‘= m S ,

where (;’)i(t) are defined, inductively, by
(D) 1= Q'Y + pd(P(D) € Zplt, ..., 1TV 71 and  5(«D) = ATV,
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The induction starts with ¢°(¢) := 7 and 6(¢) := . Note that the series y,, induces,
for any prolongation sequence of rings S*, a group homomorphism -
(89— (8", Zm.s-(A) = tm(4,04,...,8"%). The set of multiplicative o-
characters of order <n form a group isomorphic to 7 x 7Z7. An element y(,, )
is a square in this group if and only if m, is even, in which case we say that y is even.
We say that y is integral if (mq,...,m,) € 7" If y = Limo,. we set

)
k(y) :=mo +mi(1 —p)+--- +m,(1 —p").

Recall that by an elliptic curve E over a ring S one means a smooth proper mor-
phism of schemes ©: £ — Spec S, whose geometric fibers are connected curves of
genus one, given with a section e: Spec S — E. In what follows we shall consider tri-
ples (E/S°, w,S*) consisting of an elliptic curve E over S° such that the S°-module
H(E, Qp/s0) is free, a basis o of this S%module and a prolongation sequence of
rings S* € Prol,.

By a (holomorphic) modular o-function of order <n we will understand a rule f'that
associates to any triple (£/S° w,S*) an element f(E/S° »,S*) € S" such that the
following properties are satisfied:

(a) f(E/S°, w, S*) depends only on the isomorphism class of the triple,
(b) The formation of fE/S°, w, S*) commutes with arbitrary change of base
u*: S* — S* ie.

AE®50 S°/S°u” w, §%) = u"(f(E/S°, w, S¥)).

Moreover, if y is a multiplicative d-character then f'is said to have weight y if
RE/S Jw, %) = 15:()~" - AE/S", 0, 5%)

for all 2 € (S°)*. A modular J-function that has a weight will be called a modular
o-form. Let f be a modular o-form of integral, even weight y. We shall say that f
is isogeny covariant if for any triple (E/S° w,S*) as above, and for any isogeny
n: E' — E (of elliptic curves over S°) of degree prime to p we have

AE'/S, o, 8*) = (degn) ™/ - AE/S, w, S¥),

where o' := n*w, k := k().

Let f be a holomorphic modular é-function of order <n. By a modular é-function
of order <n' holomorphic away from f= 0 we understand a rule g that associates
to any triple (E/S°,w,S*) for which f(E/S° ®,S*) € (S")" an element
2(E/S° ®,8*) € S" such that the conditions (a) and (b) above are satisfied by g.
We say that g has weight y (respectively that g is isogeny covariant) if a similar con-
dition as before is satisfied for g. We say that g is a modular o-form holomorphic away
from =0 if it has a weight.

We denote by M" the set of all (holomorphic) modular J-functions of order <n
and by M"(y) the subset of M" consisting of all modular J-forms of weight y. Clearly
M" are p-adic rings and define a prolongation sequence M*. If f € M" and n’ > n we
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denote by M’{l_'f} and M’{{f}(y) the ring of modular d-functions holomorphic away
from f'= 0 and its Z,-submodule of elements of weight y.

Recall from [5] the structure of the rings M" and M’E//} Let a4, a¢ be variables,
set A= —16(4as> +27as*>) and consider the rings Z,[as, d},. .. ,af{'),a(,,
d, . . .,a(én),A_l]A. In what follows, we will denote the rings above by
Zip [aff"), aé@), A*I] “. These rings form, in an obvious way, a prolongation sequence.
Moreover, one has (cf. Proposition (3.3), [S]) an isomorphism of prolongation
sequences M" ~ Zp[aff”),aé@),A*I]A. Also, for any f€ M" and any n’ > n there

is an isomorphism of rings
! 7 <’ <n’ —1 =19~
MYy~ Z,[a™" aS" AT )

Consequently, a modular §-function of order <n may be viewed as a p-adically con-
vergent series in as, ag, dj, df, . . . ,af{'>7 a(ﬁn), A~'. Note that a series f represents a mod-

ular o-form of weight y if and only if
SUA*ag) =7 (A 0ag) =", APA Y =3(A, N, AT fdS7, 0™, AT (21)
in the ring 7, [af"), aé@), A™Y AT AT where A, A/, ..., A™ are indeterminates.

CONSTRUCTION 2.1. We review the crystalline construction of the sequence of

Let (E/S°, w, S*) be a triple as above then ¢: S — S! is the defining ring homo-
morphism and §: S® — S! is the p-derivation of ¢. Let ¢: S® — S! denote the ring
homomorphism ¢(x) = ¢(x)” + pd(x). We denote by E?/S' and E?/S' the pull
backs of E/S® via ¢ and ¢, respectively. Let ¢, ¢: S°/pS® — S'/pS' be the reduc-
tions modulo p of ¢ and ¢, respectively.

If F:S'/pS'— S'/pS' is the Frobenius endomorphism of S'/pS', then
¢ = @ o F. It follows that E? @ (S'/pS") is canonically isomorphic to the pull-back
F*(E? ® (S'/pS")) of E? ® (S'/pS!) via F. Now the absolute Frobenius F,-endo-
morphism Fyps of E¢ @ (S'/pS') induces an S'/pS'-morphism

Fra: E? ®(S'/pS") — F*(E? ® (S'/pS")).

Composing the latter morphism with the canonical isomorphism
F*(E? @ (S'/pS")) ~ E¢ @ (S'/pS"') we get an S'/pS'-morphism

Fop E?®(S'/pS")y — E? @ (S'/pSh.

By the results in [1], p. 184 (see also [5], p. 135) the morphism F, 4 induces a mor-
phism of S'-modules:

© = Hy (Fop): Hpg(E?/S') — HpR(E7/SY).

crys
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Consider the injection

. id®l

is: Hpr(E/S®) — Hpp(E/S) ®y ' = Hpg(E?/S")
induced by base change, where ®¢S1 indicates that S' is viewed as an S-algebra via
¢. Note that for any 4 € S° and n € HL (E/S°) we have

iy (n)) = P(4) - ©(ig(n)). 2.2)
Similarly, consider the injection

. id®1

Ly HIIDR(E/SO) — Hll)R(E/SO) B S'~ HIIDR(E(/)/SI)~
The cup-product on de Rham cohomology defines an alternating pairing of
S!-modules:

(,) - Hhr(E?/S") x Hyyg(E?/S") — S".

Finally, we define

1
fLJE/S @, 8%) = <i(/,w,[—7(l)(i¢w)> es'
(one has to prove first that ®(iyw) € pHLR (E?/S'), for an argument see [5], p. 136).
Clearly, the formation of /! (E/S° w,S*) is functorial in (E/S° w,S*) and f!

defines a modular J-function of weight y_,_, _;). Indeed, by (2.2) we have that

L(E/S , dwr, §%) = A(fL(E/S°, 0, 5).

waw ww

Note that /] | has order 1 (not just <1) because its Fourier expansion f} (¢,¢) =¥
is not in Z,((¢q))"(cf. Corollary 2.3). For any isogeny E' — E of degree prime to p
over S° the induced S°-module homomorphism HL, (E/S%) — HLR (E’/S?) is an
isomorphism, compatible with the action of the corresponding maps ®,®" (cf.
Lemma 5.1 below). Now an immediate application of Lemma 5.2 below shows that
/1, is isogeny covariant. We can iterate the above construction to obtain an induced
morphism of S*-modules, ®: HL, (E?"/S*) — HL, (E?'/S) together with the
injections i, Hpg (E/S°) — Hb (E? /S¥),ipp: Hhg (E/S®) — Hhe (E?'/SF). As
before O(iyw) € pH})R(E“’k/Sk) so that we can define

1
* (E/S°, o, S*) = <iwka),l—7®k(i¢kw)> e Sk,

The formation of f* (E/S° w,S*) is functorial in (E/S°, ®,S*) and f%  defines a
modular o-form of weight y_;_,x ¢ o _1)- Now an argument similar to the one used
to show that f!  is isogeny covariant may be used to prove that /%  is isogeny co-

variant, for any k > 2.
Remark 2.1. The modular 5-forms f* = were constructed using the crystalline

nature of the first de Rham cohomology modules of elliptic curves. In [5] and [6]
A. Buium has constructed, for each k > 1, an isogeny covariant modular ¢-form of
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the same order and weight as. (ﬁm, using p-jets of elliptic curves. Our ‘rank = 1 result’
(Theorem 6.1) shows that the modular 5-formsf(f§w coincide with the corresponding
ones constructed with p-jets of elliptic curves, up to multiplicative constants in ZpX

Now define the modular d-forms ¢/(f* ) for j> 1,k > 1, by

J W
¢ (foNE/S" 0,5%) = ¢'(f5,(E/S, 0, 57)).

One of the main tools in the study of differential modular forms is, as in the ‘clas-
sical case’, the ‘Fourier expansion’. The rest of the section deals with ‘Fourier expan-
sions’ of differential modular forms.

