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Abstract. The purpose of this article is to develop the theory of differential modular forms
introduced by A. Buium. The main points are the construction of many isogeny covariant dif-
ferential modular forms and some auxiliary (nonisogeny covariant) forms and an extension of

the ‘classical theory’ of Serre differential operators on modular forms to a theory of ‘d-Serre
differential operators’ on differential modular forms. As an application, we shall give a
geometric realization of the space of elliptic curves up to isogeny.
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1. Introduction

Let Yð1Þ be the Riemann surface that classifies the isomorphism classes of elliptic

curves E defined over the field of complex numbers C. Then one has an analytic iso-

morphism j : Yð1Þ�!A
1ðCÞ;E 7! jðEÞ onto the set of C-points of the affine line,

where jðE Þ is the j-invariant of the elliptic curve E=C. On A
1ðCÞ, one can introduce

an equivalence relation as follows: We say that x 2 A
1ðCÞ is isogeneous to

y 2 A
1ðCÞ, in notation x �isog

y, if there exists an isogeny p : Ex�!Ey defined over

C, where x ¼ jðExÞ and y ¼ jðEyÞ. Then we may consider the set A
1ðCÞ=isogeny

of cosets of A
1ðCÞ modulo �isog

.

We cannot expect to find any reasonable object in the usual algebraic geometry

(even if we allow algebraic spaces, stacks, etc), whose C-points are naturally in bijec-

tion with A
1ðCÞ=isogeny. Indeed, the equivalence classes of �isog

are dense in the com-

plex topology. However, if one enlarges as in [2, 3] the usual algebraic geometry by

‘adjoining’ one new operation that plays the role of a derivation, then the situation

changes dramatically. We will be able to find an object in this ‘new’ geometry that

plays the role of a quotient ‘A1=isogeny’ and we shall embed ‘A1=isogeny’ into a
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projective space by using some remarkable objects, called isogeny covariant differen-

tial modular forms (cf. [5]), that belong to this ‘new’ geometry.

Let us briefly explain our terminology and results. We start with a prime number

p, assumed for simplicity to be 55. The sign^will always denote p-adic completion.

Let R be a complete discrete valuation ring whose maximal ideal is generated by p,

and with algebraically closed residue field. If f: R�!R is the (unique) lifting of the

Frobenius c 7! cp of the residue field, then one can define a map d: R�!R by the

formula dx ¼ ðfðxÞ � xpÞ=p. Set MðRÞ :¼ fða; bÞ 2 R2 j 4a3 þ 27b2 2 R�g. Recall

the following definitions from [5]. A function f : MðRÞ�!R is called a modular

d-function of order4n if it can be written as

fða; bÞ :¼ Fða; b; da; db; . . . ; dna; dnb; ð4a3 þ 27b2Þ
�1
Þ;

where F is a restricted power series with coefficients in Zp, i.e. its coefficients con-

verge to 0 in the p-adic topology. A d-character is a group homomorphism

w : R� �!R� that can be written as wðlÞ ¼ Gðl; dl; . . . ; dnl; l�1Þ; where G is a

restricted power series in nþ 2 variables with R-coefficients. We say that the modu-

lar d-function f has weight w if fðl4a; l6bÞ ¼ wðlÞ�1fða; bÞ for all l 2 R�. A modular

d-function that has a weight is called a modular d-form. We say that a modular

d-form f of weight w is isogeny covariant if there exists an integer k such that for

any isogeny of degree N, prime to p, from an elliptic curve y2 ¼ x3 þ ~axþ ~b to

an elliptic curve y2 ¼ x3 þ axþ b that pulls back dx=y to dx=y we have

fð~a; ~bÞ ¼ N�k=2fða; bÞ. Note that there are no nonzero isogeny covariant classical

modular forms (cf. [5], Corollary (7.24)).

In Section 2, we review the basic results and examples in the theory of differential

modular forms following [5]. Let us quickly sketch the construction of a sequence of

modular d-forms f koo for k5 1, which plays a central role in this theory. Let E be an

elliptic curve given as a cubic in P
2
R by the inhomogeneous equation

y2 ¼ x3 þ axþ b. On the de Rham module H :¼ H1
DRðE=RÞ, there is a ‘Frobenius’

operator F coming from crystalline cohomology. If we assume that E has ordinary

reduction, then one can find a symplectic basis fa; bg of H such that

Fa ¼ a;Fb ¼ pb. Now, we write dx=y ¼ puaþ vb, for some u; v 2 R and then set

f 1
ooða; bÞ ¼ pufðvÞ � vfðuÞ 2 R.

It can be shown that f 1
oo extends to any pair ða; bÞ, not necessarily corresponding

to elliptic curves with ordinary reduction. Note that f 1
oo is a modular d-form of

order one and weight l 7! 1=ðlfðlÞÞ. By a similar construction, one can define a

modular d-form f koo for any integer k5 1. The modular d-forms f koo; k5 1 are

isogeny covariant. Recall also that to any modular d-function f one associates in [5]

its ‘Fourier’ ðq; q0; . . . ; qðnÞÞ-expansion fðq; q0; . . . ; qðnÞÞ 2 ZpððqÞÞ̂ ½q0; . . . ; qðnÞ�^ (see

also Section 2).

Section 3 contains the construction of some new interesting modular d-

forms f 1
oZ; f

1
Zo; f

1
ZZ; f

@; f@ , that will help us prove our main theorems about the forms

f koo; k5 1. The major difference between the f koo’s and the modular d-forms

f 1
oZ; f

1
Zo; f

1
ZZ is that the latter are not isogeny covariant. The modular d-forms f @; f@
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are defined only ‘outside Ep�1’ in the same way the p-adic modular forms are. As we

shall see in Section 5, they have an interesting property, their ‘Fourier’ expansions

are equal to 1.

In Section 4, we shall introduce an operator @Serre, which we shall call the d-Serre

operator, that plays the same role in the theory of modular d-forms as the Serre

operator does in the ‘classical’ theory of modular forms. In particular, for any mod-

ular d-form f we have (cf. Proposition 4.2)

ðmnp
nffn
ðPÞ þ @Serre

n ð f ÞÞðq; . . . ; qðnÞÞ ¼ 12fn
ðqÞ

@

@qðnÞ
ð f ðq; . . . ; qðnÞÞÞ;

which should be viewed as the analogue of 12yf ¼ kPðqÞfþ ð@FÞðqÞ, where F is a

‘classical’ modular form, f ¼ FðqÞ is its Fourier expansion and P is the Ramanujan

P-function (cf. [11], p. 115).

In Section 5 we shall find some of the connections among the modular d-forms

f 1
oZ; f

1
Zo; f

1
oo; f

1
ZZ; f

@; f@ . For example, the modular d-forms f 1
oZ and f 1

ZZ are liftings in

the ring of differential modular forms of the modular forms modulo p �Ep�1 and

� 1
12

�Epþ1, respectively. As an application, we obtain a result which should be viewed

as a lifting to characteristic 0 of a congruence due to Robert [14] (Robert’s con-

gruence we are referring at says that if p : E 0 �!E is an isogeny of degree prime

to p, defined over R and normalized by the condition p�o ¼ o0 then

ðdeg pÞEpþ1ðE
0=R;o0Þ � Epþ1ðE=R;oÞ ðmod pÞ

if the elliptic curve E=R satisfies the additional condition Ep�1ðE=R;oÞ � 0 ðmod pÞ,
that is, Epþ1 is isogeny covariant on supersingular elliptic curves modulo p).

Section 6 contains our main results about the forms f koo. To explain them we intro-

duce the rings I and J, as follows. Let wi: R
� �!R�, for any i5 0 be the weights

defined by wiðlÞ ¼ 1=ðfiðlÞÞ, for any l 2 R�, and let W be the free multiplicative

Abelian group generated by the symbols w0;w1;w2; . . . ; viewed as embedded into

the group of all d-characters. For any weight w let IðwÞ be the Zp-module of all iso-

geny covariant modular d-forms of weight w. One can define the ring I by

I :¼
L

ðm0;...;mnÞ2Znþ1 Iðwm0

0 . . .wmn
n Þ. Note that I becomes graded by W. As it will be

explained in the last section, the ring I should be viewed, morally, as containing

all ‘sections’ over the space ‘A1=isogeny’ of the ‘canonical bundle of that space’.

One can also define the following subring of I: J :¼ Zp

�L
04i4j IðwiwjÞ

�
i.e. the

Zp-subalgebra of I generated by all IðwiwjÞ. The ring J contains all the ‘interesting

elements’ that can be defined with the help of the modular d-forms f koo; k5 1. In par-

ticular, J contains the entire ‘crystalline information’ on elliptic curves.

Our main results are Theorem 1.1 and Theorem 1.2 about the generators of J and

about the relations among the generators, respectively. Here is the result on generators:

THEOREM 1.1. The ring J is generated as a Zp-algebra by fi
ð f jooÞ 2 IðwiwiþjÞ for

i5 0 and j5 1.
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To explain the result about relations consider the following epimorphism of rings

r: Zp fXi; jgi51; j51

� �
�! J; Xi; j j�!fj�1

ð f iooÞ;

where Zp½fXi; jgi51; j51� is the ring of polynomials in the variables fXi; jgi51; j51. Let

also J be the ideal of Zp½fXi; jgi51; j51� generated by the polynomials of the form

X1;lþ2 � Xk;lþ1 � X2;lþ1 � Xk�1;lþ2 þ pX1;lþ1 � Xk�2;lþ3 for k5 1, l5 0, i.e.

J ¼ ðX1;lþ2 
 Xk;lþ1 � X2;lþ1 
 Xk�1;lþ2 þ pX1;lþ1 
 Xk�2;lþ3Þk51;l50:

We define the ideal J : X1
1;1 by

J : X11;1 :¼ fQ 2 Zp½fXi; jgi51; j51� jX
m2

1;2 . . .X
mk

1;k Q 2 J ; for some

nonnegative integers m2; . . . ;mkg:

THEOREM 1.2. The kernel of the epimorphism r: Zp½fXi; jgi51; j51� �! J is the ideal

J : X11;1.

In the last section we shall discuss a geometric realisation of the space of elliptic

curves up to isogeny. We shall briefly explain it in what follows. Let A1 be the stack

of elliptic curves over schemes. Then one has the following bijection of sets:

A1ðCÞ=isomorphism ’ A
1ðCÞ. Using the d-forms in J we may fit A1ðRÞ=isogeny into

a geometric picture as follows. Let f0; . . . ; fN be a basis of a subspace of IðwÞ, where w

is a given weight, and then consider the partially defined map

A1ðRÞ �!P
N
ðRÞ ð1:1Þ

described in the following way. Let E=R be an elliptic curve and let o be a basis for

the 1-forms; then E is defined in P
2
R by an equation of the form y2 ¼ x3 þ axþ b. We

send E 7! ½ f0ða; bÞ : . . . : fNða; bÞ�:
Note that the latter point in P

NðRÞ is well defined due to the fact that all f0; . . . ; fN
have the same weight w. In addition, the map (1.1) is constant on isogeny classes, so

that we obtain a partially defined map

A1ðRÞ=isogeny�!P
N
ðRÞ: ð1:2Þ

We will show that for w ¼ w0w1w2w3 the image of (1.2) is ‘large’ (cf. Theorem 7.1).

2. Review of Differential Modular Forms [5]

In this section we record some of the basic definitions and results about differential

modular forms contained in [5]. In what follows p will always denote a prime integer,

assumed for simplicity to be 55. For any ring S we denote by Ŝ its completion in the

p-adic topology. By a p-adic ring we will understand a ring S such that S ¼ Ŝ; any

p-adic ring has a natural structure of a Zp-algebra.

Let j: A�!B be a ring homomorphism. A p� derivation d: A�!B of j is a map

satisfying
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dðxþ yÞ ¼ dðxÞ þ dðyÞ þ CpðjðxÞ;jð yÞÞ;

dðxyÞ ¼ jðxÞpdðyÞ þ jðyÞpdðxÞ þ pdðxÞdðyÞ;

for all x; y 2 A, where

Cpðx; yÞ :¼ ðX
p þ Yp � ðXþ YÞ pÞ=p 2 Z½X;Y �:

If d is a p-derivation of j as above, we will always denote by f: A�!B the map

defined by fðxÞ ¼ jðxÞp þ pdðxÞ, which is a ring homomorphism. The ring Zp has

a unique p-derivation of the identity, defined by the formula dðxÞ ¼ ðx� xpÞ=p.

NOTATION. Let R denote (throughout the paper) a fixed complete discrete

valuation ring with maximal ideal generated by p and with algebraically closed

residue field k. Let f: R�!R denote the (unique) lifting of the Frobenius F : k�! k,

FðxÞ ¼ xp. Define the map d: R�!R by the formula dðxÞ ¼ ðfðxÞ � xpÞ=p. Then d is

the unique p-derivation of the identity of R (This is the basic example considered

in [2]).

By a prolongation sequence of rings S� we mean a sequence of ring homomor-

phisms

S 0 �!
j0

S1 �!
j1


 
 
 �!Sn �!
jn

Snþ1�! 
 
 


together with p-derivations dn of jn such that jn � dn�1 ¼ dn � jn�1. By abuse we

shall denote all jn’s and dn’s by the same letters, j and d, respectively.

A morphism of prolongation sequences S � �! ~S� is simply a sequence of ring homo-

morphisms pn: Sn�! ~Sn which is compatible with the ring homomorphisms j and

the p-derivations d in S � and ~S�. By abuse we shall denote all pn’s by the same letter,

p. Denote by Prolp the class of all prolongation sequences S � with Sn Noetherian,

p-adically complete, and flat over Zp. If S is a p-adic ring and d: S�!S is a p-deri-

vation of the identity then one can form a prolongation sequence of rings S � by

letting all the rings Sn be S and all the p-derivations be equal to d. We say that S �

is defined by ðS; dÞ.
By a multiplicative d-character of order 4n, w we mean a rule that associates to

any prolongation sequence S � 2 Prolp a group homomorphism w: ðS 0Þ� �!ðSnÞ�
which is ‘functorial in S �’ in the obvious sense. In order to describe them, let us con-

sider arbitrary vectors m ¼ ðm0; . . . ;mnÞ 2 Z�Zn
p. For each such vector we define

wm ¼ wðm0;...;mnÞðt; . . . ; tðnÞÞ 2 Zp½t; . . . ; tðnÞ; t�1�^ by the formula

wm :¼ tm0
fðtÞ
tp

� �m1

. . .
fn
ðtÞ

tp
n

� �mn

;

where fiðtÞ are defined, inductively, by

fiþ1
ðtÞ :¼ fi

ðtÞp þ pdðfi
ðtÞÞ 2 Zp½t; . . . ; t

ðiþ1Þ; t�1�^ and dðtðiÞÞ ¼ tðiþ1Þ:
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The induction starts with f0ðtÞ :¼ t and dðtÞ :¼ t0. Note that the series wm induces,

for any prolongation sequence of rings S �, a group homomorphism wm;S �:

ðS 0Þ� �!ðSnÞ�; wm;S � ðlÞ ¼ wmðl; dl; . . . ; dnlÞ. The set of multiplicative d-

characters of order 4n form a group isomorphic to Z�Zn
p. An element wðm0;...;mnÞ

is a square in this group if and only if m0 is even, in which case we say that w is even.

