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1. Introduction. In (3) Ore poses two problems concerning the decomposi­
tion of graphs into edge-disjoint paths. The first is to find the conditions on a 
graph so that it can be decomposed into a finite number k of edge-disjoint, 
two-way infinite paths and no fewer. In (2) Nash-Williams solves this problem. 
The results of (2) are used here to solve the second problem, to find conditions 
on a graph so that it can be decomposed into a finite number k of edge-disjoint 
paths (finite, one-way infinite, and two-way infinite) and no fewer. Lemmas 
2 and 3 below establish the result, and are essentially corollaries of Lemmas 8 
and 13 respectively of (2). Erdos, Grunwald, and Vazsonyi state the necessary 
and sufficient conditions for a graph to be decomposable into a finite number of 
edge-disjoint paths in (1), but they do not discuss the number of paths. Let 
t, s, and / be respectively the numbers of two-way infinite, one-way infinite, 
and finite paths in a decomposition of a graph into a minimal finite number of 
edge-disjoint paths. Conditions are found in Section 4 of this paper so that 
t, s, and / are uniquely determined by the graph. 

The author is indebted to Professor Ore of Yale University for his advice 
and encouragement. This work was done with the support of a National 
Science Foundation Fellowship. 

2. Definitions and notation. For a graph G, V(G) and E(G) denote respec­
tively the set of vertices and the set of edges of G. We define 

\G\ = \V(G)\ + \E(G)\, 

where | V(G)\ is the cardinality of V(G), and similarly for \E(G)\. If \Ha) is a 
collection of graphs, then their sum is the graph with vertices VJa V(Ha) and 
edges U a E (Ha). The additive notation Hi + H2 + . . . + Hn is used for 
finite collections. If H and K are two graphs, then H — K denotes the sub­
graph of H which has for edges E{H) — E(K) and for vertices any vertex 
which is either an end-point of one of these edges or is in V(H) — V(K). 
H — E(K) denotes the subgraph of H with vertices V(H) and edges 
E(H) — E(K). Two graphs are called disjoint if they have no common vertex, 
and edge-disjoint if they have no common edge. If F is a subgraph of the 
graph G, then pG(E) denotes the number of edges of G with one end-point in 
V(F) and the other in V(G) — V(F). A vertex v of the subgraph F is an 
even, odd, or infinite vertex of F according to the number of end-points of edges 
of F at v, where loops, edges with both end-points at v, are counted twice. 
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A path sequence in a graph G is a sequence . . . ,vueu Vi+i, . . . of edges and 
vertices alternately with each edge preceded by one of its end-points and suc­
ceeded by the other, no edge appearing more than once. A vertex which either 
has no preceding edge or has no succeeding edge is an end of the sequence. 
A path sequence is finite, one-way infinite, or two-way infinite respectively if 
it has two ends, exactly one end, or no ends. A path is a subgraph of G consisting 
of the edges and vertices of some path sequence. The path is then said to be 
derived from the sequence. A path is finite, one-way infinite, or two-way 
infinite according to the path sequence from which it is derived. A path may 
be derivable from many path sequences, and thus, for example, might be both 
one-way and two-way infinite. However, when a path P is introduced without 
a corresponding sequence being specified, it will be understood that one of the 
sequences from which P is derivable is associated with it. If it is introduced, 
say, as a one-way infinite path, then it will be understood that the path sequence 
associated with it is one-way infinite. A similar convention will hold for finite 
and two-way infinite paths. The path ends (or simply ends) of a path are the 
ends of the associated path sequence. A finite path always has two ends, and 
when these are the same, the path is said to be closed. The length of a finite 
path is the number of edges in it. A decomposition of a graph G is a collection 
of mutually edge-disjoint paths such that their sum is equal to G. For a graph 
with a finite decomposition, that is, a decomposition into a finite number of 
paths, a minimal decomposition is a decomposition with the smallest possible 
number of paths. Two vertices of a graph are said to be connected if there is a 
finite path which includes them both. A connected graph is a graph with every 
pair of vertices connected. Connectedness is an equivalence relation on V(G). 
Each equivalence class, together with all the edges of G with any of its members 
for end-points, is a connected subgraph of G, called a connected component of G, 
or just a component. 