Set Z,((q)) = Zp|[q]][1/q]"; the elements of this ring are series of the form
Yome o anq" with a,, € 7,5, a, — 0 p-adically, as n — —oco. For any n > 1 we will con-
sider the ring 7,((¢))'ld, - .- ,q"™]"; its elements are restricted power series in
q,...,q" with coefficients in 7,((¢))". The rings 7,((¢))"[¢,---,¢"™]", n >0 form
a prolongation sequence in a natural way as follows. We define first a ring homo-
morphism ¢: 7,((¢))°[¢,---,4"] — Z,((2))[¢s - -, ¢" V] by the formula

o(f(q.q,- - d"™) =L +pd (@Y +pq,.....q"Y +pgd"D)

and then define ¢ by of = (¢(f) —f7)/p.
For any even number n > 2 we denote, as usual, by E,(q),A(q) the series in
Z,((q))" defined by

2n
Ex(q)i=1=23"3 om0,

n,>1

24
Alg) =273 (Ey(9)’ — Eo(9)") = q{ [Ta- q")] ,

n=1

where B, are the Bernoulli numbers and a¢(n) =3_, d*. Recall that E>(q), E4(q),
E¢(q) € Z][q]] (ctf. [11], pp. 151-153). Consider the injective homomorphism of rings

M = Zplas, as, A™'1— 7,((q)), as— — 27437 Ey(g),
ag— — 273373 Eq(q),

which is of course induced by the morphism

M =M — 7,(q), [ +— [(Tate(q)/7,p(9)), Ocan)

of evaluation on the Tate curve Tate(g) and its canonical differential. By the univers-
ality property of p-jet spaces (cf. [5], p. 103) the above homomorphism induces a
unique morphism of prolongation sequences

M"— 7). q - a1, f— fig.ds- . q™),

which we call the Fourier (q,q',q", .. .,q"™)-expansion map. Of course, the morphism
is just the evaluation morphism f'+— f(Tate(q)/Z,((q))", ®can, S*) Where S* is the pro-
longation sequence defined by (7,((¢))'[¢,q",---,4"]",9), as above. The Fourier
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(¢,¢,...,q")-expansion map fails to be injective for arbitrary n, but it becomes
injective when restricted to M"(y), for any given y, as the next proposition asserts:

PROPOSITION 2.1 (The (¢,¢,...,q"™)-expansion principle) (cf. [5], Proposition
(7.21)). For any d-character y, the map M"(y) — Z,(9))lq', - - . ,q™]" induced by the
Fourier (q,q, ... ,q"™)-expansion map is injective and the cokernel of this map is tor-
sion free. Moreover, for any modular 6-form f € M" of some weight and not divisible by
p in M", the following homomorphism is injective

M) — Zp(@V1G 4" g go)

Remark 2.2. Note the following implication of the torsion freeness: if f is a
modular d-form whose Fourier (q,¢/, ..., ¢"™)-expansion is a multiple of p, i.e.
fa.q.-...d") € pZp(@)1qs - -, ¢"™]", then fis a multiple of p in M"(y), i.e. can be
written as f'= pg for some g € M"(y).

In what follows we set

<l>(q) w1 P 1( ) : r pn
[ P § 1 1) e .
p & (=D p € Zpy(9)1q]

4

Let I" (k) be the Ap-module ofallelements f(q, ¢, ..., q") € 7,((¢))d, 4", ---.4"]"

satisfying
f(qza 5(q2)7 o 75'1(612)) = 271{/2 f(q7 q/v ERER q(n)), (23)
then the Fourier (¢,¢/, ..., ¢")-expansion map sends the isogeny covariant elements

of M"(y) into I"(k(y)).

PROPOSITION 2.2 (cf. [5], Proposition (7.23)). For any nonnegative integer n,
1"(=2) is a free 7,-module generated by: ¥, ¢V¥, ..., ¢" " and 1'(0) =

Remark 2.3. Let us note that the noninjectiveness of the (¢, ¢/, . ..)-expansion map
is obvious from this proposition and the next one.

PROPOSITION 2.3 (cf. [5], Corollary (7.24) and Corollary (7.26)).

(1) For any y of order n with k(y) > 0 there are no nonzero isogeny covariant elements

in M"(y).
(2) For any isogeny covariant element [ of M"(y) with y of order n and k(y) =0,
fig.q,....q") e Zp. In particular, the only isogeny covariant elements in

M"(y,) are the constants in 7., where y, = 1.
(3) The modular o-form f}

waw

n—1
R q)—aT—a 1g(’5(‘1) Z( 2 ( )

for some o € 7, .

has the Fourier expansion
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3. Construction of the Differential Modular Forms £, . f.,, f7,, 2.1y

CONSTRUCTION 3.1. In what follows we construct three modular J-forms fim,
,}w and f”‘" of order I and weights x(, 1 1), %(1-p—1) a0d x(14,1), respectively. Unlike
the modular é-forms f% . they are not isogeny covariant (cf. Corollary 2.3).

Recall (from [9], pp. 161-164) the following facts about elliptic curves. Let
(E/S, ) be an elliptic curve over a p-adic ring S such that H°(E, Qgs) is free of rank
1 and let w be a basis, then E is defined by an equation Y2 = 4X3 — g, X — g3, for
some g3, 3 € S. Identifying HL (E/S) with the module of differentials on E/S hav-
ing at worst double poles at oo, i.e. H*(E/S, Q}E/S(Zoo)), we may canonically specify
a basis of H(E/S, 92/5(200)), namely o =dX/Y and n = X - o = XdX/Y. Using
the notations in Construction 2.1 we define

alm(E/SOJ w, S*) = <i(pw7 (D(l¢>7l))>
, 1
Sl B/ 0,87 = @g). ipn).

(/S ,5") = (@Gign),iyn).

where (E/S°,w,S*) is a triple as before. Clearly, the formation of
Son(E/S,0,8%), f1,(E/S, 0, S%) and f,, (E/S°,w, $*) is functorial in (E/S°, w, S*)
and an easy computation shows that they have the weights as above. Since
k(X(p-1.1))> kK(x(1-p,—1)) and k(x(1,,1)) are nonnegative integers, these forms are not

isogeny covariant (cf. Proposition 2.3).

CONSTRUCTION 3.2. An important role in what follows is played by two mod-
ular 6-forms f? and f; holomorphic away from E, 1 =0 of weight y(,_,,) and
X(1—p,—1)> Tespectively (where E),_; is the normalized Eisenstein form of weight p — 1).
The construction of these modular é-forms is as follows.

Let us recall from [9], pp. 175-180, the construction of the canonical rank
one submodule of the first de Rham cohomology module of an elliptic curve.
We consider first the ‘universal’ situation. Let R"™Y = M(7,,1,n,0) be the ring
of p-adic modular functions defined over Z, of growth 1, level n (where n is
chosen such that p =1 (modn)) and weight 0, and let E'"/R" be the uni-
versal curve with level n structure, such that Hasse is invertible mod p. Let
H"VY c E"V be its canonical subgroup and consider the elliptic curve
E':= E"™V/H"Y  As E’ is defined over R" with Hasse invertible mod p
and has a level n structure induced by the one of E, it is ‘classified’ by a
unique homomorphism @"¥: RUY — RUY guch that E' = (E™)*"™). The
induced homomorphism

’II*Z Hll)R(E,/R uniV) — H%)R((EuniV)(t/)”““')/RuniV)

univ)

— (H]lDR(EuniV/R uniV))((p s Hll)R(Euniv/R uniV)
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gives a @""V-linear endomorphism of Hly(E'Y/R"V) which we denote by
F(@"V) = * o (¢"V) ™", Note that F(¢" ") respects the Hodge filtration as n* is
induced by a R"V-morphism.

An argument of successive approximation shows that there is a unique rank one
R"W-submodule U"™ C Hlp (E'™Y/R"Y) such that F(o"V)(U"V) = U and
if u € U"Y is a basis of U™ then {w,u} form a basis of H (E"/R"V); where
w is a basis of the 1-forms.

Suppose now that S is a p-adic ring and (E/S,w) is an elliptic curve whose
Hasse invariant modulo p is invertible, together with a basis w of the 1-forms. We
choose a level n structure, for some » > 3 with p = 1 (mod n), defined over an étale
over-ring S’ of S, so that E ®g.S'/S’ together with the level n-structure is obtained
from E'V by base change via a (unique) morphism S — R"". We denote by
U C Hr(E®s S'/S') the inverse image of the canonical rank one submodule descri-
bed above. In fact, one can prove that U above descends to a submodule (still deno-
ted by U) of HLz(E/S), which is independent of choices. In what follows
U C HLR(E/S) constructed above will be called the canonical rank one submodule
of Hpg(E/S).

Let us consider now a triple (E£/S°, w, S*) as before, such that £/S° is an elliptic
curve whose Hasse invariant modulo p is invertible, equivalently E, |(E/S° w) €
(S%)*. If u is a basis of the canonical rank one submodule U, then the de Rham
cup product (w, u) is invertible on S, because {w, u} form a basis of H}z. We define

a modular J-form holomorphic away from E,_; = 0 by the formula
UE/S, i, %) = 2 PW).
SE ) (o, u))

Clearly, the right-hand expression does not depend on the choice of the basis u, and
the formation of f2(E/S°, w, §*) is functorial in (E/S°, w, $*). In addition, f? defines

a modular o-form of weight z(,_; ;). Using the same notations we can define also a
modular J-form holomorphic away from E,_; of weight y,_, _;), by the formula
( %(I)(w)7 u)

fAHE/S°, @, S) = ~
We will see later (Corollary 5.1) that fy = 1/£7.

The canonical rank one submodule of H}) is used by N. Katz in [9], p. 179 to give
a modular definition for the Ramanujan P function. Let us recall here the modular
definition of P given in [9]. As before, let u € U be a basis of U, the canonical rank
one submodule of HL, (E/S), then we may define a function P by the formula

s )
P(E/S,w) =12 o

The expression defining P is independent of the choice of basis # of U and defines a
p-adic modular form of weight two and level one. Note that the definition above
shows that P may be viewed as a differential modular form holomorphic away
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from E, ;=0 of order 0 and weight 2, consequently P is an element of
Zplas, as, A*I,E;_ll] ", 1.e. a p-adically convergent series in a4,a,1/A,1/E,_;.
We can construct the ¢-generated modular §-forms

O o)s O/ Sy &/ (S)s &7 () 67 (17), 9/(f5) and  ¢/(P) for any j > 1,
using the recipe in the paragraph preceding Remark 2.1.