We say that w is integral if ðm0; . . . ;mnÞ 2 Z
nþ1. If w ¼ wðm0;...;mnÞ we set

kðwÞ :¼ m0 þm1ð1� pÞ þ 
 
 
 þmnð1� pnÞ:

Recall that by an elliptic curve E over a ring S one means a smooth proper mor-

phism of schemes p: E�! SpecS, whose geometric fibers are connected curves of

genus one, given with a section e: SpecS�!E. In what follows we shall consider tri-

ples ðE=S 0;o;S �Þ consisting of an elliptic curve E over S 0 such that the S 0-module

H0ðE;OE=S 0Þ is free, a basis o of this S 0-module and a prolongation sequence of

rings S � 2 Prolp.

By a (holomorphic) modular d-function of order 4n we will understand a rule f that

associates to any triple ðE=S 0;o;S �Þ an element fðE=S 0;o;S �Þ 2 Sn such that the

following properties are satisfied:

(a) fðE=S 0;o;S �Þ depends only on the isomorphism class of the triple,

(b) The formation of fðE=S 0;o;S �Þ commutes with arbitrary change of base

u�: S � �! ~S� i.e.

fðE�S 0
~S 0= ~S 0; u0�o; ~S�Þ ¼ unð f ðE=S 0;o;S �ÞÞ:

Moreover, if w is a multiplicative d-character then f is said to have weight w if

fðE=S 0; lo;S �Þ ¼ wS � ðlÞ
�1

 fðE=S 0;o;S �Þ

for all l 2 ðS 0Þ�. A modular d-function that has a weight will be called a modular

d-form. Let f be a modular d-form of integral, even weight w. We shall say that f

is isogeny covariant if for any triple ðE=S 0;o;S �Þ as above, and for any isogeny

p: E 0 �!E (of elliptic curves over S 0) of degree prime to p we have

fðE 0=S 0;o0;S �Þ ¼ ðdeg pÞ�k=2

 fðE=S 0;o;S �Þ;

where o0 :¼ p�o; k :¼ kðwÞ.
Let f be a holomorphic modular d-function of order 4n. By a modular d-function

of order 4n0 holomorphic away from f ¼ 0 we understand a rule g that associates

to any triple ðE=S0;o;S �Þ for which fðE=S0;o;S �Þ 2 ðSnÞ� an element

gðE=S 0;o;S �Þ 2 Sn0 such that the conditions (a) and (b) above are satisfied by g.

We say that g has weight w (respectively that g is isogeny covariant) if a similar con-

dition as before is satisfied for g. We say that g is a modular d-form holomorphic away

from f ¼ 0 if it has a weight.

We denote by Mn the set of all (holomorphic) modular d-functions of order 4n

and by MnðwÞ the subset of Mn consisting of all modular d-forms of weight w. Clearly

Mn are p-adic rings and define a prolongation sequence M�. If f 2Mn and n05 n we
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denote by Mn0

f f g and Mn0

f f gðwÞ the ring of modular d-functions holomorphic away

from f ¼ 0 and its Zp-submodule of elements of weight w.

Recall from [5] the structure of the rings Mn and Mn0

f f g. Let a4; a6 be variables,

set D :¼ �16ð4a4
3 þ 27a6

2Þ and consider the rings Zp½a4; a
0
4; . . . ; a

ðnÞ
4 ; a6;

a06; . . . ; a
ðnÞ
6 ;D�1� .̂ In what follows, we will denote the rings above by

Zp½að4nÞ
4 ; a

ð4nÞ
6 ;D�1� .̂ These rings form, in an obvious way, a prolongation sequence.

Moreover, one has (cf. Proposition (3.3), [5]) an isomorphism of prolongation

sequences Mn ’ Zp½að4nÞ
4 ; a

ð4nÞ
6 ;D�1� .̂ Also, for any f 2Mn and any n05 n there

is an isomorphism of rings

Mn0

f f g ’ Zp½a
ð4n0Þ
4 ; að4n0Þ

6 ;D�1; f�1� :̂

Consequently, a modular d-function of order 4n may be viewed as a p-adically con-

vergent series in a4; a6; a
0
4; a

0
6; . . . ; a

ðnÞ
4 ; a

ðnÞ
6 ;D�1. Note that a series f represents a mod-

ular d-form of weight w if and only if

fððL�4a4Þ
ð4nÞ; ðL�6a6Þ

ð4nÞ; L12D�1
Þ¼ wðL; L0; : : : ; LðnÞÞ�1


 fða
ð4nÞ
4 ; að4nÞ

6 ; D�1
Þ ð2:1Þ

in the ring Zp½að4nÞ
4 ; a

ð4nÞ
6 ;D�1;Lð4nÞ;L�1 �̂ , where L;L0; . . . ;LðnÞ are indeterminates.

CONSTRUCTION 2.1. We review the crystalline construction of the sequence of

modular d-forms f koo, k5 1 of weights wð�1�pk;...;�1Þ respectively, given in [5] and [6].

Let ðE=S 0;o;S�Þ be a triple as above then j: S 0 �!S1 is the defining ring homo-

morphism and d: S 0 �!S1 is the p-derivation of j. Let f: S 0 �!S1 denote the ring

homomorphism fðxÞ ¼ jðxÞp þ pdðxÞ. We denote by Ej=S1 and Ef=S1 the pull

backs of E=S 0 via j and f, respectively. Let �j; �f : S 0=pS 0 �!S1=pS1 be the reduc-

tions modulo p of j and f, respectively.

If F : S1=pS1 �!S1=pS1 is the Frobenius endomorphism of S1=pS1, then
�f ¼ �j � F. It follows that Ef � ðS1=pS1Þ is canonically isomorphic to the pull-back

F �ðEj � ðS1=pS1ÞÞ of Ej � ðS1=pS1Þ via F. Now the absolute Frobenius Fp-endo-

morphism Fabs of Ej � ðS1=pS1Þ induces an S1=pS1-morphism

Frel : E
j � ðS1=pS1Þ �!F �ðEj � ðS1=pS1ÞÞ:

Composing the latter morphism with the canonical isomorphism

F �ðEj � ðS1=pS1ÞÞ ’ Ef � ðS1=pS1Þ we get an S1=pS1-morphism

Fj;f: E
j � ðS1=pS1Þ �!Ef � ðS1=pS1Þ:

By the results in [1], p. 184 (see also [5], p. 135) the morphism Fj;f induces a mor-

phism of S1-modules:

F :¼ H1
crysðFj;fÞ: H

1
DRðE

f=S1Þ �!H1
DRðE

j=S1Þ:
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Consider the injection

if: H
1
DRðE=S

0Þ �!
id�1

H1
DRðE=S

0Þ �f S1 ’ H1
DRðE

f=S1Þ

induced by base change, where �fS
1 indicates that S1 is viewed as an S 0-algebra via

f. Note that for any l 2 S 0 and Z 2 H1
DRðE=S 0Þ we have

FðifðlZÞÞ ¼ fðlÞ 
 FðifðZÞÞ: ð2:2Þ

Similarly, consider the injection

ij: H
1
DRðE=S

0Þ �!
id�1

H1
DRðE=S

0Þ �j S1 ’ H1
DRðE

j=S1Þ:

The cup-product on de Rham cohomology defines an alternating pairing of

S1-modules:

h; i : H1
DRðE

j=S1Þ �H1
DRðE

j=S1Þ �!S1:

Finally, we define

f 1
ooðE=S

0;o;S �Þ :¼ ijo;
1

p
FðifoÞ

� �
2 S1

(one has to prove first that FðifoÞ 2 pH1
DRðEj=S1Þ, for an argument see [5], p. 136).

Clearly, the formation of f 1
ooðE=S 0;o;S �Þ is functorial in ðE=S 0;o;S �Þ and f 1

oo

defines a modular d-function of weight wð�1�p;�1Þ. Indeed, by (2.2) we have that

f 1
ooðE=S

0; lo;S�Þ ¼ lfðlÞf 1
ooðE=S

0;o;S�Þ:

Note that f 1
oo has order 1 (not just 41) because its Fourier expansion f 1

ooðq; q0Þ ¼ C
is not in ZpððqÞÞ̂ (cf. Corollary 2.3). For any isogeny E 0 �!E of degree prime to p

over S 0 the induced S 0-module homomorphism H1
DRðE=S 0Þ�!H1

DRðE 0=S 0Þ is an

isomorphism, compatible with the action of the corresponding maps F;F0 (cf.

Lemma 5.1 below). Now an immediate application of Lemma 5.2 below shows that

f 1
oo is isogeny covariant. We can iterate the above construction to obtain an induced

morphism of Sk-modules, Fk: H1
DRðEfk

=SkÞ�!H1
DRðEjk

=SkÞ together with the

injections ifk: H1
DRðE=S 0Þ�!H1

DRðEfk

=SkÞ; ijk: H1
DRðE=S 0Þ�!H1

DRðEjk

=SkÞ. As

before FðifkoÞ 2 pH1
DRðEjk

=SkÞ so that we can define

f kooðE=S
0;o;S �Þ :¼ ijko;

1

p
FkðifkoÞ

� �
2 Sk:

The formation of f kooðE=S 0;o;S �Þ is functorial in ðE=S 0;o;S �Þ and f koo defines a

modular d-form of weight wð�1�pk;0;...;0;�1Þ. Now an argument similar to the one used

to show that f 1
oo is isogeny covariant may be used to prove that f koo is isogeny co-

variant, for any k5 2.

Remark 2:1. The modular d-forms f koo were constructed using the crystalline

nature of the first de Rham cohomology modules of elliptic curves. In [5] and [6]

A. Buium has constructed, for each k5 1, an isogeny covariant modular d-form of
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the same order and weight as f koo, using p-jets of elliptic curves. Our ‘rank ¼ 1 result’

(Theorem 6.1) shows that the modular d-forms f koo coincide with the corresponding

ones constructed with p-jets of elliptic curves, up to multiplicative constants in Z�
p .

Now define the modular d-forms f jð f kooÞ for j5 1; k5 1, by

f j
ð f kooÞðE=S

0;o;S �Þ ¼ f j
ð f kooðE=S

0;o;S �ÞÞ:

One of the main tools in the study of differential modular forms is, as in the ‘clas-

sical case’, the ‘Fourier expansion’. The rest of the section deals with ‘Fourier expan-

sions’ of differential modular forms.

Set ZpððqÞÞ̂ :¼ Zp½½q��½1=q� ;̂ the elements of this ring are series of the formP1
n¼�1 anq

n with an 2 Zp; an ! 0 p-adically, as n! �1. For any n5 1 we will con-

sider the ring ZpððqÞÞ̂ ½q0; . . . ; qðnÞ� ;̂ its elements are restricted power series in

q0; . . . ; qðnÞ with coefficients in ZpððqÞÞ̂ . The rings ZpððqÞÞ̂ ½q0; . . . ; qðnÞ� ,̂ n5 0 form

a prolongation sequence in a natural way as follows. We define first a ring homo-

morphism f: ZpððqÞÞ̂ ½q0; . . . ; qðnÞ�^�!ZpððqÞÞ̂ ½q0; . . . ; qðnþ1Þ�^ by the formula

fð f ðq; q0; . . . ; qðnÞÞÞ ¼ fðqp þ pq0; ðq0Þp þ pq00; . . . ; ðqðnÞÞp þ pqðnþ1ÞÞ

and then define d by df ¼ ðfð fÞ � f pÞ=p.

For any even number n5 2 we denote, as usual, by EnðqÞ;DðqÞ the series in

ZpððqÞÞ̂ defined by

EnðqÞ :¼ 1�
2n

Bn

X
n51

sn�1ðnÞq
n;

DðqÞ :¼ 2�63�3ðE4ðqÞ
3
� E6ðqÞ

2
Þ ¼ q

"Y
n51

ð1� qnÞ

#24

;

where Bn are the Bernoulli numbers and skðnÞ ¼
P

djn d
k. Recall that E2ðqÞ;E4ðqÞ;

E6ðqÞ 2 Z½½q�� (cf. [11], pp. 151–153). Consider the injective homomorphism of rings

M ¼ Zp½a4; a6;D
�1
� �!ZpððqÞÞ; a4 j�! � 2�43�1E4ðqÞ;

a6 j�! � 2�53�3E6ðqÞ;

which is of course induced by the morphism

M̂ ¼M0�!ZpððqÞÞ^; f j�! fðTateðqÞ=ZpððqÞÞ^;ocanÞ

of evaluation on the Tate curve TateðqÞ and its canonical differential. By the univers-

ality property of p-jet spaces (cf. [5], p. 103) the above homomorphism induces a

unique morphism of prolongation sequences

Mn�!ZpððqÞÞ^½q
0; q00; . . . ; qðnÞ� ^ ; f j�! fðq; q0; . . . ; qðnÞÞ;

which we call the Fourier ðq; q0; q00; . . . ; qðnÞÞ-expansion map. Of course, the morphism

is just the evaluation morphism f j�! fðTateðqÞ=ZpððqÞÞ̂ ;ocan;S
�ÞwhereS� is the pro-

longation sequence defined by ðZpððqÞÞ̂ ½q0; q00; . . . ; qðnÞ� ;̂ dÞ, as above. The Fourier
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ðq; q0; . . . ; qðnÞÞ-expansion map fails to be injective for arbitrary n, but it becomes

injective when restricted to MnðwÞ, for any given w, as the next proposition asserts:

PROPOSITION 2.1 ðThe ðq; q0; . . . ; qðnÞÞ-expansion principleÞ ðcf: ½5�, Proposition

ð7:21ÞÞ. For any d-character w, the map MnðwÞ �!ZpððqÞÞ̂ ½q
0; . . . ; qðnÞ�^ induced by the

Fourier ðq; q0; . . . ; qðnÞÞ-expansion map is injective and the cokernel of this map is tor-

sion free. Moreover, for any modular d-form f 2Mn of some weight and not divisible by

p in Mn, the following homomorphism is injective

Mn0

f f gðwÞ �!ðZpððqÞÞ^½q
0; . . . ; qðn

0Þ� ^fðq;q0;...;qðnÞÞÞ^:

Remark 2:2. Note the following implication of the torsion freeness: if f is a

modular d-form whose Fourier ðq; q0; . . . ; qðnÞÞ-expansion is a multiple of p, i.e.

fðq; q0; . . . ; qðnÞÞ 2 pZpððqÞÞ^½q
0; . . . ; qðnÞ� ^, then f is a multiple of p in MnðwÞ, i.e. can be

written as f ¼ pg for some g 2MnðwÞ.
In what follows we set

C :¼
1

p
log

fðqÞ
qp
¼
X1
n¼1

ð�1Þn�1 p
n�1

n

q0

qp

� �n

2 ZpððqÞÞ^½q
0� ^:

Let I nðkÞ be the Zp-module of all elements fðq; q0; . . . ; qðnÞÞ 2 ZpððqÞÞ̂ ½q0; q00; . . . ; qðnÞ�^
satisfying

fðq2; dðq2Þ; . . . ; dnðq2ÞÞ ¼ 2�k=2 
 fðq; q0; . . . ; qðnÞÞ; ð2:3Þ

then the Fourier ðq; q0; . . . ; qðnÞÞ-expansion map sends the isogeny covariant elements

of MnðwÞ into I nðkðwÞÞ.