An l-splitting of the graph G is a collection of / disjoint infinite subgraphs 
Hu. . . 1Hl (i.e. \Ht\ is infinite) such that G = Hx + H2 + . . . + Hx + H, 
where H is a finite subgraph of G, called a completion of the splitting. G is 
l-limited if there is an /-splitting of G but no (/ + 1)-splitting. G is limited if 
it is /-limited for some /. The collection of all subgraphs of G can be divided 
into equivalence classes (2), where H and K are in the same class if and only 
if V(H) A V(K) and E(H) A E(K) are both finite, A being the symmetric 
difference. It is shown in (2) that if G is /-limited, there are / distinct equiva­
lence classes such that if Hu . . . , Hi is any /-splitting of G, then one of the Ht 

is in each of these classes. These classes are called the wings of G. 
A graph will be called an (m, g)-graph if, for rn, q non-negative integers, 

there are exactly m odd vertices of G and q finite components without odd 
vertices, called here Euler components, and 0 < \G\ < Ko- Note that the 
relevant graphs of (2) are the (0, 0)-graphs. 

L(y,vf) denotes the graph consisting of two vertices, v and v', v ^ v', a 
single edge joining them, and a countably infinite number of loops at v'. If G 
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is a graph containing the vertices Vi, . . . , vk (not necessarily distinct), then 
G(vi, . . . ,vk) denotes the graph obtained from G by adjoining the graphs 
L{VJ, v/), j = 1, . . . , k, with the conditions that none of the v/ are in V(G) 
and that all of the v/ are distinct. The subgraph of L(vj}v/) consisting of 
Vj, v/, and the single edge between them is denoted by Ej. 

3. Minimal decompositions. 

LEMMA 1. Let vi, . . . , vk be vertices (not necessarily distinct) of a graph G. 
Then G(vi, . . . , vk) is (/ + k)-limited if and only if G is l-limited. 

It will suffice to show the result for k = 1, since induction to arbitrary k 
follows easily if we note that 

(1) G(vi, . . . ,&*) = G(vu . . . , vk-i)(vk). 

If H is a completion of a /-splitting Hu . . . , Ht of G, then H + Ev is a 
completion of a (/ + l)-splitting of G(vi), namely Hi, . . . , H t, L{vi, Vi) — E\. 
On the other hand, if Ku . . . , Kt+i is a (£ + l)-splitting of G(z;i) with com­
pletion K, then L(^i, vi) must have all but a finite number of edges in one of 
the Ku say Kt+i, since the i^^ are disjoint. The remaining edges of L(vi, v±) 
must be in K. Then (K — L(vi, Vi)) + (vi) is a completion of the /-splitting 
Ki, . . . , i^^-i, i^« + (Kt+i — L(vi, Vi)) of G. Thus a /-splitting of G exists if 
and only if a (t + 1)-splitting of G(^i) exists. Then G(z>i) is (/ + 1)-limited if 
and only if G is /-limited. This is the desired result. 

It will be convenient to note that by iteration of the construction in this 
lemma, we see that Hi, . . . , Hi is an /-splitting of G if and only if 

(2) Hi, . . . , Hh Ki, . . . , Kk is an (/ + ^-splitting of G(vu . . . , vk), 

where Ki = L{vt, v/) — Et. 
Let G be an /-limited (m, g)-graph. (As noted in (1), the requirement that 

there be a finite number of Euler components is superfluous for limited graphs. 
However, the redundant notation will be retained for convenience.) Let 
Hi, . . . , Hi be an /-splitting of G with completion H'. Let F be the subgraph 
of G consisting of all the Euler components of G, all the edges with an end-
point at an odd vertex of G, and all vertices which are end-points of these 
edges. Let Ht = H/ — F. Then Hi, . . . , Hi is an /-splitting of G with com­
pletion H' + F. This splitting has the property that none of the Ht contains 
any odd vertex of G or any vertex of one of the Euler components. Such a 
splitting will be called a restricted /-splitting of the (m, g)-graph G. We see that 
for any given /-splitting with completion H', there exists a restricted /-splitting 
such that some completion contains Hf. 