3.3. Let us recall also ‘the calculation at oo’ from [9], pp. 176-180 and how it can be
used to compute the Fourier g-expansion of P. Let V(0): Hhg (Tate(q)/7,((¢))")
— HLx (Tate(q)/7,((¢))") be the Gauss-Manin operator induced by the deri-
vation 0 = ¢(d/dq), let wcy be the canonical differential on the Tate curve Tate(q)
and let n,, be its dual; then

P
V(O)(@can) = — % Wean T Neans
120(P(q)) — P(q)* P
V(e)(ncan) = ( (q1)4)4 (q) Wean + l(g) Nean>

where P(q) = Ex(q) =1—-243,., 01(n)q". The canonical subgroup of Tate(q) over
Zp((q))" s , = ({,), so that the quotient Tate(q)/u, is Tate(¢”) = Tate(q)"?”, where

¢, 7p((9)) — 7Zp((9))s (@,/)(q) =f(¢"). We have a ¢,-linear endomorphism
of HLx(Tate(q)/7,((q))"), denoted by F(¢,). Note that the following diagram is
commutative

R univ ¢ Zp((q))'*

o le,

R ——  Z,((g))

where c¢ is the classifying map associated to any level n structure on Tate(q) (cf. [9],
Appendix 2). Also F(¢"") and Fi (¢,) coincide with the crystalline Frobenius. Con-
sequently, F(¢""™") and F(¢,) are ‘compatible’, i.e. F(¢,) is obtained from F(¢""™)
by base change via c. The action of F(¢,) on Hpy (Tate(q)/7,((¢))") is given by

F((Pp)(wcan) = PWcan;,
P(g") — P
F((pp)(”can) = wwcan + Mean
or, in terms of the basis {wWen, V(0)(®can)}, by

F(Qop)(wcan) = PWcan;,
F(QDP)(V(H)((UCHH)) = V(g)(wcan)~

The last equality shows that the canonical rank one submodule U of
H\y (Tate(q)/7,((¢))") is spanned by V(0)(wcan). The Fourier g-expansion of P
can be computed as follows:
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)]
P(Ta‘[e(q)7 wcan) —12 <”can, V(H)(wcan» —12 <'/Icana ;(q)(l)can + ncan>
(Wean, V(0)(@can)) (®can, — T3 Wcan + Nean)
— 12P(q) <ncana _wcan> — P(q),

12 {wcan, ”can>

so that P is holomorphic at infinity, i.e. P(q) € Z,[[¢]] (cf. [9], p. 166). By standard
arguments one can show that the holomorphy at infinity forces that P €
Zplas, as, (1/E,—1)]". The following lemma will be useful later.

LEMMA 3.1. The Ramanujan P function, viewed as a series in 7p|as, ag,(1/Ep—1)]",
can be written in the form P = (Eyy1/Ey,_1) + pg for some g € Zplas, as,(1/E,_1)]".

Proof. Note that P-E, | —E,; is a modular J-form of order 0 holo-
morphic away from E,_; =0 and weight p+ 1. Since P-E, | —E,;; is an
element of 7,[as,as,(1/E,-1)]" one can find a suitable power of E, i, E]
such  that  E} (P Ey-1 — Epy1) = ho +phi,  where  hy € Zplas,a6]  and
hi € Zylas,a6,(1/E,_1)]". Note that hy can be chosen to be a ‘classical’
modular form over Z, of weight n(p — 1) + (p+1). By Kummer Congruences
([11], p. 151) the Fourier g-expansion of P-E, | — E,;; is a multiple of p, so
that /y(g) = 0 (mod p). Applying the g-expansion principle for modular forms
modulo p ([11], p.168) we deduce that hy € pZ,[as, as], and we are done. [

4. The J-Serre Operator

Let us recall first the classical Serre operator before defining the new one (cf. [11] or
[14]). For any integer k we denote by M(Z,) the 7Z,-module of modular forms of
weight k defined over 7Z,. Note that M;(7,) is a free 7Z,-module generated by the
monomials Q¢R’ with a,b nonnegative integers such that 4a + 6b = k, where
0 = E4, R = Eg. If the modular form F has the representation

F= Z Q“R" € M (7)),
4a+6b=k
then its Fourier expansion F(g) is defined by F(q) := F(E4(q), Es(q)). The Serre
operator 0 is a derivation of M := @, My(7,) defined by

90 = —4R, OR = —60°, 4.1)
such that 0 maps My(Z,) into My12(Z,). Let 0 := qdiq be the derivation of Z,[[¢]]
defined by

0(2 anqn> = Z nanqn'

n=0 n=0

Let F € M(Zp) and f'= F(q) € Z,[[q]]. Then

120 f = kP(q)f + (OF )(g). 4.2)
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Now we define for any n > 1 an operator aSerre M" — M", which will be called
the J-Serre operator of order n, by the formula

of of

Serr 2

o) = 1607 5 5 = 200 5

where f'is viewed as a p-adically convergent series in ay4, dg, - - . 7a2">, aém, AL

LEMMA 4.1. Let f be a modular 5f0rm of order n and weight ¥, m, . .m,, where
n=1. Then 8]/661(") and 8]/(951 are modular o-forms of order n and weights
A(mo—4p" my ,...;m,—4) and A(mo—6p"my ,...,m, —6)> respectively.

Proof. The result follows immediately after taking the derivatives of (2.1) with

respect to a; and a(6”), respectively. O

As an application of Lemma 4.1, we get that if f/is a modular é-form of order n

and weight 74, m,,..m,) then o5 () is a modular é-form of order n and weight
L(mos+2p"my...m+2)> 1.€. the restriction of the o- Serre operator of order n to

PROPOSITION 4.1. Let f be a modular é-form of order n and weight ¥, ..

..... )’
then the following equality holds
49" () fn)+6¢"< 0 {; 'S, (43)

Proof. Taking the derivative of (2.1) with respect to the variable A" one obtains

<4¢"<a> 2+ 69" @)((A— D, (A ag) =, AA)

= myp x-lf(af"),a:"m ) (4.4)

(here ;' = y(A,A,...,AS™)™h), ByLemma4.1,4¢"(a4) 8]/8612”) + 60" (as) 8]/861(6")
is a modular d-form of weight y,,, i, , so that the left-hand side of (4.4) equals

..... My

KA AT (4¢ (as) {:)+6¢"< 6) {;))(af"),ag@%A—l)

and the result follows after division by y~!. OJ

PROPOSITION 4.2. For any modular é-form [ of weight Yu, m,....m, the following
equality holds

(" 19" (P) + O (N)g. - .q™) = 12¢"(@) = 5 (F (.. ... 4")). (4.5)

aw
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Proof. We have the following computation

0
126"(9) 5 (@ 4™)
of
N da"
LI
a (")

9 d

f (47 ety q(n)) ’ (’bn( d_4> )(q’ e 7q(n)) : d)n (12 ﬁ)
A
9a"
6

(¢:---,q") - 120" () 5 (a“’)(q, o d™)+

(@ q™) - 12¢"(q) 5 (a<’”(q7 o d™)

an

B 8ag") dg

)
- (aa](’:) ¢"(4Pay — 72a¢) + —s - ¢"(6Pag — 16aﬁ)) @, q")

= (mp"f¢"(P) + >"™()gs; - - -, q"™),

where the third equality is a consequence of the well-known formulas:

1260(as(q)) = 4P(g)as(q) — T2a6(q) and  1260(as(q)) = 6P(q)as(q) — 16a4(g)’

(cf. [11], p. 161), whereas the last one follows from Proposition 4.1. O

Remark 4.1. Equality (4.5) is the analogue in the theory of differential modular
forms of equality (4.2). O

For isogeny covariant modular d-forms we obtain the following corollary:

COROLLARY 4.1. If the (q,...,q™)-expansion of and isogeny covariant modular
o-form f of weight yu . m, is of the form f(q,.. L q"M) =0, ..., ¢" ") with
Q(X17.. . 7Xn) € 7P[X17 . .,Xn] then

90

(map"f&" (P) + 87 (/NG - -, 4") = 12p""! X,

o (Voo "),
Proof. The equality follows from Proposition 4.2 plus the equality

o) !
P Tmy -

5. Fourier Expansion and Reduction Modulo p of the Differential Modular
Forms fa)rp ./;Ilw7 f:)an .f;;;p fa7 fa

The following two lemmas are well known.
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LEMMA 5.1. Let n: E' — E be an isogeny of elliptic curves over S°, then the fol-
lowing diagram

[
Hho(E?/SY) ——  HLR(E?/SY)

()] | e
(D v (
Hhg(E?/SYY ——  Hh(E?/SY)

is commutative.

Proof. Using the canonical isomorphism between crystalline and DeRham
cohomology(for example, from [1], p. 184) it is enough to check that the following
diagram

Foo
E*®S!'/pS! —2  E$®S!/pS!

T[®id51/psll l“@dsl/psl

9.0

Fo,
E? ® Sl/pSl E/d) ® Sl/psl

is commutative, but this is immediate. O

LEMMA 5.2. Let m: E' —> E be an isogeny of elliptic curves over a p-adic ring R,
then for any t,v € HLr(E/R) the following equality holds: (n*t,n*v) = (degm)(t,v).