PROPOSITION 2.2 ðcf: ½5�; Proposition ð7:23ÞÞ. For any nonnegative integer n,

I nð�2Þ is a free Zp-module generated by: C;fC; . . . ;fn�1C and Inð0Þ ¼ Zp.

Remark 2:3. Let us note that the noninjectiveness of the ðq; q0; . . .Þ-expansion map

is obvious from this proposition and the next one.

PROPOSITION 2.3 ðcf: ½5�; Corollary ð7:24Þ and Corollary ð7:26ÞÞ.

ð1Þ For any w of order n with kðwÞ > 0 there are no nonzero isogeny covariant elements

in MnðwÞ.
ð2Þ For any isogeny covariant element f of MnðwÞ with w of order n and kðwÞ ¼ 0,

fðq; q0; . . . ; qðnÞÞ 2 Zp. In particular, the only isogeny covariant elements in

Mnðw0Þ are the constants in Zp, where w0 :¼ 1.

ð3Þ The modular d-form f 1
oo has the Fourier expansion

f 1
ooðq; q

0Þ ¼ aC ¼ a
1

p
log

fðqÞ
qp
¼ a

X1
n¼1

ð�1Þn�1 p
n�1

n

q0

qp

� �n

for some a 2 Z�
p .
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3. Construction of the Differential Modular Forms f 1xg; f 1gx; f 1gg; f›; f›

CONSTRUCTION 3.1. In what follows we construct three modular d-forms f 1
oZ;

f 1
Zo and f 1

ZZ of order 1 and weights wðp�1;1Þ; wð1�p;�1Þ and wð1þp;1Þ, respectively. Unlike

the modular d-forms f koo, they are not isogeny covariant (cf. Corollary 2.3).

Recall (from [9], pp. 161–164) the following facts about elliptic curves. Let

ðE=S;oÞ be an elliptic curve over a p-adic ring S such that H 0ðE;OE=SÞ is free of rank

1 and let o be a basis, then E is defined by an equation Y 2 ¼ 4X3 � g2X� g3, for

some g2; g3 2 S. Identifying H1
DRðE=SÞ with the module of differentials on E=S hav-

ing at worst double poles at 1, i.e. H 0ðE=S;O1
E=Sð21ÞÞ, we may canonically specify

a basis of H 0ðE=S;O1
E=Sð21ÞÞ, namely o ¼ dX=Y and Z ¼ X � o ¼ XdX=Y. Using

the notations in Construction 2.1 we define

f 1
oZðE=S

0;o;S�Þ ¼
D
ijo;FðifZÞ

E
;

f 1
ZoðE=S

0;o;S�Þ ¼
D 1

p
FðifoÞ; ijZ

E
;

f 1
ZZðE=S

0;o;S�Þ ¼
D
FðifZÞ; ijZ

E
;

where ðE=S 0;o;S�Þ is a triple as before. Clearly, the formation of

f 1
oZðE=S 0;o;S�Þ; f 1

ZoðE=S 0;o;S�Þ and f 1
ZZðE=S 0;o;S�Þ is functorial in ðE=S 0;o;S�Þ

and an easy computation shows that they have the weights as above. Since

kðwðp�1;1ÞÞ, kðwð1�p;�1ÞÞ and kðwð1þp;1ÞÞ are nonnegative integers, these forms are not

isogeny covariant (cf. Proposition 2.3).

CONSTRUCTION 3.2. An important role in what follows is played by two mod-

ular d-forms f @ and f@ holomorphic away from Ep�1 ¼ 0 of weight wðp�1;1Þ and

wð1�p;�1Þ, respectively (where Ep�1 is the normalized Eisenstein form of weight p� 1).

The construction of these modular d-forms is as follows.

Let us recall from [9], pp. 175–180, the construction of the canonical rank

one submodule of the first de Rham cohomology module of an elliptic curve.

We consider first the ‘universal’ situation. Let R univ ¼MðZp; 1; n; 0Þ be the ring

of p-adic modular functions defined over Zp of growth 1, level n (where n is

chosen such that p � 1 ðmod n)) and weight 0, and let E univ=R univ be the uni-

versal curve with level n structure, such that Hasse is invertible mod p. Let

H univ � Euniv be its canonical subgroup and consider the elliptic curve

E 0 :¼ E univ=H univ. As E 0 is defined over R univ with Hasse invertible mod p

and has a level n structure induced by the one of E, it is ‘classified’ by a

unique homomorphism juniv: R univ �!R univ such that E 0 ¼ ðE univÞðj
univÞ. The

induced homomorphism

p�: H1
DRðE

0=R univÞ ¼ H1
DRððE

univÞ
ðjunivÞ=R univÞ

¼ ðH1
DRðE

univ=R univÞÞ
ðjunivÞ
�!H1

DRðE
univ=R univÞ
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gives a juniv-linear endomorphism of H1
DRðEuniv=R univÞ, which we denote by

FðjunivÞ ¼ p� � ðjunivÞ�1. Note that FðjunivÞ respects the Hodge filtration as p� is

induced by a R univ-morphism.

An argument of successive approximation shows that there is a unique rank one

R univ-submodule U univ � H1
DRðE univ=R univÞ such that FðjunivÞðU univÞ ¼ U univ and

if u 2 U univ is a basis of U univ then fo; ug form a basis of H1
DRðE univ=R univ); where

o is a basis of the 1-forms.

Suppose now that S is a p-adic ring and ðE=S;oÞ is an elliptic curve whose

Hasse invariant modulo p is invertible, together with a basis o of the 1-forms. We

choose a level n structure, for some n5 3 with p � 1 ðmod nÞ, defined over an étale

over-ring S0 of S, so that E�S S
0=S0 together with the level n-structure is obtained

from E univ by base change via a (unique) morphism S0 �!R univ. We denote by

U � H1
DRðE�S S

0=S0Þ the inverse image of the canonical rank one submodule descri-

bed above. In fact, one can prove that U above descends to a submodule (still deno-

ted by U) of H1
DRðE=SÞ, which is independent of choices. In what follows

U � H1
DRðE=SÞ constructed above will be called the canonical rank one submodule

of H1
DRðE=SÞ.

Let us consider now a triple ðE=S 0;o;S�Þ as before, such that E=S 0 is an elliptic

curve whose Hasse invariant modulo p is invertible, equivalently Ep�1ðE=S 0;oÞ 2
ðS 0Þ�. If u is a basis of the canonical rank one submodule U, then the de Rham

cup product ho; ui is invertible on S, because fo; ug form a basis of H1
DR. We define

a modular d-form holomorphic away from Ep�1 ¼ 0 by the formula

f @ðE=S 0;o;S�Þ ¼
ho;FðuÞi
fðho; uiÞ

:

Clearly, the right-hand expression does not depend on the choice of the basis u, and

the formation of f @ðE=S 0;o;S�Þ is functorial in ðE=S 0;o;S�Þ. In addition, f @ defines

a modular d-form of weight wðp�1;1Þ. Using the same notations we can define also a

modular d-form holomorphic away from Ep�1 of weight wð1�p;�1Þ, by the formula

f@ðE=S
0;o;S�Þ ¼



1
pFðoÞ; u

�
ho; ui

:

We will see later (Corollary 5.1) that f@ ¼ 1=f @ .

The canonical rank one submodule of H1
DR is used by N. Katz in [9], p. 179 to give

a modular definition for the Ramanujan P function. Let us recall here the modular

definition of P given in [9]. As before, let u 2 U be a basis of U, the canonical rank

one submodule of H1
DRðE=SÞ, then we may define a function P by the formula

PðE=S;oÞ ¼ 12
hZ; ui
ho; ui

:

The expression defining P is independent of the choice of basis u of U and defines a

p-adic modular form of weight two and level one. Note that the definition above

shows that P may be viewed as a differential modular form holomorphic away
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from Ep�1 ¼ 0 of order 0 and weight 2, consequently P is an element of

Zp½a4; a6;D
�1;E�1

p�1� ,̂ i.e. a p-adically convergent series in a4; a6; 1=D; 1=Ep�1.

We can construct the f-generated modular d-forms

f j
ð f 1

oZÞ;f
j
ð f 1

ZoÞ;f
j
ð f 1

ooÞ;f
j
ð f 1

ZZÞ;f
j
ð f @Þ;f j

ð f@Þ and f j
ðPÞ for any j5 1;

using the recipe in the paragraph preceding Remark 2.1.

3.3. Let us recall also ‘the calculation at 1’ from [9], pp. 176–180 and how it can be

used to compute the Fourier q-expansion of P. Let HðyÞ: H1
DRðTateðqÞ=ZpððqÞÞ̂ Þ

�!H1
DRðTateðqÞ=ZpððqÞÞ̂ Þ be the Gauss–Manin operator induced by the deri-

vation y ¼ qðd=dqÞ, let ocan be the canonical differential on the Tate curve TateðqÞ
and let Zcan be its dual; then

HðyÞðocanÞ ¼ �
PðqÞ

12
ocan þ Zcan;

HðyÞðZcanÞ ¼
12yðPðqÞÞ � PðqÞ2

144
ocan þ

PðqÞ

12
Zcan;

where PðqÞ ¼ E2ðqÞ ¼ 1� 24
P

n51 s1ðnÞqn. The canonical subgroup of TateðqÞ over

ZpððqÞÞ̂ is mp ¼ hzpi, so that the quotient TateðqÞ=mp is TateðqpÞ ¼ TateðqÞðjpÞ, where

jp: ZpððqÞÞ̂ �!ZpððqÞÞ̂ , ðjpfÞðqÞ ¼ fðqpÞ. We have a jp-linear endomorphism

of H1
DRðTateðqÞ=ZpððqÞÞ̂ Þ, denoted by FðjpÞ. Note that the following diagram is

commutative

R univ ���!
c

ZpððqÞÞ^

juniv
j
#

j
#jp

R univ ���!
c

ZpððqÞÞ^

where c is the classifying map associated to any level n structure on TateðqÞ (cf. [9],

Appendix 2). Also FðjunivÞ and FðjpÞ coincide with the crystalline Frobenius. Con-

sequently, FðjunivÞ and FðjpÞ are ‘compatible’, i.e. FðjpÞ is obtained from FðjunivÞ
by base change via c. The action of FðjpÞ on H1

DRðTateðqÞ=ZpððqÞÞ̂ Þ is given by

FðjpÞðocanÞ ¼ pocan;

FðjpÞðZcanÞ ¼
pPðqpÞ � PðqÞ

12
ocan þ Zcan

or, in terms of the basis focan;HðyÞðocanÞg, by

FðjpÞðocanÞ ¼ pocan;

FðjpÞðHðyÞðocanÞÞ ¼ HðyÞðocanÞ:

The last equality shows that the canonical rank one submodule U of

H1
DRðTateðqÞ=ZpððqÞÞ̂ Þ is spanned by HðyÞðocanÞ. The Fourier q-expansion of P

can be computed as follows:
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PðTateðqÞ;ocanÞ ¼ 12
hZcan;HðyÞðocanÞi

hocan;HðyÞðocanÞi
¼ 12

hZcan;�
PðqÞ
12 ocan þ Zcani

hocan;�
PðqÞ
12 ocan þ Zcani

¼ 12
PðqÞ

12

hZcan;�ocani

hocan; Zcani
¼ PðqÞ;

so that P is holomorphic at infinity, i.e. PðqÞ 2 Zp½½q�� (cf. [9], p. 166). By standard

arguments one can show that the holomorphy at infinity forces that P 2
Zp½a4; a6; ð1=Ep�1Þ� .̂ The following lemma will be useful later.