Let the odd vertices of G be Vi, . . . , vm, and the Euler components Ci, . . . , Cq. 
Now form G' = G(vu . . . ,vm, vm+i, . . . , vm+2Q), where the vertices vm+2n are 
chosen from the Ch respectively, h = 1, . . . , a, and, in order not to introduce 
any odd vertices, the vm+2h-i are chosen by letting vm+2h-i = Vm+in- Then G' 
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is a (0, 0)-graph, and by Lemma 1, G' is (/ + m + 2g)-limited. Let Ki, . . . , Ki 
be another restricted /-splitting of G. We can assume that K i and Hi are in the 
same wing of G, i = 1, . . . , /. From (2) we see that the Ht can be made part 
of an (/ + m + 2g)-splitting of G', and thus that the Ht and Kt belong to the 
wings of G'. Since Ht and Ki belong to the same wing of G, they belong to the 
same wing of G', and similarly all the Ht belong to distinct wings of G'. By 
(2, Lemmas 4 and 5) 

(3) Po\Ht) s Po,{Kt) (mod 2). 

Now since Hu • . • , Hi is a restricted /-splitting of G, we have 

(4) PG(Hi) = PG>(Hi). 

Similarly, 

(5) pG(Ki) =PG>(Kt). 

Then 
(6) pG(Ht) =Po(Kt) (mod 2). 

We can thus define a wing of G to be even or odd depending on whether pG(H) 
is even or odd, where H is any subgraph in the wing which is part of a restricted 
/-splitting of G. This definition agrees with that in (2) for (0, 0)-graphs. Let a 
be the number of even wings of G, and /3 the number of odd wings. Then 
define p(G) = a + J(/3 + m + 2g). This also agrees with the definition in (2) 
for (0, 0)-graphs. We note that the L(vj, v/) are in odd wings of G' from (2), 
and using (4) we get 

(7) p{G) = p(G'). 

LEMMA 2. If G is decomposable into a finite number, k, of paths, then G is 
limited and it is an (m, q)-graph. Also, k > p(G). 

Let Pi, . . . , Pjc be the edge-disjoint paths of a decomposition, and let 
Vi, . . . , vn be their path ends, where each vertex is listed as many times as it 
appears as a path end among the Pr (counting it twice each time it appears 
as the ends of a closed path, in particular). Let G* = Givi, . . . , vn). G* is 
decomposable into k two-way infinite paths. For if Pi , say, is a finite path, 
with ends v\ and v2, then L(vi, v\) + P\ + L(v2, v%) is certainly a two-way 
infinite path. A similar result holds for the Pr which are one-way infinite paths. 
In this way all the Vj are exhausted, and since the Pr are edge-disjoint, the 
two-way infinite paths thus formed are edge-disjoint. By (2, Lemma 8) G* is 
limited, say (/ + w)-limited, and thus by Lemma 1, G is /-limited. G is certainly 
an (m, q)-graph since odd vertices can only occur at path ends, and since 
there are no more than k components all together. Thus the first part of the 
lemma is established. 

Let Hi, . . . , Hi be a restricted /-splitting of G. Let at be the number of the 
Vj which are in Ht (counting multiplicities), i = 1, . . . , /. Then 

(8) pG*(H() = pa(Ht) + a,. 
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By (2) the Ht are also part of an (/ + n)-splitting of G*. Since G* is a (0, 0)-
graph, this must be a restricted (/ + n)-splitting. Thus, by definition, the wing 
of G* to which Hi belongs is even or odd according to the parity of pG*(Ht). 
Let g be the number of Ht which are in even wings of G but in odd wings of 
G*, and let h be the number of Ht which are in odd wings of G but in even 
wings of G*. Then by (8) g + h is just the number of at which are odd. Thus 

(9) Z a, > g + h. 
i=i 

Now each odd vertex of G must be a path end for at least one of the paths, 
and each Euler component of G must have a finite path in it, and thus two 
path ends. This accounts for m + 2q path ends, all distinct from those in the 
Hf since the Ht form a restricted /-splitting. Thus 

i 

(10) n > X) at + m + 2q. 

From (2) we see that the wings of G* contain either one of the L(vj, v/) or 
one of the Ht. The wings containing the L(vjf v/) are odd; there are n of these. 
Let a* and 0* be the numbers of even and odd wings of G* respectively, and 
a and 0 be the corresponding numbers for G. Then we have 

(11) a* =<*+ (h-g); P* - n = 0 + (g - h). 

Since G* is decomposable into k two-way infinite paths, (2, Lemma 8) applies, 
and we have 

(12) k > a* + i0*. 