Proof. 1t is enough to prove that the equality holds locally, so that we may
suppose that the elliptic curve E is equipped with a nowhere vanishing differential
o€ H(E, Q}E/R). Recall from ([9], p. 163) that E will be defined by an equation of
the form Y? = 4X3 — g, X — g3, 22,83 € R and one may canonically specify a basis
of Hlg, namely w =dx/y and n = xdx/y. Let us write t and v in this basis:
T =aw + by, v=cw + dn. Then we have

(¥, 7"y = (an*w + br*y, cn*w + dn*n) = ad(n* o, ") — be(n*w, ¥y)

On the other hand (t,v) = ad(w,n) — be{w,n) so that it is enough to prove the fol-
lowing equality (n*w,n*n) = (degn)(w,n), but this is a consequence of the commu-
tativity of the following diagram

HY(E, Q) x H(E,0Op) —— R
n*xn*l ldegn
HYE' QL) x H(E',Op) —— R,

where the horizontal arrows are induced by Serre’s duality and the right vertical
arrow is multiplication by degn, and we are done. (We used here the fact that the
cup product in de Rham cohomology is compatible in the obvious sense with Serre
duality.) ]

We have the following theorem:
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THEOREM 5.1. The Fourier (q,q )-expansions of ¢ and fy are both equal to 1.

Proof. We show first that £?(¢?,6(¢*)) = f%(q,¢). By the results in [9], p. 176, the
quotient Tate(q)/u, by the group u, = ({,) can be viewed as obtained from Tate(q)
by base change via ¢,: 7,((¢))" — Z,((q))", ¢»(q) = ¢*. If ma: Tate(q) — Tate(q?)
is the projection map induced by taking the quotient by u,, then the following
diagram

Tate(q) —— Tate(q?)

! |

Tate(¢") ——> Tate(¢*)

is commutative, where the vertical arrows are induced by taking the quotient by u,.
At the level of the first de Rham cohomology we get the following commutative
diagram

H o (Tate())/ Zp((@))  —25 B (Tate()/ Z,(@)))

* *
nzl l”z

. R Ke,) R
Hpg(Tate(q)/Zp((@))  —  Hbg(Tate(q)/Z((q))"),
where F(p,) is the ¢,-linear endomorphism in 3.3. The morphism =3
Hg (Tate(¢?)/7,((q))") — Hhg(Tate(¢*)/7,((¢))") is an isomorphism, as it is
induced by the isogeny =, so that there exists a (unique) vector
u € HL (Tate(¢?)/7,((q))") such that 7;(u) = V(0)wean. Then we have

m(F(@,)w) = Fo,)(m3 ) = F(¢,)(V(0)(@ean)) = V(0)(@can)-

Here we used the commutativity of F(¢,) and 75 shown above. By the uniqueness of
u, we conclude that F(¢,)(u) = u and this means that the submodule U of Tate(q?) is
spanned by u. But then we have

(Tracer, Wcan,P(1))

fa(qz,5(512));fﬁ(Tate(qz)/Zp((CI)): TracenzwcanaZp((q»A*)=¢(<Tracen2wcamu>)

_ (degm)(Tracer, wcan,P(u))  (n3Tracer, wean, 5 D(u))
_(degn)d)((Tracenzwcanau))_Qb((n;Tracenzwcamn;u))

_ (wcanaq)(v(e)(wcan)» :fy‘)(%q/)7
P((@can;V(O)(@can)))
where the fourth equality is a consequence of Lemma 5.2, whereas the fifth one fol-

lows from Lemma 5.1. Since f?(¢%,(¢)) = f?(¢,q'), Proposition 2.2 shows that
f%(q,q') must be a constant in 7,, in particular 7(¢,¢') = f?(¢,0). Let us note that

0 Zp(@) —> Zo((@) 141" - Zy(@)

is the composition of ¢ and e), where ey is the 7,((¢g))"-morphism defined by
eo(q') =0, so that
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(Ucan»F(QDp)(V(H)(wcan)» _ {@ean, V(0)(@can)) _

P((Ocan, VO(@can)))  d({@can, V(O)(@can)))
because F(¢,)(V(0)(®wcan)) = V(0)(@ean) (cf 3.3). This shows that f%(¢q,¢) = 1. The
proof for fj is similar. O

74,00 = <

COROLLARY 5.1. f9.fy=1.

Proof. By the previous theorem the Fourier (g,q')-expansion of f7.fy—1
equals 0. Since /7 - f5 — 1 is a modular é-form of weight ¥, the proposition follows
from the (g, ¢')-expansion principle. ]

1 1 1

Our next purpose is to compute the (¢,¢')-expansions of f,,,, f,.,, fy,-

PROPOSITION 5.1. The (g, ¢')-expansions foalm, ,11(0, fﬂln are given by:
- / p
fonta.d) =1+ L 0Py,
1
! NV=1—--—=P@¥
(@ q) 7 P@Y,

(0.4 = — 15 Pla) + 1 6P — L Pa)o @)

Proof. Let ¢: 7Z,((q))" — Z,((¢))"[¢']" be, as before, the morphism defined

by ¢(q) =" +pq, and let ®: Hhp(Tate(q)’/7,((9)[q]") — Hhy(Tate(q)/
Z,((9))"14'] ") be the induced morphism of Z,((¢))"[¢'] "-modules. In the {®can, fcan }-
basis ® can be written as follows:

1 /
l;q)(wcan) :fnlw(q’ ¢ )0can + 0¥ Nan, Pleen) = ;11;1((17 q )®can +ful),,(q7 4 Mean-

In terms of {®ean, V(0)(wean)} the equality 7(q,q') = 1 becomes

(Wcan, P(V(0)(@can)))

P({(0can, V(0)(@can)))

Since the denominator is 1 we obtain that

$(P()
12

and using Corollary 2.3.3), we get

Sn(@:4) = (©can, Dlny)) = 1 +5 P@)Y.

Now we will exploit the other equality proved in the same theorem: f3(g,¢') = 1 and
obtain
<$ (D(wcan)> V(e)((ﬂcan)) _
(wcam V(Q)(wcan» B

1=

{@can, (D(wcan)) + {@ecan, (I)(”can»;
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and again using the identity (wcan, V(0)(®Wean)) =1 we get 1= (x/12)P(q)¥+
.;}w(qqu) which yields nw(q’ N=1-(x/12)P(q)¥. Tt i.s weill knov(\)/n that .the
equality (®(n7,), ®(11,)) = p¢({n1,1,)) holds for any n,,n, in Hpg(E/S”). Consider
the Tate curve Tate(q)/Z,((¢))" and set #; = Wean and 17, = V(0)(wcan) so that
we get

(D(wcan), P(V(O)(@ean))) = pP({®can, V(O)(@can)))-
Then we have
1 1
1= <; D(wean), (D(V(Q)(a)can))> = <; O(wean), q)(ncan)>

= oo @ O Vooy(a:4) — ¥, (. 4).

Using the formulae for f,,(¢,¢') and £, (¢,¢'), we compute £, (¢,4')

¥ (04) = f,(@, 4V py(q:4) — 1

_pe o _p 2
=2 (Pl — 2 Pla¥ P PPl
so that
. 1 p
1 N o _
Tnla: @) = =33 P@ + 15 6(P@) = L P@)p(P@)Y.
The fact that the constant « = 1 will be proven in Proposition 5.3. O

PROPOSITION 5.2. Let f}, 1 be the image of f oy N M'/pM"; then the following
equality wn = E,_1 holds in M'/pM", where E, | € V)las, ae] is the image of the
Eisenstein form of weight p — 1.

Proof. We need to show that the modular é-function of order <1 fw" E,_
multiple of p in M' = 7,,[as, ag, dj, af, A~ " Tt is enough to check that for any triple
(E/S°,w,S*) the following equality f}, (E/S°, o, S*) = E, 1(E/S°, o) holds in the
ring S! := §! /pS". Since the de Rham cohomology modules commute with arbitrary
base change ([12], p. 44) and the same is true for the formation of the cup-product on

de Rham cohomology, the following diagram is commutative:

118 a

HbR(E?/S") x Hbg(E?/S") 0, s

|

HL(E2 ® S'/S) x Hyz(E? ® S'/S1) _Y, 81,
where the vertical arrows are obtained by tensoring with S'. Let Fy 4
HLR(E? ® S1/S") — HL (E? ® S'/S') be the morphism of modules induced by
the homomorphism F, 4 defined in Construction 2.1, then using the commutativity
of the last diagram we have

D(E[SO,0,5%) = (0, ®(n) = (@, D)) = (@, F}; ,(1)) = E,1(E/S°, w),
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since E,_; is congruent modulo p to the Hasse invariant 4, which is defined by
A(E[S®, @) := (@, F} ,()) (cf. [9], p. 98). 0

PROPOSITION 5.3. The following equality holds in M /pM'
23 a&d / I /PP 1
= (3 vay — 2dyag) —|—Fo(a4,a6,a4 , dg ’Z)’

where Fy € F,,[a4,a6,aﬁl,a’6,%].
Proof. Applying the (g,q¢')-expansion principle to the equality f('}m(q, q)=
1+ (pa/12)p(P(q))¥ we obtain that

oo f8+12¢( A (5.1)

the equality taking place in M)} E, = Z [a4,a6,a4,a6,A E 1J7. Combining this
with the last proposition, we deduce that the image f(7 of fa in M1 /leEp—l is
fa = E, 1. On the other hand, Corollary 4.1 applied to f} and the (q, ) -expansion
principle show that

u)(/)

£ = oy PPy + (L) (52)

and now looking at the image in /pM

c L we get that
8]Serre(f2)w) — 12@('3 — IZ&Ep—la or that

p]’

ofl ofl _ -
2 ww ww
14a =22 o, —72a 28 ] = 120E,;.
Now we consider the reduction modulo p of the equality in Proposition 4.1 applied
to f, ~and get

w(a
arl
I’ f [O10)

e
ay ad. 4 =0.