LEMMA 3.1. The Ramanujan P function, viewed as a series in Zp½a4; a6; ð1=Ep�1Þ� ,̂

can be written in the form P ¼ ðEpþ1=Ep�1Þ þ pg for some g 2 Zp½a4; a6; ð1=Ep�1Þ� .̂

Proof. Note that P � Ep�1 � Epþ1 is a modular d-form of order 0 holo-

morphic away from Ep�1 ¼ 0 and weight pþ 1. Since P � Ep�1 � Epþ1 is an

element of Zp½a4; a6; ð1=Ep�1Þ�^ one can find a suitable power of Ep�1, En
p�1

such that En
p�1ðP � Ep�1 � Epþ1Þ ¼ h0 þ ph1, where h0 2 Zp½a4; a6� and

h1 2 Zp½a4; a6; ð1=Ep�1Þ� .̂ Note that h0 can be chosen to be a ‘classical’

modular form over Zp of weight nðp� 1Þ þ ðpþ 1Þ. By Kummer Congruences

([11], p. 151) the Fourier q-expansion of P � Ep�1 � Epþ1 is a multiple of p, so

that h0ðqÞ � 0 ðmod pÞ. Applying the q-expansion principle for modular forms

modulo p ([11], p.168) we deduce that h0 2 pZp½a4; a6�, and we are done. &

4. The d-Serre Operator

Let us recall first the classical Serre operator before defining the new one (cf. [11] or

[14]). For any integer k we denote by MkðZpÞ the Zp-module of modular forms of

weight k defined over Zp. Note that MkðZpÞ is a free Zp-module generated by the

monomials QaRb with a; b nonnegative integers such that 4aþ 6b ¼ k, where

Q ¼ E4, R ¼ E6. If the modular form F has the representation

F ¼
X

4aþ6b¼k

QaRb 2MkðZpÞ;

then its Fourier expansion FðqÞ is defined by FðqÞ :¼ FðE4ðqÞ;E6ðqÞÞ. The Serre

operator @ is a derivation of M :¼
L

k MkðZpÞ defined by

@Q ¼ �4R; @R ¼ �6Q2; ð4:1Þ

such that @ maps MkðZpÞ into Mkþ2ðZpÞ. Let y :¼ q d
dq be the derivation of Zp½½q��

defined by

y
X
n5 0

anq
n

 !
¼
X
n5 0

nanq
n:

Let F 2MkðZpÞ and f ¼ FðqÞ 2 Zp½½q��. Then

12y f ¼ kPðqÞfþ ð@F ÞðqÞ: ð4:2Þ
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Now we define for any n5 1 an operator @Serre
n : Mn�!Mn, which will be called

the d-Serre operator of order n, by the formula

@Serre
n ð f Þ ¼ 16fn

ða4Þ
2 @f

@aðnÞ6

� 72fn
ða6Þ

@f

@aðnÞ4

;

where f is viewed as a p-adically convergent series in a4; a6; . . . ; a
ðnÞ
4 ; a

ðnÞ
6 ;D�1.

LEMMA 4.1. Let f be a modular d-form of order n and weight wðm0;m1;...;mnÞ
, where

n5 1. Then @f=@aðnÞ4 and @f=@aðnÞ6 are modular d-forms of order n and weights

wðm0�4pn;m1;...;mn�4Þ, and wðm0�6pn;m1;...;mn�6Þ, respectively.

Proof. The result follows immediately after taking the derivatives of (2.1) with

respect to a
ðnÞ
4 and a

ðnÞ
6 , respectively. &

As an application of Lemma 4.1, we get that if f is a modular d-form of order n

and weight wðm0;m1;...;mnÞ then @Serre
n ð f Þ is a modular d-form of order n and weight

wðm0þ2pn;m1;...;mnþ2Þ, i.e. the restriction of the d-Serre operator of order n to

Mnðwðm0;m1;...;mnÞÞ is a map @Serre
n : Mnðwðm0;m1;...;mnÞÞ �!Mnðwðm0þ2pn;m1;...;mnþ2ÞÞ:

PROPOSITION 4.1. Let f be a modular d-form of order n and weight wðm0;m1;...;mnÞ
,

then the following equality holds

4fn
ða4Þ

@f

@aðnÞ4

þ 6fn
ða6Þ

@f

@aðnÞ6

¼ mnp
nf: ð4:3Þ

Proof. Taking the derivative of (2.1) with respect to the variable LðnÞ, one obtains

4fn
ða4Þ

@f

@aðnÞ4

þ 6fn
ða6Þ

@f

@aðnÞ6

 !
ððL�4a4Þ

ð4nÞ; ðL�6a6Þ
ð4nÞ;L12D�1

Þ

¼ mnp
nw�1fða

ð4nÞ
4 ; að4nÞ

6 ;D�1
Þ ð4:4Þ

(herew�1 ¼ wðL;L0; . . . ;Lð4nÞÞ�1).ByLemma4.1,4fnða4Þ @f=@aðnÞ4 þ 6fnða6Þ @f=@aðnÞ6

is a modular d-form of weight wðm0;m1;...;mnÞ, so that the left-hand side of (4.4) equals

wðL;L0; . . . ;LðnÞÞ�1

 4fn

ða4Þ
@f

@aðnÞ4

þ 6fn
ða6Þ

@f

@aðnÞ6

 !
ða
ð4nÞ
4 ; að4nÞ

6 ;D�1
Þ

and the result follows after division by w�1. &

PROPOSITION 4.2. For any modular d-form f of weight wðm0;m1;...;mnÞ
the following

equality holds

ðmnp
nffn
ðPÞ þ @Serre

n ð f ÞÞðq; . . . ; qðnÞÞ ¼ 12fn
ðqÞ

@

@qðnÞ
ð f ðq; . . . ; qðnÞÞÞ: ð4:5Þ
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Proof. We have the following computation

12fn
ðqÞ

@

@qðnÞ
ð f ðq; . . . ; qðnÞÞÞ

¼
@f

@aðnÞ4

ðq; . . . ; qðnÞÞ 
 12fn
ðqÞ

@

@qn
ða
ðnÞ
4 ðq; . . . ; q

ðnÞÞÞþ

þ
@f

@aðnÞ6

ðq; . . . ; qðnÞÞ 
 12fn
ðqÞ

@

@qn
ða
ðnÞ
6 ðq; . . . ; q

ðnÞÞÞ

¼
@f

@aðnÞ4

ðq; . . . ; qðnÞÞ 
 fn 12q
da4

dq

� �
þ

@f

@aðnÞ6

ðq; . . . ; qðnÞÞ 
 fn 12q
da6

dq

� �

¼
@f

@aðnÞ4


 fn
ð4Pa4 � 72a6Þ þ

@f

@aðnÞ6


 fn
ð6Pa6 � 16a2

4Þ

 !
ðq; . . . ; qðnÞÞ

¼ ðmnp
nffn
ðPÞ þ @Serre

n ð f ÞÞðq; . . . ; qðnÞÞ;

where the third equality is a consequence of the well-known formulas:

12yða4ðqÞÞ ¼ 4PðqÞa4ðqÞ � 72a6ðqÞ and 12yða6ðqÞÞ ¼ 6PðqÞa6ðqÞ � 16a4ðqÞ
2

(cf. [11], p. 161), whereas the last one follows from Proposition 4.1. &

Remark 4:1. Equality (4.5) is the analogue in the theory of differential modular

forms of equality (4.2). &

For isogeny covariant modular d-forms we obtain the following corollary:

COROLLARY 4.1. If the ðq; . . . ; qðnÞÞ-expansion of and isogeny covariant modular

d-form f of weight wðm0;m1;...;mnÞ
is of the form fðq; . . . ; qðnÞÞ ¼ QðC; . . . ;fn�1CÞ with

QðX1; . . . ;XnÞ 2 Zp½X1; . . . ;Xn� then

ðmnp
nffn
ðPÞ þ @Serre

n ð f ÞÞðq; . . . ; qðnÞÞ ¼ 12pn�1 @Q

@Xn
ðC; . . . ;fn�1CÞ:

Proof. The equality follows from Proposition 4.2 plus the equality

@ðfn�1CÞ
@qðnÞ

¼
pn�1

fn
ðqÞ

: &

5. Fourier Expansion and Reduction Modulo p of the Differential Modular

Forms f 1xg; f
1
gx; f

1
xx; f

1
gg; f

›; f›

The following two lemmas are well known.
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LEMMA 5.1. Let p: E 0 �!E be an isogeny of elliptic curves over S 0, then the fol-

lowing diagram

H1
DRðE

f=S1Þ ���!
F

H1
DRðE

j=S1Þ

H1
DR
ðpÞj
#

j
#
H1

DR
ðpÞ

H1
DRðE

0f=S1Þ ���!
F

H1
DRðE

0j=S1Þ

is commutative.

Proof. Using the canonical isomorphism between crystalline and DeRham

cohomology(for example, from [1], p. 184) it is enough to check that the following

diagram

Ej � S1=pS1 ���!
Fj;f

Ef � S1=pS1

p�id
S1=pS1
j
#

j
#
p�id

S1=pS1

E0j � S1=pS1 ���!
F0j;f

E0f � S1=pS1

is commutative, but this is immediate. &

LEMMA 5.2. Let p: E 0 �!E be an isogeny of elliptic curves over a p-adic ring R,

then for any t; n 2 H1
DRðE=RÞ the following equality holds: hp�t; p�ni ¼ ðdeg pÞht; ni:

Proof. It is enough to prove that the equality holds locally, so that we may

suppose that the elliptic curve E is equipped with a nowhere vanishing differential

o 2 H 0ðE;O1
E=RÞ. Recall from ([9], p. 163) that E will be defined by an equation of

the form Y 2 ¼ 4X 3 � g2X� g3; g2; g3 2 R and one may canonically specify a basis

of H1
DR, namely o ¼ dx=y and Z ¼ xdx=y. Let us write t and n in this basis:

t ¼ aoþ bZ; n ¼ coþ dZ. Then we have

hp�t; p�ni ¼ hap�oþ bp�Z; cp�oþ dp�Zi ¼ adhp�o; p�Zi � bchp�o; p�Zi

On the other hand ht; ni ¼ adho; Zi � bcho; Zi so that it is enough to prove the fol-

lowing equality hp�o; p�Zi ¼ ðdeg pÞho; Zi, but this is a consequence of the commu-

tativity of the following diagram

H 0ðE;O1
EÞ �H1ðE;OEÞ ���! R

p��p�j
#

j
#

deg p

H 0ðE 0;O1
E 0 Þ �H1ðE 0;OE 0 Þ ���! R;

where the horizontal arrows are induced by Serre’s duality and the right vertical

arrow is multiplication by deg p, and we are done. (We used here the fact that the

cup product in de Rham cohomology is compatible in the obvious sense with Serre

duality.) &

We have the following theorem:
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THEOREM 5.1. The Fourier ðq; q0Þ-expansions of f @ and f@ are both equal to 1.

Proof. We show first that f @ðq2; dðq2ÞÞ ¼ f @ðq; q0Þ: By the results in [9], p. 176, the

quotient TateðqÞ=m2 by the group m2 ¼ hz2i can be viewed as obtained from TateðqÞ
by base change via j2: ZpððqÞÞ̂ ! ZpððqÞÞ̂ ;j2ðqÞ ¼ q2. If p2: TateðqÞ ! Tateðq2Þ
is the projection map induced by taking the quotient by m2, then the following

diagram

TateðqÞ ���!
p2

Tateðq2Þ

j
#

j
#

TateðqpÞ ���!
p2

Tateðq2pÞ

is commutative, where the vertical arrows are induced by taking the quotient by mp.
At the level of the first de Rham cohomology we get the following commutative

diagram

H1
DRðTateðq2Þ=ZpððqÞÞ^Þ ���!

FðjpÞ

H1
DRðTateðq2Þ=ZpððqÞÞ^Þ

p�2

  

p�2

H1
DRðTateðqÞ=ZpððqÞÞ^Þ ���!

FðjpÞ

H1
DRðTateðqÞ=ZpððqÞÞ^Þ;

where FðjpÞ is the jp-linear endomorphism in 3.3. The morphism p�2:
H1

DRðTateðq2Þ=ZpððqÞÞ̂ Þ ! H1
DRðTateðq2Þ=ZpððqÞÞ̂ Þ is an isomorphism, as it is

induced by the isogeny p2, so that there exists a (unique) vector

u 2 H1
DRðTateðq2Þ=ZpððqÞÞ̂ Þ such that p�2ðuÞ ¼ HðyÞocan. Then we have

p�2ðFðjpÞðuÞÞ ¼ FðjpÞðp
�
2ðuÞÞ ¼ FðjpÞðHðyÞðocanÞÞ ¼ HðyÞðocanÞ:

Here we used the commutativity of FðjpÞ and p�2 shown above. By the uniqueness of

u, we conclude that FðjpÞðuÞ ¼ u and this means that the submodule U of Tateðq2Þ is

spanned by u. But then we have

f @ðq2;dðq2ÞÞ¼f @ðTateðq2Þ=ZpððqÞÞ̂; Tracep2
ocan;ZpððqÞÞ̂

�Þ¼
hTracep2

ocan;FðuÞi
fðhTracep2

ocan;uiÞ

¼
ðdegpÞhTracep2

ocan;FðuÞi
ðdegpÞfðhTracep2

ocan;uiÞ
¼
hp�2Tracep2

ocan;p�2FðuÞi
fðhp�2Tracep2

ocan;p�2uiÞ

¼
hocan;FðHðyÞðocanÞÞi

fðhocan;HðyÞðocanÞiÞ
¼f @ðq;q0Þ;

where the fourth equality is a consequence of Lemma 5.2, whereas the fifth one fol-

lows from Lemma 5.1. Since f @ðq2; dðq2ÞÞ ¼ f @ðq; q0Þ, Proposition 2.2 shows that

f @ðq; q0Þ must be a constant in Zp, in particular f @ðq; q0Þ ¼ f @ðq; 0Þ. Let us note that

j: ZpððqÞÞ^ �!
f

ZpððqÞÞ^½q
0� ^ �!

e0
ZpððqÞÞ^

is the composition of f and e0, where e0 is the ZpððqÞÞ̂ -morphism defined by

e0ðq0Þ ¼ 0, so that
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f @ðq; 0Þ ¼
hocan;FðjpÞðHðyÞðocanÞÞi

fðhocan;HðyÞðocanÞiÞ
¼
hocan;HðyÞðocanÞi

fðhocan;HðyÞðocanÞiÞ
¼ 1

because FðjpÞðHðyÞðocanÞÞ ¼ HðyÞðocanÞ (cf 3.3). This shows that f @ðq; q0Þ ¼ 1. The

proof for f@ is similar. &

COROLLARY 5.1. f @ 
 f @ ¼ 1.

Proof. By the previous theorem the Fourier ðq; q0Þ-expansion of f @ � f@ � 1

equals 0. Since f @ � f @ � 1 is a modular d-form of weight w0 the proposition follows

from the ðq; q0Þ-expansion principle. &

Our next purpose is to compute the ðq; q0Þ-expansions of f 1
oZ; f 1

Zo; f 1
ZZ.