Applying (11) and (10), we get 

(13) k > a + (h - g) + iOS + n + g -

Finally, using (9), we obtain 

(14) k > a + UP + h - g + m + 2q + g + h) = a + £(0 + m + 2q) + h 
>a + UP + ni + 2q) = p(G). 

This establishes the last part of the lemma. 

LEMMA 3. A limited (m, q)-graph is decomposable into p{G) paths. 

Let G be a limited (m, q)-graph. Form Gf as before. G' is a limited (0, 0)-
graph, and thus by (2, Lemma 13) G' can be decomposed into p(Gf) two-way 
infinite paths. 

Suppose Pi , . . . , PT are the paths of the decomposition which have edges 
in L(v\y Vi). Then all but one of them, say Pi , must lie entirely in L(vi, v\). 
Also P i — L(vi,vi) is a path. Thus G' — LtyuVi) can be decomposed into 

• h) =a + UP + h - g + n) 

— g + m + 2q +J2 ai) -
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p(G') — r + 1 paths. Repeating this argument for each of the L(VJ, v/) shows 
that G can be decomposed into k paths, where k < p(Gf). But p{G') = p(G) 
by (7). Thus k < p(G), and by Lemma 2, k = p(G). 

THEOREM 1. A graph G can be decomposed into a finite number of paths if and 
only if it is a limited (m, q)-graph. In this case the minimum number of paths 
into which it can be decomposed is p{G). 

4. Uniqueness. In this section we consider G to be a connected, /-limited 
(m, #)-graph. Suppose Pi , . . . , Pk is a minimal decomposition of G. Let 
/, s,f be respectively the numbers of two-way infinite, one-way infinite, and 
finite paths among the P t. We have 

(15) t + s +f = k = p(G) = a + J G? + m) + <Z-

In general, /, s, a n d / are not uniquely determined by G, but depend upon the 
choice of the decomposition and upon the choice of the sequences from which 
each Pi is derived. Under certain conditions, however, they are uniquely 
determined by G. These are established below. 

LEMMA 4. There is a restricted I-splitting Hi, ... t Hi of G such that some 
completion H is connected, each Ht is connected, and each Hi contains either one 
or no odd vertex of H, according to whether the wing to which it belongs is odd or 
even respectively. 

Such a restricted /-splitting of G will be called a proper /-splitting. 
Let Ki, . . . , Ki be a restricted /-splitting of G with completion K. Since G 

is connected, there is a finite subgraph of G which is connected and which 
contains K. Call it K'. Now the construction proceeds just as in (2, Lemma 12). 
Suppose C is a component of G — K' which contains two odd vertices of K', 
V\ and v2. Then there is a path P in C with Vi and v2 for ends. Then vi and v2 

are even in K1 + P. Hence K' + P has two fewer odd vertices than K'. 
Repeating this procedure reduces the number of odd vertices further. Since 
the number of odd vertices is finite in K', this process must stop after some 
finite number of steps. Let H' be the subgraph thus obtained from Kr after the 
last step. No component of G — H' has more than one odd vertex of H' in it. 
Let F be the sum of the finite components of G — Hf. Since G is connected 
and H' is finite, the number of components in F is finite, and thus F is finite. 
Also, if H = Hf + F, then H is connected, since H' is. Let Ht = Kt — H, 
i = 1, . . . , /. The components of G — H are all infinite, and thus, since G is 
/-limited, they are just the Hx. Each Hi is disjoint from F, and thus the only 
odd vertices of H which it contains are odd vertices of H', of which there is at 
most one by the definition of H'. Hi, . . . , Hi is a restricted /-splitting of G 
with completion H since H contains K. pG(Ht) is even or odd according to 
whether Hi contains no odd vertex of H or one odd vertex of H. Thus the 
wing of G to which Ht belongs is even or odd according to whether Ht contains 
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no odd vertex of H or one odd vertex of H. Each Ht is connected since it is a 
component of G — H. Hence Hu . . . , Ht is the desired proper /-splitting of G. 

Let H be a subgraph of G which is in one of the wings W of G. Suppose K 
is another member of W. If H has an infinite vertex v, then, since H and K 
can only differ in a finite number of edges, v is also an infinite vertex of K. 
We can thus say that the wing W contains the infinite vertex v if v is an infinite 
vertex of any member of W. 

LEMMA 5. If any even wing of G contains an infinite vertex, then neither t nor s 
is uniquely determined. 