2+ 6af e =

Combining the last two equalities and solving the system we obtain

W — 2332 agEy ok, _ o33 alE,
Oa, N Dag AP

so that the reduction modulo p of /! | has the form

— E
1 =2%3% Xp

_ 1
azl - zagag) +F0<a47a67a£1 7a/6p7A)7

where Fy € F,[a4, a6, d}, aj, 1/A]. We use the reduction modulo p of /! | to show that
o = 1. Combining (5.1) and (5.3) we deduce the equality

aSel’re( (uu)) - 120C wn _p((x - 1)¢(P) ww* (53)
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If «o ;é 1 then, after dividing the equation by p(x—1) we obtain that
d(P)fL, € 7,las, as,dy, dg, 1/A] " so that the reduction modulo p satisfies

E? ) | l
+1 = 1 / D . o
E§71 |:233 Xp (3a6a4 2af;a6)+F0<a47a6,a41,a6P’A):| c lhp|:a4,aéva4,a6’Ai|.

Identifying the coefficients of ¢} and aj we get that E,_; is a divisor of E} +la6 and
of EV, aj in I,[ay, ag], which means that £, divides E7 | in I,[as, a¢]. Since E, ; is
relatively prime to E,.; (cf. [11], p. 167) the last d1v151b111ty is impossible, so that

o=1. O

Remark 5.1. Using different techniques C. Hurlburt has proved in [8], Theorem
1.3 that F, above is in fact an element of I",[a4, a¢, 1/A], but on the other hand, her
formula for f] = contains an unknown constant(see also [5], pp. 132-134). Combining

our proposition with her result we get the following

COROLLARY 5.2. The following equality holds in M"/pM"

- 1
_ 3B ‘(3a1’a4 2dd}) +F0(a4,a6,K),
where Fy € le[a4, ae, 5.
The following result gives the action of 9™ on the differential modular forms

gl 1 gl 1
o’ Jon Jnws Syt

THEOREM 5.2. We have the following equalities

8scrrc (fw(u) - 12 (m] ) ascrrc (fu)q) - 4p2¢(a4)f2)w)

Serr Serr 1
a ¢ e( )]w) = 12 nn a © e( 11;1) - 4p (p{)(a4)f;1w

Proof. Equality o =1 plus (5.3) shows that 87"(f},) = 12f),. To show the
second equality in the first row we apply the equality in Proposition 4.2 to falm(we

read its Fourier (¢, ¢')-expansion from the previous Proposition):

(Lo ®(P) + ™ (f1,))(a, 4) = P HOP@D'Y + pP(d(q)).

Using the well-known formula 120(P(q)) = P(q)* + 48a4(q)(cf. [11], p. 161) we
obtain

(Pfpy$(P) + O™ ([, )q, 4) = ¢(P(61)) ¥+ 4p* Pas(g) ¥ + pd(P(q)).

Applying the (g, ¢')-expansion pr1n01ple to the last equality we get
2
DI P+ T (fl,) = S5 GV L, + 407 b, + pO(PY

—p¢(P>( OPYL, +17) +4pplan,
= PP}, + 4029,
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where the last equality is a consequence of 5.1. We obtain that
e (f,) = 4p*P(aa)f),. Similar arguments may be used to show the other

equalities. O

Remark 5.2. The equalities in Theorem 5.2 should be viewed as the analogous
of 4.1 in the theory of differential modular forms.

THEOREM 5.3. Letf;n be the image of f,, in M'[pM" then the following equality

;}n = — %E_var] holds in M"' /pM", where Eyy1 € Fylas, ael is, as before, the image of the

Eisenstein form of weight p + 1.
Proof. The (q,q')-expansion principle applied to the equality

In@, @) = =15 P(@) + 5 d(P(9) — 15 P(@)p(P(9)¥
yields
Soy = =13 PI7 + 5Py — g PO(P)S,-

Considering the image of this in M'/pM', we get

o 1 £p _ 1
p ;1117 - _EEIFJ:: p—1 — _ﬁEp-Ha
the first equality being a consequence of Lemma 3.1 and Proposition 5.2. O

In order to state the following theorem we need to make some preparations. Recall
from [7], p. 47 that for any n > 2 there exists a modular form of level n and weight 2
whose Fourier expansion at oo is P(q) —nP(q"); here, as before, P(q)=
1-24%" _,01(n)q". Let us denote by P this modular form of level # and weight 2.

THEOREM 54. Let n: E' —> E be an isogeny of degree prime to p, defined over a
smooth R-algebra S and normalized by the condition w*w = «'. Then

(deg m)Eps1(E'/S. ) = Epii (E/S, @) + (E', E,))E,1(E/S,) (modp),

where I(E', E, ) depends on the isogeny. Moreover, if w is induced by a map o,,: p,—E’,
then

IE',E, 1) = P"(E’', o, ) (5.4)

Proof. As in [2], p. 315, one can construct a prolongation sequence of rings S*
with §°:=S. In addition, the restriction on S yields that the morphism
S%/pS® — S'/pS! is a monomorphism(this follows from loc. cit., Proposition(1.4)).
Since 7 induces an isomorphism n*: Hy (E) — Hhg (E'), {n*»,n*n} is a basis for
H)x (E') as a S-module. Let #' = an*w + br*n, for some a,b € S°. Then the com-
putation

1 = (o, = (T*w,an*w + br*y) = b(n*w, n*n) = b(degn){w,n) = b -degn
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shows that b = 1/ deg =, where the fourth equality follows from Lemma 5.2. Now,
we have

S(E /S, §*) = (@n, i) = <<I>(

' + an*w>

1
' + an*w) "degn

1
degn
* * a * *
= (degn)z <(D7I w, T 11) +an((l)7r ’17“ (,U>+

L P
deg

We use Lemma 5.2 to obtain

L (E'/S°, o, §%)

(Or*w, *n) + ad(a)(Pr*w, 1* w).

Jnn

= degn W(E/S" @, 8%) — af,, (E/S°, 0, S*)+

+ Pl (E/S°, 0, 5%) + pad(a)(deg m)f,,,(E/S°, @, S*)
and then the congruence

(degn)f,,(E'/S° ', 8%) =1,,(E/S°, 0, 5) — a(degn)f,,, (E/S®,,5%) (mod p).

nm

Now apply Theorem 5.3 and Proposition 5.2 to get the congruence for £,

(deg M) Epi1(E'/S°, o)
= E, 1(E/S°,0) + 12a(deg n)E,_1(E/S°, ») (mod p). (5.5)
Note that the last congruence takes place in S', however applying the injectivity of
S%/pS® — S'/pS!, we get a congruence in S° = S. Set [(E, E,n) := 12 </, "y >.
Then the computation

(', m*n) = (an*® + brn*n, n'n) = (an* o, 7*n) = adegn{w,n) = adegn

shows that /(F',E,n) = 12adegn. Let us note that the function defined by
I(E oy, @) :=<n',n*n > is a well-defined modular form of level n and weight 2.
By the g-expansion principle ([7], p. 112) to show equality (5.4) it is enough to prove
that the Fourier g-expansion at oo of /is P(q) — nP(q").

Let Tate(q) be the Tate curve defined over R((¢))" and let =, Tate(q) —
Tate(q)/u, be the projection. As in [9], p. 108 one can show that
Tate(q)/u, = Tate(q") = Tate(q)'”) where ¢,: R((q))" — R((¢q))" is defined by
(0,./)(q) =f(g"). We denote by F(m,) the induced ¢,-linear endomorphism of
HL (Tate(q)/R((¢))"). The same arguments as in [9], p. 177 can be applied to show
the following

nP(q") — P(q)

F(mn)(Mean) = 2 ®can + Nean-
Now the Fourier g-expansion at co of / can be computed as follows
[(Tate(q)/ R(q))", oy Ocan) = 12(Ncans F(T)(Nean)) = P(q) — nP(q"). L

In particular, we obtain the following congruence due to Robert [14]:
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COROLLARY 5.3. If in addition E,_(E/S°,») = 0(mod p), then
(degm)E,41(E'/S°, ') = Ep1(E/S°, w) (mod p).

Remark 5.3. Robert has also obtained in [14] the congruence 5.5 before special-
izing to supersingular curves.

6. The Structure of the Ring J

Recall from [10] that for any elliptic curve (E/R,w) with E,_;(E/R,w) € R* there
exists an R-basis {a, f} of HL(E/R), such that (o, ) = —(B,a) =1, (a,0) =
(B,$) =0 and ®a =0, ®f = pp. In addition, w can be written in this basis as
o =Q(f + 1), for some Q € R* and 7 € pR.

LEMMA 6.1. For any elliptic curve (E/R,w) with E,_(E/R,w) € R*, we have
SUE/R 0, RY) = Q/$(Q).