PROPOSITION 5.1. The ðq; q0Þ-expansions of f 1
oZ; f 1

Zo; f 1
ZZ are given by:

f 1
oZðq; q

0Þ ¼ 1þ
p

12
fðPðqÞÞC;

f 1
Zoðq; q

0Þ ¼ 1�
1

12
PðqÞC;

f 1
ZZðq; q

0Þ ¼ �
1

12
PðqÞ þ

p

12
fðPðqÞÞ �

p

144
PðqÞfðPðqÞÞC:

Proof. Let f: ZpððqÞÞ̂ �!ZpððqÞÞ̂ ½q0�^ be, as before, the morphism defined

by fðqÞ ¼ qp þ pq0, and let F : H1
DRðTateðqÞf=ZpððqÞÞ̂ ½q0� Þ̂ �!H1

DRðTateðqÞ=
ZpððqÞÞ̂ ½q0� Þ̂ be the induced morphism of ZpððqÞÞ̂ ½q0� -̂modules. In the focan; Zcang-
basis F can be written as follows:

1

p
FðocanÞ ¼ f 1

Zoðq; q
0Þocan þ aCZcan; FðZcanÞ ¼ f 1

ZZðq; q
0Þocan þ f 1

oZðq; q
0ÞZcan:

In terms of focan;HðyÞðocanÞg the equality f @ðq; q0Þ ¼ 1 becomes

hocan;FðHðyÞðocanÞÞi

fðhocan;HðyÞðocanÞiÞ
¼ 1:

Since the denominator is 1 we obtain that

1 ¼ �
fðPðqÞÞ

12
hocan;FðocanÞi þ hocan;FðZcanÞi;

and using Corollary 2.3.3), we get

f 1
oZðq; q

0Þ ¼ hocan;FðZcanÞi ¼ 1þ
pa
12

fðPðqÞÞC:

Now we will exploit the other equality proved in the same theorem: f@ðq; q0Þ ¼ 1 and

obtain

h1pFðocanÞ;HðyÞðocanÞi

hocan;HðyÞðocanÞi
¼ 1
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and again using the identity hocan;HðyÞðocanÞi ¼ 1 we get 1 ¼ ða=12ÞPðqÞCþ
f 1
Zoðq; q0Þ which yields f 1

Zoðq; q0Þ ¼ 1� ða=12ÞPðqÞC: It is well known that the

equality hFðZ1Þ;FðZ2Þi ¼ pfðhZ1; Z2iÞ holds for any Z1; Z2 in H1
DRðE=S 0Þ. Consider

the Tate curve TateðqÞ=ZpððqÞÞ̂ and set Z1 ¼ ocan and Z2 ¼ HðyÞðocanÞ so that

we get

hFðocanÞ;FðHðyÞðocanÞÞi ¼ pfðhocan;HðyÞðocanÞiÞ:

Then we have

1 ¼
1

p
FðocanÞ;FðHðyÞðocanÞÞ

� �
¼

1

p
FðocanÞ;FðZcanÞ

� �
¼ f 1

Zoðq; q
0Þf 1

oZðq; q
0Þ � aCf 1

ZZðq; q
0Þ:

Using the formulae for f 1
Zoðq; q0Þ and f 1

oZðq; q0Þ; we compute f 1
ZZðq; q0Þ

aCf 1
ZZðq; q

0Þ ¼ f 1
Zoðq; q

0Þf 1
oZðq; q

0Þ � 1

¼
pa
12

fðPðqÞÞC�
a
12

PðqÞC�
pa2

144
PðqÞfðPðqÞÞC2

so that

f 1
ZZðq; q

0Þ ¼ �
1

12
PðqÞ þ

p

12
fðPðqÞÞ �

pa
144

PðqÞfðPðqÞÞC:

The fact that the constant a ¼ 1 will be proven in Proposition 5.3. &

PROPOSITION 5.2. Let f 1
oZ be the image of f 1

oZ in M1=pM1; then the following

equality f 1
oZ ¼

�Ep�1 holds in M1=pM1, where �Ep�1 2 Fp½a4; a6� is the image of the

Eisenstein form of weight p� 1.

Proof. We need to show that the modular d-function of order 41, f 1
oZ � Ep�1 is a

multiple of p in M1 ¼ Zp½a4; a6; a
0
4; a

0
6;D

�1� .̂ It is enough to check that for any triple

ðE=S 0;o;S�Þ the following equality f 1
oZðE=S 0;o;S�Þ ¼ Ep�1ðE=S 0;oÞ holds in the

ring �S1 :¼ S1=pS1. Since the de Rham cohomology modules commute with arbitrary

base change ([12], p. 44) and the same is true for the formation of the cup-product on

de Rham cohomology, the following diagram is commutative:

H1
DRðE

j=S1Þ �H1
DRðE

j=S1Þ !
h;i S1

  

H1
DRðE

j � �S1= �S1Þ �H1
DRðE

j � �S1= �S1Þ !
h;i �S1;

where the vertical arrows are obtained by tensoring with �S1. Let F �
j;f:

H1
DRðEf � �S1= �S1Þ�!H1

DRðEj � �S1= �S1Þ be the morphism of modules induced by

the homomorphism Fj;f defined in Construction 2.1, then using the commutativity

of the last diagram we have

f 1
oZðE=S

0;o;S�Þ ¼ ho;FðZÞi ¼ h �o;FðZÞi ¼ h �o;F �j;fð�ZÞi ¼ Ep�1ðE=S 0;oÞ;
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since Ep�1 is congruent modulo p to the Hasse invariant A, which is defined by

AðE=S 0;oÞ :¼ h�o;F �
j;fð�ZÞi (cf. [9], p. 98). &

PROPOSITION 5.3. The following equality holds in M1=pM1

f 1
oo ¼ 233

�Ep�1

Dp ð3a
p
6a
0
4 � 2a

p
4a
0
6Þ þ

�F0

�
a4; a6; a

0
4
p
; a06

p
;
1

D

�
;

where �F0 2 Fp½a4; a6; a
0
4; a

0
6;

1
D�.

Proof. Applying the ðq; q0Þ-expansion principle to the equality f 1
oZðq; q0Þ ¼

1þ ðpa=12ÞfðPðqÞÞC we obtain that

f 1
oZ ¼ f @ þ

p

12
fðPÞf 1

oo; ð5:1Þ

the equality taking place in M1
Ep�1

¼ Zp½a4; a6; a
0
4; a

0
6;D

�1;E�1
p�1� .̂ Combining this

with the last proposition, we deduce that the image �f @ of f @ in M1
Ep�1

=pM1
Ep�1

is
�f @ ¼ �Ep�1. On the other hand, Corollary 4.1 applied to f 1

oo and the ðq; q0Þ-expansion

principle show that

f @ ¼
1

12a
ð�pfðPÞf 1

oo þ @Serre
1 ð f 1

ooÞÞ ð5:2Þ

and now looking at the image in M1
Ep�1

=pM1
Ep�1

, we get that

@Serre
1 ð f 1

ooÞ ¼ 12�a �f @ ¼ 12�aEp�1, or that

14a
2p
4

@f 1
oo

@a06
� 72a

p
6

@f 1
oo

@a04
¼ 12�a �Ep�1:

Now, we consider the reduction modulo p of the equality in Proposition 4.1 applied

to f 1
oo and get

4a
p
4

@f 1
oo

@a04
þ 6a

p
6

@f 1
oo

@a06
¼ 0:

Combining the last two equalities and solving the system we obtain

@f 1
oo

@a04
¼ 2332 �a

a
p
6
�Ep�1

Dp ;
@f 1

oo

@a06
¼ �243�a

a
p
4
�Ep�1

Dp

so that the reduction modulo p of f 1
oo has the form

f 1
oo ¼ 233�a

�Ep�1

Dp ð3a
p
6a
0
4 � 2a

p
4a
0
6Þ þ

�F0

�
a4; a6; a

0
4
p
; a06

p
;
1

D

�
;

where �F0 2 Fp½a4; a6; a
0
4; a

0
6; 1=D�. We use the reduction modulo p of f 1

oo to show that

a ¼ 1. Combining (5.1) and (5.3) we deduce the equality

@Serre
1 ð f 1

ooÞ � 12af 1
oZ ¼ pða� 1ÞfðPÞf 1

oo: ð5:3Þ
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If a 6¼ 1 then, after dividing the equation by pða� 1Þ we obtain that

fðPÞf 1
oo 2 Zp½a4; a6; a

0
4; a

0
6; 1=D�^ so that the reduction modulo p satisfies

�E
p
pþ1

�E
p
p�1

233�a
�Ep�1

Dp ð3a
p
6a
0
4� 2a

p
4a
0
6Þ þ

�F0

�
a4;a6;a

0
4
p
;a06

p
;
1

D

�� �
2 Fp a4;a6;a

0
4;a
0
6;

1

D

� �
:

Identifying the coefficients of a04 and a06 we get that �Ep�1 is a divisor of �Ep
pþ1a

p
6 and

of �Ep
pþ1a

p
4 in Fp½a4; a6�, which means that �Ep�1 divides �Ep

pþ1 in Fp½a4; a6�. Since �Ep�1 is

relatively prime to �Epþ1 (cf. [11], p. 167) the last divisibility is impossible, so that

a ¼ 1. &

Remark 5:1: Using different techniques C. Hurlburt has proved in [8], Theorem

1.3 that �F0 above is in fact an element of Fp½a4; a6; 1=D�, but on the other hand, her

formula for f 1
oo contains an unknown constant(see also [5], pp. 132–134). Combining

our proposition with her result we get the following

COROLLARY 5.2. The following equality holds in M1=pM1

f 1
oo ¼ 233

�Ep�1

Dp ð3a
p
6a
0
4 � 2a

p
4a
0
6Þ þ

�F0

�
a4; a6;

1

D

�
;

where �F0 2 Fp½a4; a6;
1
D�.

The following result gives the action of @Serre
1 on the differential modular forms

f 1
oo; f 1

oZ; f 1
Zo; f 1

ZZ.

THEOREM 5.2. We have the following equalities

@Serre
1 ð f 1

ooÞ ¼ 12f 1
oZ ; @Serre

1 ð f 1
oZÞ ¼ 4p2fða4Þf

1
oo;

@Serre
1 ð f 1

ZoÞ ¼ 12f 1
ZZ ; @Serre

1 ð f 1
ZZÞ ¼ 4p2fða4Þf

1
Zo:

Proof. Equality a ¼ 1 plus (5.3) shows that @Serre
1 ð f 1

ooÞ ¼ 12f 1
oZ. To show the

second equality in the first row we apply the equality in Proposition 4.2 to f 1
oZ(we

read its Fourier ðq; q0Þ-expansion from the previous Proposition):

ð pf 1
oZfðPÞ þ @Serre

1 ð f 1
oZÞÞðq; q

0Þ ¼ p2fðyðPðqÞÞÞCþ pPðfðqÞÞ:

Using the well-known formula 12yðPðqÞÞ ¼ PðqÞ2 þ 48a4ðqÞ(cf. [11], p. 161) we

obtain

ð pf 1
oZfðPÞ þ @Serre

1 ð f 1
oZÞÞðq; q

0Þ ¼
p2

12
fðPðqÞÞ2Cþ 4p2fða4ðqÞÞCþ pfðPðqÞÞ:

Applying the ðq; q0Þ-expansion principle to the last equality we get

pf 1
oZfðPÞ þ @Serre

1 ð f 1
oZÞ ¼

p2

12
fðPÞ2f 1

oo þ 4p2fða4Þf
1
oo þ pfðPÞf @

¼ pfðPÞ
p

12
fðPÞf 1

oo þ f @
� �

þ 4p2fða4Þf
1
oo

¼ pfðPÞf 1
oZ þ 4p2fða4Þf

1
oo;
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where the last equality is a consequence of 5.1. We obtain that

@Serre
1 ð f 1

oZÞ ¼ 4p2fða4Þf 1
oo. Similar arguments may be used to show the other

equalities. &

Remark 5:2: The equalities in Theorem 5.2 should be viewed as the analogous

of 4.1 in the theory of differential modular forms.

THEOREM 5.3. Let �f 1
ZZ be the image of f 1

ZZ in M1=pM1 then the following equality
�f 1
ZZ ¼ �

1
12

�Epþ1 holds in M
1=pM1, where �Epþ1 2 Fp½a4; a6� is, as before, the image of the

Eisenstein form of weight pþ 1.

Proof. The ðq; q0Þ-expansion principle applied to the equality

f 1
ZZðq; q

0Þ ¼ � 1
12PðqÞ þ

p
12fðPðqÞÞ �

p
144PðqÞfðPðqÞÞC

yields

f 1
ZZ ¼ �

1
12Pf

@ þ
p
12fðPÞf@ �

p
144PfðPÞf

1
oo:

Considering the image of this in M1=pM1, we get

�f 1
ZZ ¼ �

1
12

�Epþ1

�Ep�1

�Ep�1 ¼ �
1
12

�Epþ1;

the first equality being a consequence of Lemma 3.1 and Proposition 5.2. &

In order to state the following theorem we need to make some preparations. Recall

from [7], p. 47 that for any n5 2 there exists a modular form of level n and weight 2

whose Fourier expansion at 1 is PðqÞ � nPðqnÞ; here, as before, PðqÞ ¼
1� 24

P
n51 s1ðnÞqn. Let us denote by PðnÞ this modular form of level n and weight 2.

THEOREM 5.4. Let p: E 0 �!E be an isogeny of degree prime to p, defined over a

smooth R-algebra S and normalized by the condition p�o ¼ o0. Then

ðdeg pÞEpþ1ðE
0=S;o0Þ � Epþ1ðE=S;oÞ þ lðE 0;E;pÞEp�1ðE=S;oÞ ðmod pÞ;

where lðE0;E; pÞ depends on the isogeny. Moreover, if p is induced by a map an: mn,!E 0,

then

lðE 0;E; pÞ ¼ PðnÞðE 0; an;o0Þ ð5:4Þ

Proof. As in [2], p. 315, one can construct a prolongation sequence of rings S�

with S 0 :¼ S. In addition, the restriction on S yields that the morphism

S 0=pS 0 �!S1=pS1 is a monomorphism(this follows from loc. cit., Proposition(1.4)).

Since p induces an isomorphism p�: H1
DRðEÞ�!H1

DRðE 0Þ, fp�o; p�Zg is a basis for

H1
DRðE0Þ as a S 0-module. Let Z0 ¼ ap�oþ bp�Z, for some a; b 2 S 0. Then the com-

putation

1 ¼ ho0; Z0i ¼ hp�o; ap�oþ bp�Zi ¼ bhp�o; p�Zi ¼ bðdeg pÞho; Zi ¼ b 
 deg p
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shows that b ¼ 1= deg p, where the fourth equality follows from Lemma 5.2. Now,

we have

f 1
ZZðE

0=S 0;o0;S �Þ ¼ hFZ0; Z0i ¼ F
1

deg p
p�Zþ ap�o

� �
;

1

deg p
p�Zþ ap�o

� �

¼
1

ðdeg pÞ2
hFp�o; p�Zi þ

a

deg p
hFp�Z; p�oiþ

þ
fðaÞ
deg p

hFp�o; p�Zi þ afðaÞhFp�o; p�oi:

We use Lemma 5.2 to obtain

f 1
ZZðE

0=S 0;o0;S�Þ

¼
1

deg p
f 1
ZZðE=S

0;o;S�Þ � af 1
oZðE=S

0;o;S�Þþ

þ pfðaÞf 1
ZoðE=S

0;o;S�Þ þ pafðaÞðdeg pÞf 1
ooðE=S

0;o;S�Þ

and then the congruence

ðdegpÞf1
ZZðE

0=S0;o0;S�Þ � f1
ZZðE=S

0;o;S�Þ � aðdegpÞf1
oZðE=S

0;o;S�Þ ðmodpÞ:

Now apply Theorem 5.3 and Proposition 5.2 to get the congruence for Epþ1

ðdeg pÞEpþ1ðE
0=S 0;o0Þ

� Epþ1ðE=S
0;oÞ þ 12aðdeg pÞEp�1ðE=S

0;oÞ ðmod pÞ: ð5:5Þ

Note that the last congruence takes place in S1, however applying the injectivity of

S 0=pS 0 �!S1=pS1, we get a congruence in S 0 ¼ S. Set lðE0;E; pÞ :¼ 12 < Z0; p�Z >.