Let W be an even wing of G, and suppose that W contains an infinite vertex 
v. If p(G) = 1, then a = 1, /3 = 0, m = 0. Then (2, Lemmas 11 and 10) 
imply, respectively, that G can be considered either as a one-way infinite 
path or as a two-way infinite path. Thus t and 5 are not uniquely determined. 
So assume that p(G) > 1. Let Hi, . . . , Hi be a proper /-splitting of G with, 
say, Hi in W. Let if be a completion of the splitting as in Lemma 4. Then any 
vertex common to H and H\ must be even in H. Since it is a restricted splitting, 
none of these common vertices can be odd in G, and thus they are not odd in 
H\. All of the vertices of H\ must then be either even or infinite. Now G — Hi 
is an (/ — 1)-limited (m, q)-graph, and p(G — Hi) = p(G) — 1. Let G — Hi 
be decomposed into p(G) — 1 paths with the corresponding numbers t', s', 
and / ' . Since H\ is in W, the vertex v is an infinite vertex of H\. Then (2, 
Lemmas 10 and 11) apply to Hx, and we can consider H\ to be either a two-way 
infinite or a one-way infinite path. Then G can be decomposed into p{G) 
paths using the previous decomposition of G — H\. The resulting numbers 
t, s, a n d / a r e t = t' + 1, s = s' ,f = f, or t = tf, s = sf + 1 , / = / ' , according 
respectively to whether H\ is considered to be a two-way infinite path or a 
one-way infinite path. Thus t and s are not uniquely determined, and the 
lemma is proved. 

LEMMA 6. If G is not an Ruler graph (i.e. connected, finite, and having no 
odd vertices), and if no even wing of G contains any infinite vertices, then if 
Pi, . . . , Pk is a minimal decomposition of G, all of the path ends of the Pt are 
distinct odd vertices of G. 

First of all, none of the Pt are closed paths. For if, say, Pi were closed, then 
either k > 1, in which case, by connectedness of G, Pi would have a common 
vertex with some other Pu say P2 , or k = 1, in which case G is an Euler graph. 
The latter case is ruled out by hypothesis. In the former case, we can consider 
Pi + P2 to be a single path, thus violating the minimality of the decomposition. 
Thus if a vertex is a path end twice among the Pu it must be the end of two 
different paths, say Pi and P%. But in this case Pi + P2 can be considered 
as a single path, again violating the minimality of the decomposition. So there 
is at most one path end at any vertex of G. In particular, this excludes even 
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vertices from being path ends. To complete the proof we show that there are 
no path ends at infinite vertices. 

Suppose that P i has an end at an infinite vertex u. Then G (u) is decomposable 
into k paths also, since P i + L(u, u') is either a one-way or a two-way infinite 
path. Let Hu . . • , Hi be a restricted /-splitting of G. Then by (2) we have an 
(/ + l)-splitting Hi, . . . , Hi, L(u, u') — Eu of the (/ + l)-limited graph 
G(u), where Eu is the subgraph of L(u, uf) consisting of u, u', and the single 
edge between them. Since u is infinite, by hypothesis of this lemma, u must 
be in an odd wing of G. Let Hi be the member of this wing in the splitting. 
Then we have pG(Hi) + 1 = pG(u)(Hi), since the edge of Eu is counted in the 
right-hand side of this equation. Thus the wing of G(u) to which Hi belongs is 
even. Then the number of even wings of G(u) is one greater than for G, while 
the number of odd wings is the same, since the wing of G(u) which contains 
L{u, uf) is odd, compensating for the change of the wing containing Hi from 
odd to even. Thus p(G(u)) = p(G) + 1. But we already have a decomposition 
of G(u) into k = p(G) paths. This contradicts Theorem 1. Hence the assump­
tion that P i has an end at an infinite vertex must be false, and the lemma is 
proved. 

For a graph satisfying the hypotheses of Lemma 6, the number of path ends 
in any minimal decomposition is at most the number of odd vertices of the 
graph. On the other hand, every odd vertex must be a path end for some path 
in the decomposition Thus the number of path ends is at least the number of 
odd vertices, and 

(16) m = 2/ + s 

for any minimal decomposition of a graph satisfying the hypotheses of 
Lemma 6. 