Proof. Using the results in Proposition 5.1 one can show that the Fourier
expansion of f2 is f2 (¢,4',q") = p¥ + ¢¥. Applying the (q,q¢',q")-expansion
principle to this equality we get that

1 ;

2 1 1

wo = Ploo * T+ (]5( w(u) f‘d (61)
o(f9)

The values of /] and f2, at (E/R, o, R*) are

wolE/ R, 0, R) = Qd(Q) (r - %)

2
and f2(E/R. 0 R) = 2@ (e~ —2).

respectively, so that evaluating (6.1) at (E/R, w, R*), we obtain

2
ap@(pm- )

—rp@ (- 0 L s (o0 - q{’;ff))ff’. 62)
We set
z;:@ﬁ(};‘/k,w,k*) e R* and a ::f—?e R.
Dividing equality (6.2) by Q¢?(Q), we obtain
pa+ @) = pa-——+ ¢(a) - 1. (6.3)

P(0)
We consider first the case a # 0. We may suppose that a € R*, otherwise one can
divide by p°%(@ and reduce the problem to the desired situation. Considering
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the reduction modulo p of equality (6.3) we conclude that 1 € 1 4+ pR so that we write
t=1+ps;, for some s; € R. Now the equality (6.3) becomes: (pa¢(s1))/
(1+ po(s1)) = ¢(a)s;. Considering again the reduction modulo p of the last equality
we obtain that s; = psy, for some s; € R and (pag(s2))/(1 + p*P(s2)) = ¢p(a)sz.
Iterating the argument we get the existence of a sequence {s,},- (s, € R, for any
n = 1) such that s, = ps,_1, for any n>2 and (pa¢(s,))/(1+ p"P(sn)) = P(a)sy.
This proves that te€1+p"R for any n>1, so that ¢=1, equivalently
fa(E/R7 o, R*) = Q/p(Q).

If a=0, ie f! (E/R,w,R*)=0 then the Frobenius endomorphism of
E® (R/pR) lifts to a ¢-morphism F: E— E, by [5], Proposition 5.3. Now, we
choose a level n-structure, for some n > 3 with p =1 (modn). The elliptic curve
E/R with the chosen level n-structure is obtained from E'" (we use the same nota-
tions as in Construction 3.2) via a morphism R — R"™". Since F: E — E is in fact
the projection map obtained by taking the quotient of E by its canonical subgroup,
we conclude that Fis obtained from the universal situation ¢: E'"™Y —s E'V by base
change via R— R". It means that the canonical rank one submodule of
HLR(E/R) is R{x), as o is fixed by ® = Hérys(F): HLg (E/R) — HLR (E/R). We
use u = o to compute /2 and get:

0 E/R R* — (Q(/)) + T“)a(DOQ — Q(ﬁ + TOC7OC> — Q
SER 0 R = G0+ ), o)~ p@D(B+ 7)) D)
which completes the proof of the lemma. O

PROPOSITION 6.1. For any i = 2, we have the following equality
i i—1 gl 1
ww =P ww 9 [
o(f%) ... (f9)
Proof. As in [5], p. 136 it is enough to check the identity for elliptic curves
(E/R,w) with E,_(E/R, ) € R*. On the other hand

+ oo

J ww

) ) - P'(7)
vl £3 :Q IQ i—1 _ .
(E/R,0, ) = 0g/(@)(p~'e = = )

Applying ¢ to this equality for i — 1 we get

i i i— ¢i(f)
MEINE/ R0, R) = @@ (52000 - 17,
Combining the last two equalities and the result in Lemma 6.1 we get the identity in
the statement of the lemma. O

A standard induction argument and Proposition 6.1 show the following

COROLLARY 6.1. The Fourier (q,...q")-expansion of f., is fi (q,...q")=
P 4 p2W 4+ Y
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For any weight y we shall denote by 7" (y) the set of all modular J-forms in M"(y)
which are isogeny covariant. Note that I"(y) is a Z,-module. It is convenient, in
what follows, to use the weights w; be the weights defined by w;(1) = 1/(¢'(2)),
for any i = 0. In what follows we need the following

DEFINITION 6.1. A modular ¢-form f'is said to have exact order nif fis in M", but
it is not in M"~!.

LEMMA 6.2. Let g be a nonzero isogeny covariant modular d-form of weight
wiw; (where 0 <i <)) and exact order n, then n = j.

Proof. Since g satisfies (2.1) with x(A,...,A™) _T(A we conclude that
nzj. Suppose now that n > j. Applying Proposmon 4.1 to g with m,, = 0 we get that

4¢”(a4) (n) +6¢"(a 6)8 (,1)

If g(q,...,q(’)):oco‘P+~~+ocn,1q,’>"*1‘P, for some og,...,0,_1 in 7Z,, then by
Corollary 4.1

@G-, ¢™) = 12" oy (6.4)
If o, 1 = 0 then 85™(g) = 0, by the expansion principle. Solving the system

44" (as) (n)+6¢ (a5) 2 27 8= 05e(g) =0,
we obtain 8g/8a4 :(9g/8a6 =0, equivalently g € Z,,[af"il),af"*l),A*l}A:
M""', and this is a contradiction. If o, | #0 then after dividing (6.4) by
12p" ', (see Remark 2.2) one may assume that (95™(g))(q, . ..,q") = 1. Apply-
ing the (g,...,q")-expansion principle to this equality, we obtain that

OFT(g) = ¢'(f7)- " () (f7) 4" (7). s0 that

n—1

n—1
o5 = [1(¢') — 158" @8 (1,)) [T (2 = 556 (P (£L)-

I=i I=j

After subtracting ¢'(f},)...¢" "' (f1,)¢/(fL,) ... ¢" "' (f1,) from both sides of the

on
last equality, dividing it by —(p/12), and then considering the reduction modulo

p, we get that the left-hand side is in [ [aff” ,aé@),A_l] *, whereas the right-hand

side equals:

!

IS SV R
pr ( ww)p( wﬂ)p+ AP ey T

I oy i n—1 Jj n—1 /
' 1 P+ P T —p
+ E PP ()7 () :

By Corollary 5.2, Proposition 5.2 and Lemma 3.1, the latter equals:
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n-1 gr't! 'm
!
) G A i . (3a” a — Zaﬁmagp )+
—~E Ap
P—
= i+l _w'—p—) ’fl =

I+1 ! -

+ 24ZEPI+1 v (3ap a - 2aﬁ+ a/6p )+ Go
=i Ep_1

for _some Go € IF)[as, ag,+,1/(E,—1)]. We obtain that the coefficients of ag”H and
al”"" in the right-hand side, i.c.

2" —pi—pJ " —pi—pJ

o i i
144 ”“,,"—P:l,, and 964 7ol
A EP AI’ P

p—1 p—1

respectively, are in I [af"),af" A* ]. Since (2p" — p' = p/)/(p — 1) < p", E,—; must
divide both Ep+1 a6 and E,,+1 a4 in ')[as, ag]. On the other hand, E,,; and E,_,
are relatively prime in I, [as, ag] (cf. [11], p. 167), which yields a contradiction. [

As a consequence of Lemma 6.2 we obtain that " (ww;) = F(w;w;), for any n > j.
We then define the 7,-modules I(wyw;) := I/(w;w;), for all 0 < i <.

THEOREM 6.1. For any 0 < i <Ji 1I(wiwy) is a free Z,-module of rank 1.
Proof. The modular d-form ¢'( is an element of 7(w;w;) and has (g, ..., q")-
expansion:

'S5+ q") =P -+ BT
If in 7(w;w;) there exists an element that is not a multiple of ¢'(f7; ) then considering
the difference between that element and a suitable multiple of ¢'(f7.), one gets a
non-zero element of I(w,w]), say h, whose (q,...,q")-expansion is of the form:
hg,...,qV) =¥+ -+ 147 "W, not all oy, ..., equal to 0. We may sup-
pose that not all o, ..., are multiples of p, otherwise p divides 4 and we can
work with (1/p)h, in the place of /4. Let &, ...,%,; be the images of o, ..., in
I, and suppose that o1 = ... =%, = 0 and % # 0, for some 0 <k <j—1.
Applying the (g, ...,q"))-expansion principle we obtain:

j— f(? ¢ 0 1
:;w o 5 G g

and after multiplying by /... ¢""'f? and considering the reduction modulo p:

wa))

- ]+“_+p/—1
> 41 ! - pl E —1
E;’ I_Za/[4 p1+l(3ap dy _2QZ ag” )+ Fo }W

‘p—1

Fltetr Y Ft A+
_ 240([ P 1 3 iy ) ' OC[F() %o Lp—1 1
E :Ap T _[,/+1+ +p m( 3 a4 - 614 a6 )+ E _[,/+1+ 4p1

P
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Identlfymg the coefficients of a 17 and ag 17 we conclude that E,_; divides both ag”
and a4’ , which is impossible, and we are done. O

THEOREM 6.2. For any 0 < i, the Z,-module I(w?) is zero.
Proof. Supposing that I(w?) contains a nonzero form, say g, then its (g, . .., ¢")-
expansion is of the form:

g(([, s 7q(i)) = OCO\P +--+ ai*ld)i_lqj-
Applying Corollary 4.1 to the last equality, we get.

(=2p'g'(P) + 07" g)(q, .. ,q"'>> =12p" oy (6.5)
We apply ¢! to the equality /¢ = o f’z (P)f}, to get
O = ¢ (Ul — 5 P (U
After multiplying equality (6.5) by (¢" ' (£},))(q;--.,q") = ¢'¥, we obtain
(—2p'g¢' (P (fo) + (@ S )@, - - 47) =129 i 16"
or, using equality (5.1),
[—2p"'g12(" " (£),)— ¢ (FON+F™ (@) ()G, ¢ D) =12p i 1T W
The (g, ¢')-expansion of £7 is 1 so that

O (frg) — 249" 2 ()G, - -, )

=120 (=200W — - -+ — 202" W — o1 T IP).
The modular d-form 9% (g)p'™" (f) — 24p" g™ ' (f°) has weight w; ;w; and its
(¢,...,q")-expansion is a linear form in ¢,...,¢"". The same arguments as in the
proof of Lemma 6.2 show that 05 (g)¢' ' (f1,) — 24p™'g¢'' (11, is a multiple
of ¢~ 'f1, which yields: a9 = ... = 0;_» = 0, so that 2(q,...,q") = 1" 'y, we
consider the modular d-form g¢'™'(f2) whose (g, . .., ¢""))-expansion is

€0 o )@s 40 = 019 BT + )
so that

(80" (fau) = 219" f0) Lo - -4 D) = pria (9 P).
Set

(€™ (fa) = 210" ([ D' (f)):

Pazf

Then h has weight wi_j(w;)*wiy, and (q,...,q"))-expansion: h(q,...,q"™") =
(¢’_1‘P)2, hence h = ¢ (( (})w)z/fa(;’)fa), by the expansion principle. The reduction
modulo p of (f1,)2/f2¢f? is
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2

b _ 1 [24 Eps Gdld, — 2d)d) +F0i|
644 7
foere Eppjll i
so that the reduction modulo p of ¢""'((f1,)2/f2¢f?) is
2

RN I i—1

(U1 1 EV| i Do

o Vpfo :E (p+1)p! 24Ap (3a6” a417 —2alal )+ F |
) 1

()il
Identlfymg now the coefficients of a and aj 2" \we obtain that E;fl DP st
divide a6” and a , which is a contradiction. O

s 2p!