Then the computation

hZ0; p�Zi ¼ hap�oþ bp�Z; p�Zi ¼ hap�o; p�Zi ¼ a deg pho; Zi ¼ a deg p

shows that lðE0;E; pÞ ¼ 12a deg p. Let us note that the function defined by

lðE0; an;o0Þ :¼< Z0; p�Z > is a well-defined modular form of level n and weight 2.

By the q-expansion principle ([7], p. 112) to show equality (5.4) it is enough to prove

that the Fourier q-expansion at 1 of l is PðqÞ � nPðqnÞ.
Let TateðqÞ be the Tate curve defined over RððqÞÞ̂ and let pn: TateðqÞ�!

TateðqÞ=mn be the projection. As in [9], p. 108 one can show that

TateðqÞ=mn ¼ TateðqnÞ ¼ TateðqÞðjnÞ where jn: RððqÞÞ̂ �!RððqÞÞ̂ is defined by

ðjnf ÞðqÞ ¼ fðqnÞ. We denote by FðpnÞ the induced jn-linear endomorphism of

H1
DRðTateðqÞ=RððqÞÞ̂ Þ. The same arguments as in [9], p. 177 can be applied to show

the following

FðpnÞðZcanÞ ¼
nPðqnÞ � PðqÞ

12
ocan þ Zcan:

Now the Fourier q-expansion at 1 of l can be computed as follows

lðTateðqÞ=RððqÞÞ^; an;ocanÞ ¼ 12hZcan;FðpnÞðZcanÞi ¼ PðqÞ � nPðqnÞ: &

In particular, we obtain the following congruence due to Robert [14]:
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COROLLARY 5.3. If in addition Ep�1ðE=S
0;oÞ � 0 ðmod pÞ, then

ðdeg pÞEpþ1ðE
0=S 0;o0Þ � Epþ1ðE=S

0;oÞ ðmod pÞ:

Remark 5:3: Robert has also obtained in [14] the congruence 5.5 before special-

izing to supersingular curves.

6. The Structure of the Ring J

Recall from [10] that for any elliptic curve ðE=R;oÞ with Ep�1ðE=R;oÞ 2 R� there

exists an R-basis fa; bg of H1
DRðE=RÞ, such that ha; bi ¼ �hb; ai ¼ 1, ha; ai ¼

hb; bi ¼ 0 and Fa ¼ a, Fb ¼ pb. In addition, o can be written in this basis as

o ¼ Oðbþ taÞ, for some O 2 R� and t 2 pR.

LEMMA 6.1. For any elliptic curve ðE=R;oÞ with Ep�1ðE=R;oÞ 2 R�, we have

f @ðE=R;o;R�Þ ¼ O=fðOÞ.
Proof. Using the results in Proposition 5.1 one can show that the Fourier

expansion of f 2
oo is f 2

ooðq; q0; q00Þ ¼ pCþ fC. Applying the ðq; q0; q00Þ-expansion

principle to this equality we get that

f 2
oo ¼ pf 1

oo 

1

fð f @Þ
þ fð f 1

ooÞ 
 f
@: ð6:1Þ

The values of f 1
oo and f 2

oo at ðE=R;o;R�Þ are

f 1
ooðE=R;o;R

�Þ ¼ OfðOÞ t�
fðtÞ
p

� �

and f 2
ooðE=R;o;R

�Þ ¼ Of2
ðOÞ pt�

f2
ðtÞ
p

� �
;

respectively, so that evaluating (6.1) at ðE=R;o;R�Þ; we obtain

Of2
ðOÞ pt�

f2
ðtÞ
p

� �

¼ pOfðOÞ t�
fðtÞ
p

� �
1

fð f @Þ
þ fðOÞf2

ðOÞ fðtÞ �
f2
ðtÞ
p

� �
f @: ð6:2Þ

We set

t :¼
fðOÞ
O

 f @ðE=R;o;R�Þ 2 R� and a :¼ t�

fðtÞ
p
2 R:

Dividing equality (6.2) by Of2ðOÞ, we obtain

paþ fðaÞ ¼ pa 

1

fðtÞ
þ fðaÞ 
 t: ð6:3Þ

We consider first the case a 6¼ 0. We may suppose that a 2 R�, otherwise one can

divide by pordpðaÞ and reduce the problem to the desired situation. Considering
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the reduction modulo p of equality (6.3) we conclude that t 2 1þ pR so that we write

t ¼ 1þ ps1, for some s1 2 R. Now the equality (6.3) becomes: ðpafðs1ÞÞ=
ð1þ pfðs1ÞÞ ¼ fðaÞs1. Considering again the reduction modulo p of the last equality

we obtain that s1 ¼ ps2, for some s2 2 R and ðpafðs2ÞÞ=ð1þ p2fðs2ÞÞ ¼ fðaÞs2.

Iterating the argument we get the existence of a sequence fsngn51(sn 2 R, for any

n5 1) such that sn ¼ psn�1, for any n5 2 and ðpafðsnÞÞ=ð1þ pnfðsnÞÞ ¼ fðaÞsn.
This proves that t 2 1þ pnR for any n5 1, so that t ¼ 1, equivalently

f @ðE=R;o;R�Þ ¼ O=fðOÞ.
If a ¼ 0, i.e f 1

ooðE=R;o;R�Þ ¼ 0 then the Frobenius endomorphism of

E� ðR=pRÞ lifts to a f-morphism F : E�!E, by [5], Proposition 5.3. Now, we

choose a level n-structure, for some n5 3 with p � 1 ðmod nÞ. The elliptic curve

E=R with the chosen level n-structure is obtained from E univ (we use the same nota-

tions as in Construction 3.2) via a morphism R�!R univ. Since F : E�!E is in fact

the projection map obtained by taking the quotient of E by its canonical subgroup,

we conclude that F is obtained from the universal situation j: E univ �!E univ by base

change via R�!R univ. It means that the canonical rank one submodule of

H1
DRðE=RÞ is Rhai, as a is fixed by F ¼ H1

crysðFÞ: H1
DRðE=RÞ�!H1

DRðE=RÞ. We

use u ¼ a to compute f @ and get:

f @ðE=R;o;R�Þ ¼
hOðbþ taÞ;Fai
fðhOðbþ taÞ; aiÞ

¼
Ohbþ ta; ai

fðOÞfðhbþ ta; aiÞ
¼

O
fðOÞ

;

which completes the proof of the lemma. &

PROPOSITION 6.1. For any i5 2, we have the following equality

f ioo ¼ pi�1f 1
oo

1

fð f @Þ . . .fi�1
ð f @Þ
þ fð f i�1

oo Þf
@:

Proof. As in [5], p. 136 it is enough to check the identity for elliptic curves

ðE=R;oÞ with Ep�1ðE=R;oÞ 2 R�. On the other hand

f iooðE=R;o;R
�Þ ¼ Ofi

ðOÞ
�
pi�1t�

fi
ðtÞ
p

�
:

Applying f to this equality for i� 1 we get

fð f i�1
oo ÞðE=R;o;R

�Þ ¼ fðOÞfi
ðOÞ pi�2fðtÞ �

fi
ðtÞ
p

� �
:

Combining the last two equalities and the result in Lemma 6.1 we get the identity in

the statement of the lemma. &

A standard induction argument and Proposition 6.1 show the following

COROLLARY 6.1. The Fourier ðq; . . . qiÞ-expansion of f ioo is f iooðq; . . . q
iÞ ¼

pi�1Cþ pi�2fCþ 
 
 
 þ fi�1C.
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For any weight w we shall denote by I nðwÞ the set of all modular d-forms in MnðwÞ
which are isogeny covariant. Note that I nðwÞ is a Zp-module. It is convenient, in

what follows, to use the weights wi be the weights defined by wiðlÞ ¼ 1=ðfiðlÞÞ,
for any i5 0. In what follows we need the following

DEFINITION 6.1. A modular d-form f is said to have exact order n if f is in Mn, but

it is not in Mn�1.

LEMMA 6.2. Let g be a nonzero isogeny covariant modular d-form of weight

wiwj ðwhere 04 i4 jÞ and exact order n, then n ¼ j.

Proof. Since g satisfies (2.1) with wðL; . . . ;LðnÞÞ ¼ 1
fiðLÞf jðLÞ we conclude that

n5 j. Suppose now that n > j. Applying Proposition 4.1 to g with mn ¼ 0 we get that

4fn
ða4Þ

@g

@aðnÞ4

þ 6fn
ða6Þ

@g

@aðnÞ6

¼ 0:

If gðq; . . . ; qðnÞÞ ¼ a0Cþ � � � þ an�1f
n�1C, for some a0; . . . ; an�1 in Zp, then by

Corollary 4.1

ð@Serre
n ðgÞÞðq; . . . ; qðnÞÞ ¼ 12pn�1an�1: ð6:4Þ

If an�1 ¼ 0 then @Serre
n ðgÞ ¼ 0, by the expansion principle. Solving the system

4fn
ða4Þ

@g

@aðnÞ4

þ 6fn
ða6Þ

@g

@aðnÞ6

¼ @Serre
n ðgÞ ¼ 0;

we obtain @g=@a
ðnÞ
4 ¼ @g=@a

ðnÞ
6 ¼ 0, equivalently g 2 Zp½að4 n�1Þ

4 ; a
ð4 n�1Þ
6 ;D�1�^¼

Mn�1, and this is a contradiction. If an�1 6¼ 0 then after dividing (6.4) by

12pn�1an�1 (see Remark 2.2) one may assume that ð@Serre
n ðgÞÞðq; . . . ; qðnÞÞ ¼ 1. Apply-

ing the ðq; . . . ; qðnÞÞ-expansion principle to this equality, we obtain that

@Serre
n ðgÞ ¼ fið f @Þ . . .fn�1ð f @Þf jð f @ Þ . . .fn�1ð f @Þ, so that

@Serre
n ðgÞ ¼

Yn�1

l¼i

�
fl
ð f 1

oZÞ �
p

12
flþ1
ðPÞfl

ð f 1
ooÞ

�Yn�1

l¼j

�
fl
ð f 1

oZÞ �
p

12
flþ1
ðPÞfl

ð f 1
ooÞ

�
:

After subtracting fið f 1
oZÞ . . .fn�1ð f 1

oZÞf jð f 1
oZÞ . . .fn�1ð f 1

oZÞ from both sides of the

last equality, dividing it by �ð p=12Þ, and then considering the reduction modulo

p, we get that the left-hand side is in Fp½að4nÞ
4 ; a

ð4nÞ
6 ;D�1� ,̂ whereas the right-hand

side equals:

Xn�1

l¼i

Pplþ1

ð �f 1
ooÞ

pl
ð �f 1

oZÞ
piþ


þpn�1þpjþ


þpn�1�pl

þ

þ
Xn�1

l¼j

Pplþ1

ð �f 1
ooÞ

pl
ð �f 1
oZÞ

piþ


þpn�1þpjþþpn�1�pl :

By Corollary 5.2, Proposition 5.2 and Lemma 3.1, the latter equals:
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24
Xn�1

l¼i

�E
plþ1

pþ1

�E
plþ1

p�1

�E
2pn�pi�pj

p�1

p�1

Dplþ1 ð3a
plþ1

6 a04
pl
� 2a

plþ1

4 a06
pl
Þþ

þ 24
Xn�1

l¼j

�E
plþ1

pþ1

�E
plþ1

p�1

�E
2pn�pi�pj

p�1

p�1

Dplþ1 ð3a
plþ1

6 a04
pl
� 2a

plþ1

4 a06
pl
Þ þ �G0

for some �G0 2 Fp½a4; a6;
1
D ; 1=ðEp�1Þ�. We obtain that the coefficients of a04

pn�1

and

a06
pn�1

in the right-hand side, i.e.

144
�E
pn

pþ1a
pn

6

Dpn

�E
2pn�pi�p j

p�1

p�1

�E
pn

p�1

and 96
�E
pn

pþ1a
pn

4

Dpn

�E
2pn�pi�p j

p�1

p�1

�E
pn

p�1

;

respectively, are in Fp½að4nÞ
4 ; a

ð4nÞ
6 ;D�1�. Since ð2pn � pi � pjÞ=ðp� 1Þ < pn, �Ep�1 must

divide both �Epþ1
pn
a
pn

6 and �Epþ1
pn
a
pn

4 in Fp½a4; a6�. On the other hand, �Epþ1 and �Ep�1

are relatively prime in Fp½a4; a6� (cf. [11], p. 167), which yields a contradiction. &

As a consequence of Lemma 6.2 we obtain that I nðwiwjÞ ¼ IjðwiwjÞ, for any n5 j.

We then define the Zp-modules IðwiwjÞ :¼ I jðwiwjÞ, for all 04 i4 j.

THEOREM 6.1. For any 04 i < j, IðwiwjÞ is a free Zp-module of rank 1.

Proof. The modular d-form fið f j�iooÞ is an element of IðwiwjÞ and has ðq; . . . ; qð jÞÞ-
expansion:

fi
ð f j�iooÞðq; . . . ; q

ð jÞÞ ¼ p j�ifiCþ 
 
 
 þ f jC:

If in IðwiwjÞ there exists an element that is not a multiple of fið f j�iooÞ, then considering

the difference between that element and a suitable multiple of fið f j�iooÞ, one gets a

non-zero element of IðwiwjÞ, say h, whose ðq; . . . ; qð jÞÞ-expansion is of the form:

hðq; . . . ; q ð jÞÞ ¼ a0Cþ � � � þ aj�1f
j�1C, not all a0; . . . ; aj�1 equal to 0. We may sup-

pose that not all a0; . . . ; aj�1 are multiples of p, otherwise p divides h and we can

work with ð1=pÞh, in the place of h. Let �a0; . . . ; �aj�1 be the images of a0; . . . ; aj�1 in

Fp and suppose that �akþ1 ¼ . . . ¼ �aj�1 ¼ 0 and �ak 6¼ 0, for some 04 k4 j� 1.