Let P be a path and v a vertex in it. Let the associated path sequence from 
which P is derived be . . . , vn-1} <v_i, vn, en, vn+i, . . . , where v = vn. Then we 
say that v divides the path P into the two paths Q and R, derived respectively 
from the sequences . . . , vn-i, en_i, vn and vn, en, vn+u . . . . 

LEMMA 7. If there is a minimal decomposition of G such that two of the paths 
of the decomposition are one-way infinite, then there is a minimal decomposition 
of G with two one-way infinite paths which have a common vertex. 

Let Pi , . . . , Pk be a minimal decomposition of G, and assume that P i and 
P 2 are one-way infinite. Since G is connected, there are finite paths in G with 
one end at a vertex of P i and the other at a vertex of P2 . Let P be such a 
path with smallest length d. If d = 0, the two paths P i and P 2 have a common 
vertex. So assume that d > 0. Let v\ and v2 be the ends of P in P x and P 2 

respectively. By the minimality of d, there is only one edge of P which has an 
end-point in P x ; call it E. E thus has one end-point at v\ and the other at a 
vertex v% which is not in Pi , since v% is connected to vertices of P 2 by a path of 
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length d — 1. The edge E must be in one of the paths of the decomposition, 
and this path must thus contain vi and y3. Hence it is distinct from P i and from 
P2 . Let P 3 be the path containing E. Now Vi divides P i into a finite path <2i 
and an infinite path Pi . Similarly, Vi divides P 3 into two paths, Ç3 and P3 , one 
of which, say P3 , contains E. Suppose P 3 is infinite. Then we can replace 
P i and P 3 in the minimal decomposition by the one-way infinite path Qi + P 3 

and the path Q3 + P i , thus obtaining a new minimal decomposition. If P 3 is 
finite, then we can replace P i and P 3 by the one-way infinite path P i + P 3 

and the path Qi + <23, again obtaining a new minimal decomposition. In 
either case the new decomposition still includes P2, and it includes a one-way 
infinite path, different from P2 , which contains v%. Thus there is a minimal 
decomposition of G with two one-way infinite paths such that a shortest path 
between them is at most of length d — 1. Now we can repeat this construction 
until we reduce the shortest path length to 0, when the paths have a common 
vertex. 

LEMMA 8. If there is a minimal decomposition of G which includes either a 
finite and a two-way infinite path which have a common vertex, or two one-way 
infinite paths which contain a common vertex, then t, s, and f are not uniquely 
determined. 

Let Pi , P2, . . . , Pic be a minimal decomposition of G. Suppose the paths P i 
and P2 are one-way infinite and have a common vertex u. Then u divides each 
of them into a finite part, Q\ and Q2 respectively, and an infinite part, P i and 
P 2 respectively. Then Qi + Q2, P i + P2, P3, . . . , Pjc is a minimal decom­
position with two fewer one-way infinite paths than the original minimal 
decomposition. In a similar way, if we start with P i and P 2 finite and two-way 
infinite respectively, we can construct a new minimal decomposition with two 
more one-way infinite paths than the original one. In either case we see that 
t, s, and / are not uniquely determined. 

LEMMA 9. If s is uniquely determined, and 5 = 1, then if m > 1, and 
a + è ( 0 ~ l ) > O > there is an edge E of G such that G — E contains a finite 
component which contains all the odd vertices of G. 

Since 5 is uniquely determined, Lemma 5 implies that no even wing of G 
contains an infinite vertex. Since G is not finite, G satisfies the hypotheses of 
Lemma 6. Hence we can use (16) along with (15) and the equation 5 = 1 to 
deduce that t = a -{- %(/3 — 1 ) > 0 and / = \{m — 1) > 0 are uniquely 
determined. By Lemma 8 none of the finite paths in a minimal decomposition 
of G can have any vertices in common with any of the two-way infinite paths 
of the decomposition. Let P be the single one-way infinite path for some 
minimal decomposition. Then since G is connected, P must have vertices in 
common with at least one of the finite paths of the decomposition and with at 
least one of the two-way infinite paths. Let v\, eu ^2, . . . be a path sequence 
from which P is derived, and let va be the first vertex in the sequence which 
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is in one of the two-way infinite paths. Let vb be a vertex of P which is in one 
of the finite paths, say P. Then vb divides P into two finite paths, A and B, 
and it divides P into a finite path Q and an infinite path R. We can then replace 
P and F in the minimal decomposition by Q + A and R + B, this latter path 
being the one-way infinite path in the resulting minimal decomposition. If 
b > a, then the finite path Q + A of this minimal decomposition has the vertex 
z/a in common with a two-way infinite path of the decomposition. By Lemma 8 
this violates the uniqueness of t, s, and/ . Thus b < a. That is, all vertices of P 
which are in any of the finite paths of the decomposition precede va in the 
sequence for P. Let vr be the last vertex of the sequence which is in one of the 
finite paths. The value a — r > 0 depends on the choice of the sequence for P. 
Define d (P) to be the minimum value of a — r for all choices of the sequence 
for P . 