We define the ring J by J := 7,[@<;<,; 1(wiwy)].
Note that Theorems 6.1 and 6.2 provide us with a set of generators for J. The two
of them combined can be rephrased as

THEOREM 6.3. The ring J is generated as a 7,-algebra by ¢'(f,) for i=0
and j=1.

In what follows we shall describe the ring structure of J by examining the relations
among the generators.

PROPOSITION 6.2. For any k=3 and i=0, the following equality

¢l+1( (U(U)(b[( UJ()) - d) ( (1)(1) ¢[+1(f;i)(1)1) +p¢ ( (1)(1) ¢l+2(-ﬂ:)(1) ) = 0 (6'6)
holds in 1.
Proof. Using Corollary 6.1 one can show that
(¢( (UU) ww +p U)(l)(?b (fU)(,U ()(Ud)(f(t)(,() ))(q7 R qk) = 0 (67)

The (g, ..., q~)-expansion principle applied to the last equality yields

¢( (A)(U ww - (A)(Ud)(f;l)(lil) +p {1)(/)¢ ( (1)(1)2) =
To obtain (6.6) we apply ¢’ to equality (6.7). O

DEFINITION 6.2. A family of modular J-functions {gi},<;c,, is called ¢-
algebraically ~ dependent if there exists a non-zero polynomial Q(X;;) €
Zpl{Xij} <i<cmo<j<m) such that 0(¢’(g))) =0. A family of modular J-functions
{gi}1 <i<m 18 called ¢-algebraically independent if it is not ¢-algebraically dependent.

For the proof of the following Theorem we need to make some preparations. Let
Wim....m,] D€ the weights defined by wy,, ] = wy ... w. With the help of the
0-Serre operators we define the maps

n . n n
% S M Wi,y m) —> M Wi,y 41,m,—-11)

Wng,..mn]
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by the formulae

A g () = 1S )V = " (f0) T ()

Wing,...amn]

for any fe€ M"(Wi..m, ,m,)). Note the following obvious equality:
Al (¢"'(f,)) = 0. We will need also the following equality

Wp—1 Wy [010]

n,, mn(qsn 2( ww)) = 12[7 d)” 2( mw) (68)

To show equality (6.8) we apply Corollary 4.1 to the equalities
d)"_z( lUUJ)(q7 i 7q ) p(lb” Z\P + (l’)n I\P and ¢n ]( (UIU)(q t 7q ) ¢n ]T tO gEt

(=" " (S (P) + 03" (g (G, -, ¢™) = 129",
(2" " )" (P) + 03" (G, - ¢™) = 129"

Multiplying the former by (¢"~'(f1 ))(q,...,¢") = ¢"~"¥ and then using the latter
we obtain that

(05 D" (Fo) =8 F AT 2@ ™) =120 7P,

We deduce (6.8) by applying the (g, . .., ¢")-expansion principle to the last equality.

THEOREM 6.4. The family {f} .12} is qb algebraically independent.

Proof. Suppose that the family {f! 12 } is ¢-algebraically dependent, then there
exists a nonzero polynomial Q(Xy,..., X Yo,...,Y:) € Zy[Xo,..., Xs; Yo,..., Y]]
such that

Qs+ ++ D Uogio)s Jomys -+ ' () = 0.

The left-hand side of the above equality may be written as a finite sum of modular
o-forms of different weights. We obtain that any modular d-form in this sum must be
equal to 0; consequently the family {f', f2} satisfies an equality of the form

Clapsitn s oy ) S (@ N (YL ("2 () =0,

(000 3+ s0n—13 P05+ sPu2)
(6.9)
where the left-hand side of the equality is a modular J-form of some weight

Wimgamy,..om,] With m, >0, and not all the coefficients ¢, . 5, :4,...8,,) are equal to
0. In particular, we have the following relations o,_; + f5,_, = m,. We endow the

set of (n + 1)-tuples [my, . .., m,] of nonnegative integers with the lexicographic order
and we prove by induction on [my,...,m,] that an equality like (6.9) holds if and
only if ¢(y. . o 1:if) = 0 forall (oo, ... 0,13 By, ..., B,_2). To save space we shall
use the following notation o := (o, ..., %, 2) and f:= (B, ..., B,_3). Also, we set

-7:.(27111—];131[3/172 ° ( (,)(1))“0 (¢n ]( (U(U))“uil( (}J(U)ﬁo (¢”_2( (L)(U))/)y”_7
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Applying the operator A’;[ to (6.9), after some amount of computation

V mgy,my ,...;mn)

involving m, = o,_; + f,_, and (6.8)(that we shall omit), one gets

120"¢" ([0 Y BuaClaanripy ) F otnripfy o=ty = 0-

Bu2>0
Dividing by 12p"¢" %(f!,) and then using the step of induction, we obtain that
Cla 1p.,,) = 0 for all (2,015, B, ) with B,_, > 0. Combining this with (6.9),
we get that
Y Cam b F o ip =0 (6.10)
Bu—2=0

Note that the condition f,_, = 0 is equivalent to a,_; = m,, so that after dividing
(6.10) by (¢”—1( ww))mn we obtain Z(%mn;ﬂ,ﬂ) c(g,mn;[_?,o)]:(g,O:E,O) = 0. Another applica-
tion of the step of induction assures that the other coefficients are 0, and we are
done. O

We consider the following epimorphism of rings

p: Zpl{Xi iz jz1]l — I, Xij— &),

where 7, [{Xi j};>1 j>1] is the ring of polynomials in the variables {X;;};., ;- ;. Let
also J be the ideal of 7,[{X;;};> ;-] generated by the polynomials of the form

Xt Xt — Xogpr - Xi—rg2 +p Xy g - Xicoys for k21,120,
1.e.

J = X2 Xeprt — Xogr1 - Xi—r42 + pX i1 - Xe—2043)k>1, 150
We define the ideal J : XT7, by

T 1 Xoe =10 € Z,[{Xi fliz1 =111 X75 ... X500 e T,

for some nonnegative integers miy, . .., my}.

THEOREM 6.5. The kernel of the epimorphism p : 7,)[{X; j}iz1 j=1] —> J is the ideal
J: Xﬁooo.

Proof. Let Q be a polynomial in 7,[{X;;},-, ;>,] such that its image in J is 0.
Using Proposition 6.2 and an induction argument, one can show that ¢'( k Visa
quotient with numerator a polynomial in £} . ¢(f1),..., f2,, ¢(f2%,),... and

denominator a product of the form (¢(f! )™ ... (o™ (£ ))™*'. Consequently, one

ww ww

can find a suitable product of the form X775 ... X\} such that
X1 .. X0 = Q(mod J) (6.11)

for some Q € Z,[{ X1, X2x}>,]. By Proposition 6.2 Q belongs to kerp. Note that
p(0) is a polynomial in ¢'(f! ) and ¢/(f2,) with coefficients in 7,, so that

ww waw
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Theorem 6.4 yields Q =0. We obtain that X5...XfOQ € J, and then that
Q € J : X77,,. The other inclusion is trivial. O

7. The Space of Elliptic Curves up to Isogeny

To make discussion at the end of Introduction precise we need the following
abstract preparation. Throughout this section R is a complete discrete valuation
ring with maximal ideal generated by p and perfect residue field. Let S be the cate-
gory of R-algebras, and let X be a stack over S. Note that we do not assume that
X is a stack in groupoids, i.e. that the morphisms in X(S) are isomorphisms for all
S € ObS. On each class ObX(S) we can consider the following natural equivalence
relation: two objects A, B are equivalent (write 4 = B) if there exist a sequence
of objects Ay, Ay,...,A4, such that Ay= A, A,= B, and for each i either
Homys)(4;, Ais1) # 0 or Homys)(Ais1,4;) # 0. The general problem that we
want to consider is to find a geometric setting for the following functor
S — {sets}, S +— (ObX(S))/ =

The idea is to ‘enlarge’ usual algebraic geometry by ‘adjoining’ a p-derivation (i.e.
by considering prolongation sequences) and then ‘do geometric invariant theory’ in
this enlarged geometry (i.e. consider line bundles compatible with the equivalence
relation and to consider maps to projective spaces that are constant on all equi-
valence classes).

By a line bundle L on X we shall understand a rule that associates to any ring
S € ObS, any 4 € ObX(S) and any morphism u € Homy(s)(4, B) a line bundle
L,/s on SpecS, and an isomorphism of line bundles u;: Lg/s — L4/s such that
the construction is functorial in the obvious way. Note that the u}’s are assumed
to be isomorphisms even if the «’s are not. In what follows we shall fix a line bundle
L on X.