Applying the ðq; . . . ; q ð jÞÞ-expansion principle we obtain:

h ¼
Xj�2

l¼0

alf
lf 1
oo

f @ . . .fl�1f @

f @ . . .fi�1f @

1

flþ1f @ . . .fj�1f @

and after multiplying by f @ . . .fi�1f @ and considering the reduction modulo p:

�h �E
pi�1
p�1

p�1 ¼
Xk
l¼0

�al

"
24

�E
pl

p�1

Dplþ1 ð3a
plþ1

6 a04
pl
� 2a

plþ1

4 a06
pl
Þ þ �F0

pl
#

�E
1þ


þpl�1

p�1

�E
plþ1þ


þpj�1

p�1

¼
Xk
l¼0

24�al
Dp‘lþ1

�E
1þ


þpl

p�1

�Ep�1
plþ1þ...þpj�1 ð3a

plþ1

6 a04
pl
� 2a

plþ1

4 a06
pl
Þ þ

Xk
l¼0

�al �F0
pl �Ep�1

1þ...þpl

�Ep�1
plþ1þ...þpj�1 :
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Identifying the coefficients of a04
pk and a06

pk we conclude that �Ep�1 divides both a6
plþ1

and a4
plþ1

, which is impossible, and we are done. &

THEOREM 6.2. For any 04 i, the Zp-module Iðw2
i Þ is zero.

Proof. Supposing that Iðw2
i Þ contains a nonzero form, say g, then its ðq; . . . ; qðiÞÞ-

expansion is of the form:

gðq; . . . ; qðiÞÞ ¼ a0Cþ 
 
 
 þ ai�1f
i�1C:

Applying Corollary 4.1 to the last equality, we get.

ð�2pigfi
ðPÞ þ @Serre

i gÞðq; . . . ; qðiÞÞ ¼ 12pi�1ai�1: ð6:5Þ

We apply fi�1 to the equality f @ ¼ f 1
oZ �

p
12fðPÞf 1

oo to get

fi�1
ð f @Þ ¼ fi�1

ð f 1
oZÞ �

p

12
fi
ðPÞfi�1

ð f 1
ooÞ:

After multiplying equality (6.5) by ðfi�1ð f 1
ooÞÞðq; . . . ; qðiÞÞ ¼ fiC, we obtain

ð�2pigfi
ðPÞfi�1

ð f 1
ooÞ þ @Serre

i ðgÞfi�1
ð f 1

ooÞÞðq; . . . ; q
ðiÞÞ ¼ 12pi�1ai�1f

i�1C

or, using equality (5.1),

½�2pi�1g12ðfi�1
ðf1
oZÞ�f

i�1
ðf@ÞÞþ@Serre

i ðgÞfi�1
ðf1
ooÞ�ðq;...;q

ðiÞÞ¼12pi�1ai�1f
i�1C:

The ðq; q0Þ-expansion of f @ is 1 so that

ð@Serre
i ðgÞfi�1

ð f 1
ooÞ � 24pi�1gfi�1

ð f 1
oZÞÞðq; . . . ; q

ðiÞÞ

¼ 12pi�1ð�2a0C� 
 
 
 � 2ai�2f
i�2C� ai�1f

i�1CÞ:

The modular d-form @Serre
i ðgÞfi�1ð f 1Þ � 24pi�1gfi�1ð f 0Þ has weight wi�1wi and its

ðq; . . . ; qðiÞÞ-expansion is a linear form in q; . . . ; qðiÞ. The same arguments as in the

proof of Lemma 6.2 show that @Serre
i ðgÞfi�1ð f 1

ooÞ � 24pi�1gfi�1ð f 1
oZÞ is a multiple

of fi�1f 1, which yields: a0 ¼ . . . ¼ ai�2 ¼ 0, so that gðq; . . . ; qðiÞÞ ¼ ai�1f
i�1C. We

consider the modular d-form gfi�1ð f 2Þ whose ðq; . . . ; qðiþ1ÞÞ-expansion is

ðgfi�1
ð f 2

ooÞÞðq; . . . ; q
ðiþ1ÞÞ ¼ ai�1f

i�1Cðpfi�1Cþ fiCÞ

so that

ðgfi�1
ð f 2

ooÞ � ai�1f
i�1
ð f 1

ooÞf
i
ð f 1

ooÞÞðq; . . . ; q
ðiþ1ÞÞ ¼ pai�1ðf

i�1CÞ2:

Set

h :¼
1

pai�1
ðgfi�1

ð f 2
ooÞ � ai�1f

i�1
ð f 1

ooÞf
i
ð f 1

ooÞÞ:

Then h has weight wi�1ðwiÞ2wiþ1 and ðq; . . . ; qðiþ1ÞÞ-expansion: hðq; . . . ; qðiþ1ÞÞ ¼
ðfi�1CÞ2, hence h ¼ fi�1ðð f 1

ooÞ
2=f @ff @Þ, by the expansion principle. The reduction

modulo p of ð f 1
ooÞ

2=f @ff @ is
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ð f 1
ooÞ

2

f @ff @
¼

1

�Ep�1
pþ1

24
�Ep�1

Dp ð3a
p
6a
0
4 � 2a

p
4a
0
6Þ þ

�F0

� �2

so that the reduction modulo p of fi�1ðð f 1
ooÞ

2=f @ff @Þ is

fi�1 ð f
1Þ

2

f @ff @

� �
¼

1

�Ep�1
ðpþ1Þpi�1 24

�E
pi�1

p�1

Dpi
ð3a6

pia04
pi�1

� 2a4
pia06

pi�1

Þ þ �F0
pi�1

" #2

:

Identifying now the coefficients of a04
2pi�1

and a06
2pi�1

we obtain that �Ep�1
ð p�1Þpi�1

must

divide a
2pi

6 and a
2pi

4 , which is a contradiction. &

We define the ring J by J :¼ Zp½
L

04i4j IðwiwjÞ�.
Note that Theorems 6.1 and 6.2 provide us with a set of generators for J. The two

of them combined can be rephrased as

THEOREM 6.3. The ring J is generated as a Zp-algebra by fi
ð f jooÞ for i50

and j51.

In what follows we shall describe the ring structure of J by examining the relations

among the generators.

PROPOSITION 6.2. For any k53 and i50, the following equality

fiþ1
ð f 1

ooÞf
i
ð f kooÞ � fi

ð f 2
ooÞf

iþ1
ð f k�1

oo Þ þ pfi
ð f 1

ooÞf
iþ2
ð fk�2

oo Þ ¼ 0 ð6:6Þ

holds in I.

Proof. Using Corollary 6.1 one can show that

ðfð f 1
ooÞf

k
oo þ pf 1

oof
2
ð f k�2

oo Þ � f 2
oofð f

k�1
oo ÞÞðq; . . . ; q

kÞ ¼ 0: ð6:7Þ

The ðq; . . . ; qkÞ-expansion principle applied to the last equality yields

fð f 1
ooÞf

k
oo � f 2

oofð f
k�1
oo Þ þ pf 1

oof
2
ð f k�2

oo Þ ¼ 0:

To obtain (6.6) we apply fi to equality (6.7). &

DEFINITION 6.2. A family of modular d-functions fgig14i4m is called f-

algebraically dependent if there exists a non-zero polynomial QðXi; jÞ 2
Zp½fXi; jg14i4m;04j4M� such that Qðf jðgiÞÞ ¼ 0: A family of modular d-functions

fgig14i4m is called f-algebraically independent if it is not f-algebraically dependent.

For the proof of the following Theorem we need to make some preparations. Let

w½m0;...;mn� be the weights defined by w½m0;...;mn� :¼ wm0

0 . . .wmn
n . With the help of the

d-Serre operators we define the maps

An
w½m0 ;...;mn �

: Mnðw½m0;...;mn�1;mn�Þ �!Mnðw½m0;...;mn�1þ1;mn�1�Þ
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by the formulae

An
w½m0 ;...;mn �

ð f Þ ¼ mn@
Serre
n ðfn�1

ð f 1
ooÞÞf� fn�1

ð f 1
ooÞ@

Serre
n ð f Þ

for any f 2Mnðw½m0;...;mn�1;mn�Þ. Note the following obvious equality:

An
wn�1wn

ðfn�1ð f 1
ooÞÞ ¼ 0. We will need also the following equality

An
wn�2wn

ðfn�2
ð f 2

ooÞÞ ¼ 12pnfn�2
ð f 1

ooÞ: ð6:8Þ

To show equality (6.8) we apply Corollary 4.1 to the equalities

fn�2ð f 2
ooÞðq; . . . ; qðnÞÞ ¼ pfn�2Cþ fn�1C and fn�1ð f 1

ooÞðq; . . . ; qðnÞÞ ¼ fn�1C to get

ð�pnfn�2
ð f 2

ooÞf
n
ðPÞ þ @Serre

n ðfn�2
ð f 2

ooÞÞÞðq; . . . ; q
ðnÞÞ ¼ 12pn�1;

ð�pnfn�1
ð f 1

ooÞf
n
ðPÞ þ @Serre

n ðfn�1
ð f 1

ooÞÞÞðq; . . . ; q
ðnÞÞ ¼ 12pn�1:

Multiplying the former by ðfn�1ð f 1
ooÞÞðq; . . . ; qðnÞÞ ¼ fn�1C and then using the latter

we obtain that

@Serre
n ðfn�1

ðf1
ooÞÞf

n�2
ðf2

ooÞ�f
n�1
ðf1

ooÞ@
Serre
n ðfn�2

ðf2
ooÞÞ

� �
ðq;...;qðnÞÞ¼12pnfn�2C:

We deduce (6.8) by applying the ðq; . . . ; qðnÞÞ-expansion principle to the last equality.

THEOREM 6.4. The family f f 1
oo; f

2
oog is f�algebraically independent.

Proof. Suppose that the family f f 1
oo; f

2
oog is f-algebraically dependent, then there

exists a nonzero polynomial QðX0; . . . ;Xs;Y0; . . . ;YtÞ 2 Zp½X0; . . . ;Xs;Y0; . . . ;Yt�
such that

Qð f 1
oo; . . . ;f

s
ð f 1

ooÞ; f
2
oo; . . . ;f

t
ð f 2

ooÞÞ ¼ 0:

The left-hand side of the above equality may be written as a finite sum of modular

d-forms of different weights. We obtain that any modular d-form in this sum must be

equal to 0; consequently the family ff 1; f 2g satisfies an equality of the form

X
ða0;...;an�1;b0;...;bn�2Þ

cða0;...;an�1;b0;...;bn�2Þ
ð f1Þ

a0 . . .ðfn�1
ð f1ÞÞ

an�1ð f 2Þ
b0 . . .ðfn�2

ðf 2ÞÞ
bn�2 ¼ 0;

ð6:9Þ

where the left-hand side of the equality is a modular d-form of some weight

w½m0;m1;...;mn� with mn > 0, and not all the coefficients cða0;...;an�1;b0;...;bn�2Þ are equal to

0. In particular, we have the following relations an�1 þ bn�2 ¼ mn. We endow the

set of ðnþ 1Þ-tuples ½m0; . . . ;mn� of nonnegative integers with the lexicographic order

and we prove by induction on ½m0; . . . ;mn� that an equality like (6.9) holds if and

only if cða0;...;an�1;b0;...;bn�2Þ ¼ 0 for all ða0; . . . ; an�1; b0; . . . ; bn�2Þ. To save space we shall

use the following notation a :¼ ða0; . . . ; an�2Þ and b :¼ ðb0; . . . ; bn�3Þ. Also, we set

F ða;an�1;b;bn�2Þ
:¼ ð f 1

ooÞ
a0 . . . ðfn�1

ð f 1
ooÞÞ

an�1 ð f 2
ooÞ

b0 . . . ðfn�2
ð f 2

ooÞÞ
bn�2 :
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Applying the operator An
w½m0 ;m1 ;...;mn �

to (6.9), after some amount of computation

involving mn ¼ an�1 þ bn�2 and (6.8)(that we shall omit), one gets

12pnfn�2
ð f 1

ooÞ
X

bn�2>0

bn�2cða;an�1;b;bn�2Þ
F ða;an�1;b;bn�2�1Þ ¼ 0:

Dividing by 12pnfn�2ð f 1
ooÞ and then using the step of induction, we obtain that

cða;an�1;b;bn�2Þ ¼ 0 for all ða; an�1; b; bn�2Þ with bn�2 > 0. Combining this with (6.9),

we get thatX
bn�2¼0

cða;an�1;b;bn�2Þ
F ða;an�1;b;bn�2Þ

¼ 0: ð6:10Þ

Note that the condition bn�2 ¼ 0 is equivalent to an�1 ¼ mn, so that after dividing

(6.10) by ðfn�1ð f 1
ooÞÞ

mn we obtain
P

ða;mn;b;0Þ cða;mn;b;0ÞF ða;0;b;0Þ ¼ 0. Another applica-

tion of the step of induction assures that the other coefficients are 0, and we are

done. &

We consider the following epimorphism of rings

r : Zp½fXi; jgi51; j51� �! J; Xi; j j�!fj�1
ð f iooÞ;

where Zp½fXi; jgi51; j51� is the ring of polynomials in the variables fXi; jgi51; j51. Let

also J be the ideal of Zp½fXi; jgi51; j51� generated by the polynomials of the form

X1;lþ2 
 Xk;lþ1 � X2;lþ1 
 Xk�1;lþ2 þ pX1;lþ1 
 Xk�2;lþ3 for k51; l50;

i.e.

J ¼ ðX1;lþ2 
 Xk;lþ1 � X2;lþ1 
 Xk�1;lþ2 þ pX1;lþ1 
 Xk�2;lþ3Þk51; l50:

We define the ideal J : X1
1;1 by

J : X11;1 :¼ fQ 2 Zp½fXi; jgi51; j51� jX
m2

1;2 . . .X
mk

1;kQ 2 J ;

for some nonnegative integersm2; . . . ;mkg:

THEOREM 6.5. The kernel of the epimorphism r : Zp½fXi; jgi51; j51� �! J is the ideal

J : X11;1.

Proof. Let Q be a polynomial in Zp½fXi; jgi51; j51� such that its image in J is 0.