Now select a minimal decomposition of G, with finite paths Pi, . . . , P r , 
two-way infinite paths Pi, . . . , Tu and a one-way infinite path P , such that 
d(P) is a minimum for all such selections. Let vi, e^ v2, . . . , vr, . . . , va, . . . be 
a path sequence for P , va, and vT defined as before, such that d(P) = a — r. 
Then P is divided into three paths by va and vr as follows: Pi , derived from the 
sequence vi, ei, . . . , vr; Pi derived from the sequence vrj ery . . . , va\ P 3 derived 
from the sequence vai ea, va+i, . . . . 

Suppose for b < r < a < c that we have vb = vc. Then the path R derived 
from the sequence Vi, e\, . . . , eb_i, vb1 ec, vc+i, . . . is a one-way infinite path, 
and the path 5 derived from the sequence vb, ebJ . . . , vT, . . . , va, . . . , ec_i, vc is 
closed. Let Pi be a finite path in the decomposition which contains vr, and Pi a 
two-way infinite path which contains va. Replacing Pi and P in the minimal 
decomposition by the finite path Pi + 5 and the one-way infinite path R 
yields a new minimal decomposition. But Pi + 5 and Pi have va in common, 
violating the uniqueness of t, s,f, by Lemma 8. Hence vb ^ vc; that is, P i and 
P 3 are disjoint. Now suppose that for some vertex vd of P i other than vr we 
have vd = ve for d < r < e < a. Let A be the part of P i derived from the 
sequence Vi, eu . . . , vd, and let B be the part derived from vd, ed, . . . , vr. Let 
C be the part of P 2 derived from vT, er, . . . , ve, and let D be the part derived 
from ve, ee, . . . , va. Then A + D + Pz is one-way infinite, and B + C is 
closed. Thus we can form a new minimal decomposition of G by replacing P 
and Pi by the one-way infinite path A + D + P 3 and the finite path 
Pi + B + C. For this decomposition we have 

d(A + D + P3) < a - e < a - r = d(P), 

since A + D + P 3 contains z>e and va. But this violates the choice of P . Thus 
the assumption that there is a vertex of P i other than vr which is also in P 2 

is false. A similar argument shows that the only vertex of P 3 which is also in 
Pi is va. 

If H is the sum of P i and the finite paths Pi, . . . , Ffl and K is the sum of 
P 3 and the two-way infinite paths Pi, . . . , Tu then H and K are disjoint, 
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since by the choice of va and vr we know that P\ and P 3 are disjoint respectively 
from the P's and P's, and, as we have just seen, P i and P 3 are disjoint. By the 
choice of va and vT we see that P 2 has only vr in common with the Fs and only 
va in common with the P's, and thus, by what was shown above, Po has 
precisely vr in common with 77 and ^a in common with K. 

Suppose there were two edge-disjoint paths Qi and Q2 in P2 with end-points 
at vr and va. The only odd vertices of P 2 are ur and va, and since Qi + Q2 is a 
closed path, these are the only odd vertices of P 2 — (Q\ + Q2). Then they 
must be in the same component F2 of P 2 — (Qi + Q2) (3, Theorem 1.2.1). 
Let P 2 " = P 2 — P / . Then P 2 " is connected since P 2 is connected. P 2 " has no 
odd vertices since it is just the sum of Qi + Q2 and those components of 
P 2 — (Qi + Q2) which have no odd vertices. Thus P 2 " is a closed path. 
(3, Theorem 3.1.1). P 2 ' is a finite path with ends at vr and va (3, Theorem 3.1.2). 
Hence P i + P 2 ' + P3 is a one-way infinite path, and Pi + P 2 " is a finite path. 
Replacing Pi and P in the minimal decomposition with Pi + Pi' and 
P i + P / + P3 gives a new minimal decomposition. But the finite path 
P 2 " + Pi contains va, since P 2 " contains Qi. Since ^a is in 7\, this contradicts 
the uniqueness of t, s, a n d / by Lemma 8. Thus there must be no pair of edge-
disjoint paths in P 2 with ends at va and vr. Then there must be an edge E of P 2 

