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The leapfrogging of coaxial vortex rings is a famous effect which has been noticed
since the times of Helmholtz. Recent advances in ultra-cold atomic gases show that the
effect can now be studied in quantum fluids. The strong confinement which characterises
these systems motivates the study of leapfrogging of vortices within narrow channels.
Using the two-dimensional point vortex model, we show that in the constrained geometry
of a two-dimensional channel the dynamics is richer than in an unbounded domain:
alongside the known regimes of standard leapfrogging and the absence of it, we identify
new regimes of image-driven leapfrogging and periodic orbits. Moreover, by solving the
Gross–Pitaevskii equation for a Bose–Einstein condensate, we show that all four regimes
exist for quantum vortices too. Finally, we discuss the differences between classical and
quantum vortex leapfrogging which appear when the quantum healing length becomes
significant compared to the vortex separation or the channel size, and when, due to high
velocity, compressibility effects in the condensate becomes significant.
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1. Introduction

The leapfrogging of two co-axial vortex rings (in three dimensions) or of two
vortex–antivortex pairs (in two dimensions) is a benchmark problem of vortex interaction
(Meleshko 2010) which dates back to von Helmholtz (1858). The time evolution of this
vortex configuration is striking: the vortex ring (or pair) which is ahead widens and slows
down, while the ring behind contracts, speeds up, catches up with the first ring and goes
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ahead through it; this ‘leapfrogging’ game is then repeated over and over again, unless
instabilities disrupt it. A number of papers have been written on different aspects of this
problem, ranging from the stability (Love 1894; Hicks 1922; Acheson 2000; Tophøj &
Aref 2013) to the deformation of the vortex cores and to the effects of viscosity (Shariff
& Leonard 1992) using numerical (Riley & Stevens 1993; Borisov 2014; Cheng & Lim
2015) as well as experimental methods (Maxworthy 1972; Yamada & Matsui 1978; Lim
1997; Qin, Liu & Xiang 2018). The most recent developments concern leapfrogging of
vortex bundles (Wacks, Baggaley & Barenghi 2014) and helical waves (Hietala et al. 2016;
Selçuk, Delbende & Rossi 2018; Quaranta et al. 2019).

Our work is motivated by recent experiments with atomic Bose–Einstein condensates,
which constitute a dilute quantum fluid and provide an idealised platform to study
fundamental vortex dynamics (White, Anderson & Bagnato 2014). In these experiments,
atomic gases are confined by suitable magnetic-optical traps and cooled to nano-Kelvin
temperatures. If the atoms of the gas are bosons (i.e. have integer spin), a phase transition
occurs upon cooling below a critical temperature Tc, and the gas forms a macroscopic
coherent quantum state (Barenghi & Parker 2016) called a Bose–Einstein condensate
(BEC). From the point of view of the hydrodynamics, a BEC has three key properties:
it is superfluid (i.e. it suffers no viscous losses as an ordinary fluid and the total energy
is constant, although the incompressible kinetic energy fraction may vary with time
being transformed either into acoustic, interaction or potential energy, or vice versa); it
is compressible; its vorticity is concentrated to thin hollow vortex lines with fixed width
a0 and fixed circulation ±h/m where h is Planck’s constant and m is the mass of a boson
(while vortices with larger quanta of circulation, ±2h/m,±3h/m, . . . , are possible, they
are unstable to decay into multiple singly charged vortices). Thus, in BECs, vortices are
well-defined and identical objects, evolving in an inviscid compressible fluid.

There are several additional characteristics of atomic BECs that make them attractive
for probing vortex dynamics. Firstly, the physical parameters of the fluid (including the
width and speed of the vortices) are tuneable, for example, through the density of the
gas and the strength of the atom–atom interaction (which can be modified by means of
Feshbach resonances (Inouye et al. 1998)); this should be contrasted with superfluid liquid
helium – historically the most studied quantum fluid – whose physical parameters are
fixed by nature. Secondly, the potential experienced by the gas can be controlled through
magnetic and optical fields. Such trapping is essential to contain the gas, and gives rise
to the boundary effects which are central to this work. However, the potential can also be
exploited to engineer the dimensionality of the gas – particularly, quasi-two-dimensional
geometries in which vortex lines effectively become point-like vortices – and to stir and
shake the condensate. Finally, recent techniques have enabled the observation of vortex
lines (Serafini et al. 2017) and vortex points (Seo et al. 2017) in real time, including
inference of their individual circulations.