By a degree function on X we shall understand a collection of maps
d’: Mor(X(S)) — S* NZs where Zg is the set of all s € S which are locally in
7(in the Zariski topology), such that d°(uv) = d°(u)d®(v) for all u,v € Mor(X(S))
for which uv is defined and such that d° is compatible with morphisms in S. For
any degree function as above we can associate a line bundle A on X constructed
as follows: for any Se€ObS, any A4€ObX(S) and any morphism
u € Homys)(4, B) we let A,/ be the trivial bundle on Spec S, and we let the iso-
morphism uy: Ag/s — A 4,5 be the multiplication by d°(u). Let us fix in what follows
a degree function ¢ and let A be its associated line bundle.

By a line bundle L") of order r on X we shall understand a rule that associates to
any prolongation sequence S* € Prol, over R (here a prolongation sequence S* is
said to be ‘over R’ if all maps §' — S™*! are maps of R-algebras and all §’s send R
to R), any 4 € ObX(S?), and any morphism u € Homgy(s)(4, B), a line bundle
L(/;}S on SpfS"” and an isomorphism u; : Lg}s — LS}S the formation of the above
objects being compatible with composition of morphisms in X(S°) and functorial in
S*. One can define, in an obvious way, a tensor product operation on the set of line
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bundles of order r on X. For any line bundle of order r, L"), on X we define its space
of global sections, denoted by HO(X<"),L(’)), as being the set of all rules, f, that
associate to any S* € Prol, over R and any A4 € ObX(S°) an element
flA4,8*] € H*(Spf S, /;/S) such that the formation of f[4,S*] is functorial in S$*
and compatible with the isomorphisms u;, in the sense that for any
u € Homyg0)(4, B) we have u;, (f[B,S*]) = f[4, S*].

Recall that we denoted by W the free Abelian group generated by the symbols
Wwo, wi,Wa,... and embedded it into the group of all J-characters. If
w=wy"...w" with m, # 0 then we set ord(w) =r and deg(w) =m, + --- + m,.
For any w € W of order r and even degree deg(w), we can define a line bundle
L®" of order r on X as follows. For any S* € Prol, over R and any 4 € ObX(S?)

we consider the line bundle on the formal scheme Spf S” defined by
LYl =L @ (Lyd)") ™ @ ... ® (Las)’) ™™,

where (LA/S) 9 is the pull-back of L,/s via
can

¢: S > 5§ (7.1)

Note that the isomorphisms u;: Lg/s — L,s induce isomorphisms ., L%}‘S
L®}‘ These data define our line bundle of order , L*", on X. The above construc-
tion applied to A gives rise to a bundle of order r on X, still denoted by A, which is
defined as follows: we continue to denote by A /g the pull-back of A,/g via (7.1),
which is of course the trivial bundle on SpfS” and we let the isomorphisms
uy: Ag/s — Ayys on SpfS” be again the multiplication by d’(u). Let us denote by
(L®AY*)®" the line bundle of order r on X defined by (L® Al/z)f;"s =

LY ® Aﬁ?;g ")/2 and defining isomorphisms given by

R * _ 70, ~\deg(w)/2 . x
uL® A2 = Upew @ Uy sacgonz = d’(u) i,

Qw -

By a d-linear system of weight w on X(belonging to (L,A) )we shall understand a
finitely generated R-submodule

AcC HO(X(Ord(W)), (L ® A1/2)®W).

Let us fix an R-basis fy, ..., fy of A. Then, for any prolongation sequence S* € Prol,
over R we have a partially defined map to a projective space mp:
ObX(S%) — PY (o)) defined by associating to any 4 € ObX(S?) the point
(fol4,S*] :...: fx[A,S*]). This point is well defined if fy[4, S*],...,fn[4, S*] are not
all zero, so that the set of all A € ObX(S?) where this condition fails may be called
the base locus of A. Note that the maps np are compatible with morphisms of prolon-
gation sequences and are constant on all equivalence classes of = on Ob X(S?). The
‘size’ of the image of the maps 7 can be controlled as follows. We denote by Weyen
the group of all w € W of even degree and then consider the Ween-graded ring

@ HO(X(Ord(”’))7 (L ® Al/2)®uv). (72)

WE Weyen
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On this ring ¢ acts naturally and sends the piece of degree v = wy’ ... w% into the
piece of degree ¢v =wi{"...wy . We say that A has litaka 6 — dimension n if
n + 1 is the largest integer such that A contains # elements which are ¢—algebraically
independent in the ring (7.2).

The above formalism can be applied to a number of situations in which one con-
siders quotients of schemes (or algebraic stacks) by arithmetically defined equi-

valence relations.

EXAMPLE 1. Let X be (representable by) a smooth scheme X/R, L be (represen-
table by) a line bundle L on it, and d° = 1 so that A is the ‘trivial line bundle’. In this
case X is a stack in groupoids. Recall from [2, 3, 5] that one can define a formal
scheme J'(X/R), called the p-jet space of X of order r. Moreover, one can define a
line bundle L§" on J"(X/R) by gluing the obvious local line bundles. Then the space
HOX" (L ® A'Y?)®") identifies with the usual space H°(J"(X/R),L%") of global
sections of Ly" on the formal scheme J'(X/R). If R=7,, X = PN and L = o(1),
for instance, then HO(X"), (L ® AY?)®") naturally contains the 7,-submodule of
homogeneous polynomials of degree w in

Zp[x()a .. .,XN,¢XO, s ()be? .- '7¢nx0a .- '7¢an]7

where the above ring is given a W-gradation by letting (;Sixj have weight w;!. Using
Proposition 1.9 in [5], p. 107, and the ‘weak weight technology’ in [5], p. 116, one can
show, actually, that H(X"), (L ® A'/?)*") is contained in the space of polynomials
of degree w in

Qp[x()a"'7XN7¢X0a'°'¢xN7"'>¢nx07"'a¢nx1\/]'

If A is the d-linear system generated by xq, ..., Xy, pXo, ... PxXN, ..., P " X0, ..., P XN,
then A has litaka é-dimension N.

In the following example we shall describe our realisation of the space of elliptic
curves up to isogeny.

EXAMPLE 2. Let R =7, and let X be the stack A" whose objects are elliptic
curves, and whose morphisms over each S are the isogenies of degree prime to p.
Moreover, let L be the line bundle on X defined by taking L/ to be the direct image
of the Kahler differentials QIE/S in S, for any E € ObX(S). Finally, the degree
function d° is the multiplication by the degree, deg(u), of any isogeny u, as above. In
this case X is not a stack in groupoids. Note that the space HO(X"), (L ® A!/?)®")
coincides with the space of isogeny covariant forms I(w). Let us consider the o-linear
system A € HO(X®), (L ® AY?)®") generated by £} $*(f!,) and £2 ¢(f2,), where
w = wow;wowsz. Then we have

THEOREM 7.1. The é-linear system A has litaka dimension 1.
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Proof. We set go =f1 ¢*(fl ) and g, = f2, $(f2,). To prove that A has litaka
dimension 1 it is enough to show that the family {go, g1} is ¢-algebraically inde-
pendent. Supposing the contrary we get that gy, g, are ¢-algebraically dependent in
I(w- ¢w - $*w - ¢p*w), for some weight w = wo' wi'..w% with g, > 0 for all k. In other
words, a finite sum(over Z,) of monomials of the form

M, = 86" g} (dg0)" " (dg1)" .. (¢”go)””—"’(¢gn)i”

is zero, where 0 < i < a; for all k. Since f! , /2 are ¢-algebraically independent
(Theorem 6.4) to derive the contradiction it is enough to show that

CLAIM. M;, . ;= M;, . ;. if and only if (ip, ..., i) = (Jo, .-, Jjn)-

Proof. We prove the Claim by induction on (i, . . ., i,)(consider the lexicographic
order).If i, # j, then the exponent of ¢""(f') in M, is a, — i, whereas the
exponent of 4)’”2( /1) in M;j, . is a, — j,, and we obtain a contradiction. Combining

iy = j, with the step of induction we deduce the Claim. O

In what follows we shall give a partially description of the base locus of A. The
base locus of A is the set of all £ € ObA*#(S?) for which

1D ENE, @,8% = f2 6(f2)NE, 0,5 =0,

for a basis w of the 1-forms. It is easy to see that the above equalities are equivalent
of) (E,w,8% =f2 (E,0,5% = 0if $°/pS® is a field. In addition, if E has ordin-
ary reduction, then

(ua)(

1

0
R T PN

o (E,0,8%) = p + Oy, N E 0, SOf(E, 0, 5°)

waw waw

(cf. Proposition 6.1), so that if f! (E,,S°) =0, then E,,5% = 0. Using
Proposition (5.3) in [5], f! (E,®,8°) =0 if and only if the morphism F, 4:
E?® (S'/pS") — E? @ (S'/pS') defined in Construction 2.1 lifts to an S'-mor-
phism E¢ — E?. We shall suppose now that S is a complete discrete valuation ring
with maximal ideal generated by p and finite residue field, and S* is the prolongation
sequence defined by S’ := S for all i, the ring homomorphisms are the identities and
the derivations are defined by d(x) = (¢(x) — x”)/p, where ¢ is the unique lifting of
the Frobenius. In this case the morphism F, 4: E? ® (S'/pS') — E¢ @ (S'/pS") has
a lifting if and only if the endomorphism ring Endgo(E) is strictly larger than 7, i.e.
E has complex multiplication

waw (

A ObATE(S) — P(S%), E > [fL, > (fLIE, %) : f2,6(f2)(E, SO)]

is defined for all elliptic curves E£/S° with ordinary reduction and without complex
multiplication. Note that this discussion may be generalized to the case of an arbi-
trary d-linear system generated by elements in J.
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