such that va and vr are in different components of P 2 — R (3, Theorem 12.3.1). 
Let Cr and Ca be respectively the components of P 2 — E which contain vr and 
va. The components of G — R are just 77 + Cr and 7£ + Ca. 77 + Cr is finite, 
and since it contains all the finite paths of the decomposition along with Pi , 
it contains all of the path ends for the decomposition. Thus it contains all of 
the odd vertices of G. Hence R is the desired edge, and the lemma is proved. 

LEMMA 10. If s is uniquely determined, and s = 0, then either m = 0 , or 
a = 13 = 0. 

Since s = 0, and G is connected, either t = 0 or / = 0 by Lemma 8. If 
t = 0, then G is finite and a = (3 = 0. If / > 0, then / = 0, and there are no 
path ends, so m = 0. 

LEMMA 11. If G has no even wings with infinite vertices, and if either m < 1 or 
a: + l ( ^ ~ l ) ^ 0 , then t, s, f are uniquely determined. 

If m = 0, then either G is finite, in which case it is an Euler graph and 
f=l,s = t = 0 (3, Theorem 3.1.1), or G is infinite, in which case Lemma 6 
implies that there are no path ends, and thus that 5 = / = 0, and t = p(G). 
H m = 1, then Lemma 6 implies that there is just one path end, and thus that 
5 = 1, / = 0, t = a + §(0 - 1). Finally, if a + ±(0 - 1) < 0, then either 
a = 13 = 0, in which case G is finite and s = t = 0,f = p(G), or a = 0, /3 = 1, 
in which case we may employ (15) and (16) to obtain s = 1, t = 0, 
f = Hm- 1). 

LEMMA 12. If G has no even wings with any infinite vertices, and there is an edge 
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E of G such that G — E has a finite component which contains all the odd vertices 
of G, then t, s, f are uniquely determined. 

We may assume that G is infinite and that m > 0; otherwise Lemma 11 
applies. For any minimal decomposition of G precisely one of the paths, say 
Pi, must contain E. Then Pi is derived from some sequence . . . , vn, E, vn+1, . . . . 
Let Pi be the path derived from the sequence of terms preceding E, and PÎ' 
be the path derived from the terms following E. Then one of these two paths 
is in each of the components of G — E. Suppose that P / is in the finite com­
ponent. Then P / must be finite, and thus P i has an end in the finite component 
of G — E. On the other hand, P / ' must be infinite, since otherwise P i would 
have an end in the infinite component of G — E, which would violate Lemma 6 
since there are no odd vertices there. Thus P i is one-way infinite. There is no 
other one-way infinite path in the decomposition. If there were, then it could 
not contain E, and thus would be entirely in either the finite component of 
G — E or the infinite component. The former case is clearly impossible. In the 
latter case, since there are no odd vertices of G in the infinite component, the 
path could have no end by Lemma 6, and thus could not be one-way infinite. 
Hence s = 1 is uniquely determined, and with (15) and (16) this yields 
f = \(m- 1 ) , / = a + i ( / 3 - 1). 

THEOREM 2. Necessary and sufficient conditions that t, s, and f be uniquely 
determined for a connected, limited (m, q)-graph G are: 

(A) No even wing of G contains any infinite vertex. 
(B) At least one of the following conditions holds: 

(i) m < 1, 
(ii) a + ! ( 0 - 1) < 0 , 

(iii) there is an edge E of G such that G — E has a finite component 
containing all the odd vertices of G. 

The necessity of condition A is established by Lemma 5. Lemmas 7 and 8 
show the necessity of 5 < 1, which, together with Lemmas 9 and 10, implies 
the necessity of condition B. The sufficiency of A and B is established in Lem­
mas 11 and 12. 

COROLLARY. Necessary and sufficient conditions that t, s, and f be uniquely 
determined for a limited (m, q) -graph which is not necessarily connected are that 
A and B hold for each component of the graph. 
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