Using Proposition 6.2 and an induction argument, one can show that fið f kooÞ is a

quotient with numerator a polynomial in f 1
oo, fð f 1

ooÞ, . . . , f 2
oo, fð f 2

ooÞ, . . . and

denominator a product of the form ðfð f 1
ooÞÞ

m1 . . . ðfiþ1ð f 1
ooÞÞ

miþ1 . Consequently, one

can find a suitable product of the form Xm2

1;2 . . .X
mk

1;k such that

Xm2

1;2 . . .X
mk

1;kQ �
�Q ðmodJ Þ ð6:11Þ

for some �Q 2 Zp½fX1;k;X2;kgk51�. By Proposition 6.2 �Q belongs to kerr. Note that

rð �QÞ is a polynomial in fið f 1
ooÞ and f jð f 2

ooÞ with coefficients in Zp, so that
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Theorem 6.4 yields �Q ¼ 0. We obtain that Xm2

1;2 . . .X
mk

1;kQ 2 J , and then that

Q 2 J : X1
1;1. The other inclusion is trivial. &

7. The Space of Elliptic Curves up to Isogeny

To make discussion at the end of Introduction precise we need the following

abstract preparation. Throughout this section R is a complete discrete valuation

ring with maximal ideal generated by p and perfect residue field. Let S be the cate-

gory of R-algebras, and let X be a stack over S. Note that we do not assume that

X is a stack in groupoids, i.e. that the morphisms in XðSÞ are isomorphisms for all

S 2 ObS. On each class ObXðSÞ we can consider the following natural equivalence

relation: two objects A;B are equivalent (write A � B) if there exist a sequence

of objects A0;A1; . . . ;An such that A0 ¼ A, An ¼ B, and for each i either

HomXðSÞðAi;Aiþ1Þ 6¼ ; or HomXðSÞðAiþ1;AiÞ 6¼ ;. The general problem that we

want to consider is to find a geometric setting for the following functor

S! fsetsg ; S 7! ðObXðSÞÞ= �
The idea is to ‘enlarge’ usual algebraic geometry by ‘adjoining’ a p-derivation (i.e.

by considering prolongation sequences) and then ‘do geometric invariant theory’ in

this enlarged geometry (i.e. consider line bundles compatible with the equivalence

relation and to consider maps to projective spaces that are constant on all equi-

valence classes).

By a line bundle L on X we shall understand a rule that associates to any ring

S 2 ObS, any A 2 ObXðSÞ and any morphism u 2 HomXðSÞðA;BÞ a line bundle

LA=S on SpecS, and an isomorphism of line bundles u�L: LB=S ! LA=S such that

the construction is functorial in the obvious way. Note that the u�L’s are assumed

to be isomorphisms even if the u’s are not. In what follows we shall fix a line bundle

L on X.

By a degree function on X we shall understand a collection of maps

d 0: MorðXðSÞÞ �!S� \ ZS where ZS is the set of all s 2 S which are locally in

Z(in the Zariski topology), such that d 0ðuvÞ ¼ d 0ðuÞd 0ðvÞ for all u; v 2 MorðXðSÞÞ
for which uv is defined and such that d 0 is compatible with morphisms in S. For

any degree function as above we can associate a line bundle D on X constructed

as follows: for any S 2 ObS, any A 2 ObXðSÞ and any morphism

u 2 HomXðSÞðA;BÞ we let DA=S be the trivial bundle on SpecS, and we let the iso-

morphism u�D: DB=S�!DA=S be the multiplication by d 0ðuÞ. Let us fix in what follows

a degree function d 0 and let D be its associated line bundle.

By a line bundle LðrÞ of order r on X we shall understand a rule that associates to

any prolongation sequence S� 2 Prolp over R (here a prolongation sequence S� is

said to be ‘over R’ if all maps Si ! Siþ1 are maps of R-algebras and all d’s send R

to R), any A 2 ObXðS 0Þ, and any morphism u 2 HomXðSÞðA;BÞ, a line bundle

L
ðrÞ
A=S on Spf Sr and an isomorphism u�

LðrÞ
: L

ðrÞ
B=S �!L

ðrÞ
A=S the formation of the above

objects being compatible with composition of morphisms in XðS 0Þ and functorial in

S�. One can define, in an obvious way, a tensor product operation on the set of line
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bundles of order r on X. For any line bundle of order r, LðrÞ, on X we define its space

of global sections, denoted by H 0ðXðrÞ;LðrÞÞ, as being the set of all rules, f, that

associate to any S� 2 Prolp over R and any A 2 ObXðS 0Þ an element

f ½A;S�� 2 H 0ðSpfSr;L
ðrÞ
A=SÞ such that the formation of f½A;S�� is functorial in S�

and compatible with the isomorphisms u�
LðrÞ

in the sense that for any

u 2 HomXðS 0ÞðA;BÞ we have u�
LðrÞ
ð f ½B;S��Þ ¼ f ½A;S��.

Recall that we denoted by W the free Abelian group generated by the symbols

w0;w1;w2; . . . and embedded it into the group of all d-characters. If

w ¼ wm0

0 . . .wmr
r with mr 6¼ 0 then we set ordðwÞ ¼ r and degðwÞ ¼ mo þ � � � þmr.

For any w 2W of order r and even degree degðwÞ, we can define a line bundle

L�w of order r on X as follows. For any S� 2 Prolp over R and any A 2 ObXðS 0Þ
we consider the line bundle on the formal scheme SpfSr defined by

L�wA=S :¼ L�m0

A=S � ððLA=SÞ
f
Þ
�m1 � . . .� ððLA=SÞ

fr

Þ
�mr ;

where ðLA=SÞf
r

is the pull-back of LA=S via

fi: S 0 ! Si!
can

Sr ð7:1Þ

Note that the isomorphisms u�L: LB=S ! LA=S induce isomorphisms u�L�w: L
�w
B=S !

L�wA=S. These data define our line bundle of order r, L�w, on X. The above construc-

tion applied to D gives rise to a bundle of order r on X, still denoted by D, which is

defined as follows: we continue to denote by DA=S the pull-back of DA=S via (7.1),

which is of course the trivial bundle on SpfSr and we let the isomorphisms

u�D: DB=S ! DA=S on SpfSr be again the multiplication by d 0ðuÞ. Let us denote by

ðL� D1=2Þ�w the line bundle of order r on X defined by ðL� D1=2Þ�wA=S :¼
L�wA=S � D�degðwÞ=2

A=S and defining isomorphisms given by

u�
L�D1=2 :¼ u�L�w � u�

D�degðwÞ=2 ¼ d 0ðuÞdegðwÞ=2

 u�L�w :

By a d-linear system of weight w on X(belonging to ðL;DÞ )we shall understand a

finitely generated R-submodule

L � H 0ðXðordðwÞÞ; ðL� D1=2
Þ
�w
Þ:

Let us fix an R-basis f0; . . . ; fN of L. Then, for any prolongation sequence S� 2 Prolp

over R we have a partially defined map to a projective space pL:
ObXðS 0Þ�!P

NðSordðwÞÞ defined by associating to any A 2 ObXðS 0Þ the point

ð f0½A;S�� : . . . : fN½A;S��Þ. This point is well defined if f0½A;S��; . . . ; fN½A;S�� are not

all zero, so that the set of all A 2 ObXðS 0Þ where this condition fails may be called

the base locus of L. Note that the maps pL are compatible with morphisms of prolon-

gation sequences and are constant on all equivalence classes of � on ObXðS 0Þ. The

‘size’ of the image of the maps pL can be controlled as follows. We denote by Weven

the group of all w 2W of even degree and then consider the Weven-graded ringM
w2Weven

H 0ðXðordðwÞÞ; ðL� D1=2
Þ
�w
Þ: ð7:2Þ
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On this ring f acts naturally and sends the piece of degree v ¼ wa0

0 . . .wan
n into the

piece of degree fv ¼ wa0

1 . . .wan
nþ1. We say that L has Iitaka d� dimension n if

nþ 1 is the largest integer such that L contains n elements which are f�algebraically

independent in the ring (7.2).

The above formalism can be applied to a number of situations in which one con-

siders quotients of schemes (or algebraic stacks) by arithmetically defined equi-

valence relations.

EXAMPLE 1. Let X be (representable by) a smooth scheme X=R, L be (represen-

table by) a line bundle L on it, and d 0 ¼ 1 so that D is the ‘trivial line bundle’. In this

case X is a stack in groupoids. Recall from [2, 3, 5] that one can define a formal

scheme JrðX=RÞ, called the p-jet space of X of order r. Moreover, one can define a

line bundle L�wX on JrðX=RÞ by gluing the obvious local line bundles. Then the space

H 0ðXðrÞ; ðL� D1=2Þ�wÞ identifies with the usual space H 0ðJrðX=RÞ;L�wX Þ of global

sections of L�wX on the formal scheme JrðX=RÞ. If R ¼ Zp, X ¼ P
N, and L ¼ Oð1Þ,

for instance, then H 0ðXðrÞ; ðL� D1=2Þ�wÞ naturally contains the Zp-submodule of

homogeneous polynomials of degree w in

Zp½x0; . . . ; xN;fx0; . . .fxN; . . . ;f
nx0; . . . ;f

nxN�;

where the above ring is given a W-gradation by letting fixj have weight w�1
i . Using

Proposition 1.9 in [5], p. 107, and the ‘weak weight technology’ in [5], p. 116, one can

show, actually, that H 0ðXðrÞ; ðL� D1=2Þ�wÞ is contained in the space of polynomials

of degree w in

Qp½x0; . . . ; xN;fx0; . . .fxN; . . . ;f
nx0; . . . ;f

nxN�:

If L is the d-linear system generated by x0; . . . ; xN;fx0; . . .fxN; . . . ;f
nx0; . . . ;f

nxN,

then L has Iitaka d-dimension N.

In the following example we shall describe our realisation of the space of elliptic

curves up to isogeny.

EXAMPLE 2. Let R ¼ Zp and let X be the stack A
isog
1 whose objects are elliptic

curves, and whose morphisms over each S are the isogenies of degree prime to p.

Moreover, let L be the line bundle on X defined by taking LE=S to be the direct image

of the Kahler differentials O1
E=S in S, for any E 2 ObXðSÞ. Finally, the degree

function d 0 is the multiplication by the degree, degðuÞ, of any isogeny u, as above. In

this case X is not a stack in groupoids. Note that the space H 0ðXðrÞ; ðL� D1=2Þ�wÞ
coincides with the space of isogeny covariant forms IðwÞ. Let us consider the d-linear

system L � H 0ðXð3Þ; ðL� D1=2Þ�wÞ generated by f 1
oof

2ðf 1
ooÞ and f 2

oofð f 2
ooÞ, where

w ¼ w0w1w2w3. Then we have

THEOREM 7.1. The d-linear system L has Iitaka dimension 1.
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Proof. We set g0 ¼ f 1
oof

2ðf 1
ooÞ and g1 ¼ f 2

oofð f 2
ooÞ. To prove that L has Iitaka

dimension 1 it is enough to show that the family fg0; g1g is f-algebraically inde-

pendent. Supposing the contrary we get that g0; g1 are f-algebraically dependent in

Iðw � fw � f2w � f3wÞ, for some weight w ¼ wa0

0 wa1

1 :::wan
n with ak5 0 for all k. In other

words, a finite sum(over Zp) of monomials of the form

Mðio;...;inÞ :¼ ga0�i0
0 gi01 ðfg0Þ

a1�i1ðfg1Þ
i1 . . . ðfng0Þ

an�inðfgnÞ
in

is zero, where 04 ik 4 ak for all k. Since f 1
oo, f 2

oo are f-algebraically independent

(Theorem 6.4) to derive the contradiction it is enough to show that

CLAIM. Mi0;...;in ¼Mj0;...;jn if and only if ði0; . . . ; inÞ ¼ ð j0; . . . ; jnÞ.

Proof. We prove the Claim by induction on ði0; . . . ; inÞ(consider the lexicographic

order).If in 6¼ jn then the exponent of fnþ2ð f 1Þ in Mi0;...;in is an � in, whereas the

exponent of fnþ2ð f 1Þ in Mj0;...;jn is an � jn, and we obtain a contradiction. Combining

in ¼ jn with the step of induction we deduce the Claim. &

In what follows we shall give a partially description of the base locus of L. The

base locus of L is the set of all E 2 ObA
isog
1 ðS 0Þ for which

f 1
oof

2
ð f 1

ooÞðE;o;S
0Þ ¼ f 2

oofð f
2
ooÞðE;o;S

0Þ ¼ 0;

for a basis o of the 1-forms. It is easy to see that the above equalities are equivalent

to f 1
ooðE;o;S 0Þ ¼ f 2

ooðE;o;S 0Þ ¼ 0 if S 0=pS 0 is a field. In addition, if E has ordin-

ary reduction, then

f 2
ooðE;o;S

0Þ ¼ pf 1
ooðE;o;S

0Þ
1

fð f @ÞðE;o;S 0Þ
þ fð f 1

ooÞðE;o;S
0Þf @ðE;o;S 0Þ

(cf. Proposition 6.1), so that if f 1
ooðE;o;S 0Þ ¼ 0, then f 2

ooðE;o;S 0Þ ¼ 0. Using

Proposition (5.3) in [5], f 1
ooðE;o;S 0Þ ¼ 0 if and only if the morphism Fj;f:

Ej � ðS1=pS1Þ�!Ef � ðS1=pS1Þ defined in Construction 2.1 lifts to an S1-mor-

phism Ej�!Ef. We shall suppose now that S 0 is a complete discrete valuation ring

with maximal ideal generated by p and finite residue field, and S� is the prolongation

sequence defined by Si :¼ S 0 for all i, the ring homomorphisms are the identities and

the derivations are defined by dðxÞ ¼ ðfðxÞ � xpÞ=p, where f is the unique lifting of

the Frobenius. In this case the morphism Fj;f: E
j � ðS1=pS1Þ�!Ef � ðS1=pS1Þ has

a lifting if and only if the endomorphism ring EndS 0ðEÞ is strictly larger than Z, i.e.

E has complex multiplication

pL: ObA
isog
1 ðS

0Þ ! PðS3Þ ; E 7! ½f 1
oof

2
ð f 1

ooÞðE;S
0Þ : f 2

oofð f
2
ooÞðE;S

0Þ�

is defined for all elliptic curves E=S 0 with ordinary reduction and without complex

multiplication. Note that this discussion may be generalized to the case of an arbi-

trary d-linear system generated by elements in J.
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