Atomic BECs have been employed as a context to study a range of fundamental vortex
phenomena, including vortex nucleation from moving obstacles (Frisch, Pomeau & Rica
1992; Rica 2001; Neely et al. 2010; Nore, Brachet & Fauve 2012; Stagg, Parker & Barenghi
2014; Kwon, Seo & Shin 2015; Musser et al. 2020) and flow constriction (Valtolina et al.
2015; Burchianti et al. 2018; Xhani et al. 2020), von Kármán vortex streets (Sasaki, Suzuki
& Saito 2010; Kwon et al. 2016), vortex–antivortex annihilations (Seo et al. 2017), vortex
line reconnections (Serafini et al. 2017; Galantucci et al. 2019), vortex chaos (Navarro
et al. 2013), vortex scattering (Barenghi et al. 2005; Caplan et al. 2014; Griffin et al.
2017), quantum turbulence (Henn et al. 2009; Neely et al. 2013; Kwon et al. 2014;
White et al. 2014; Stagg et al. 2015; Tsatsos et al. 2016; García-Orozco et al. 2020),
and self-organisation and clustering of vortices (Billam et al. 2014; Simula, Davis &
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Vortex leapfrogging in two-dimensional channels

Helmerson 2014; Gauthier et al. 2019; Johnstone et al. 2019). With regards to vortex
leapfrogging, this has been considered theoretically in idealised unconfined condensates
(Ikuta, Sugano & Saito 2019), including spinor condensates (Kaneda & Saito 2014).

Atomic BECs, however, are characterised by their small dimensions, typically from 10
to 100 times the vortex core size, for which the motion of vortices can be significantly
affected by the presence of boundaries. This drawback is mainly due to the loss of atoms
in the final evaporative stage of cooling the gas. There are even experiments in which,
by design, the most interesting physics occurs in the most restricted region of the system,
for example vortex rings nucleated in the weak link of the Josephson junction between
two condensates (Valtolina et al. 2015; Xhani et al. 2020). The aim of the present work is
to provide insight into the interpretation of current and future experimental studies of
vortex dynamics in confined condensates (rather than idealised open domains), where
leapfrogging dynamics, which can be established if the vortex nucleation frequency
is sufficiently high, is affected by the presence of boundaries. The characteristics of
leapfrogging motion in such confined systems are likely to show significant dissimilarities
compared to the corresponding dynamics in unbounded systems stemming from the
role played by image vortices arising from the presence of boundaries. Despite the
expected impact of geometrical confinement, to the best of our knowledge the role of
boundaries in leapfrogging dynamics has never been investigated in the literature neither
for classical nor for quantum fluids (Kaneda & Saito (2014) and Ikuta et al. (2019) indeed
studied leapfrogging in homogeneous condensates, without boundaries). In order to assess
the impact of the boundaries and disentangle the latter from other concurrent physical
effects existing in quantum fluids (e.g. compressibility), in this research we compare the
leapfrogging of vortices in plane channels in (i) ideal incompressible classical fluids and
(ii) box-trapped BECs. In order to simplify the system under investigation, our theoretical
and numerical analysis is performed in two dimensions, employing the point vortex
model for classical fluids and the Gross–Pitaevskii equation for BECs. We stress that the
Gross–Pitaevskii equation has proved an excellent quantitative model of experiments with
BECs at temperatures T � Tc; at relatively high values of temperature, the condensate
exchanges energy and particles with the thermal cloud, and the Gross–Pitaevskii equation
requires modifications (Brewczyk, Gajda & Rzazewski 2007; Blakie et al. 2008; Proukakis
& Jackson 2008; Berloff, Brachet & Proukakis 2014). We also remark that, on the one
hand, the two-dimensional nature of the system that we consider is an idealisation,
but, on the other hand, where atomic BECs are tightly confined in one direction the
system becomes effectively two-dimensional and our two-dimensional approach becomes
realistic.

The article is organised as follows. In § 2, we illustrate the two theoretical models
employed, namely the classical point vortex model and the Gross–Pitaevskii equation
describing the dynamics of BECs in the zero-temperature limit. In § 3, we report the results
obtained in both classical and quantum fluids, focusing on the role of boundaries and on the
differences between classical and quantum systems. Finally, in the last § 4, we summarise
our findings and illustrate their importance in the future of quantum vortex experiments.

2. Models

2.1. Point vortex model
The simplest model of our system is the classical point vortex model: a two-dimensional
inviscid incompressible irrotational fluid in an infinite channel of width 2D containing
two vortex–antivortex pairs (the two-dimensional analogue of three-dimensional coaxial
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vortex rings), each of circulation ±κ . In view of comparing the results obtained with this
classical model to quantum vortices in confined BECs, the hypotheses behind the point
vortex model must be carefully considered.

The classical model describes a fluid with constant density. In the bulk of the
condensate, i.e. sufficiently far from boundaries or vortices, this assumption is
realistic: indeed, although in past experiments condensates were usually confined by
harmonic trapping potentials resulting in density gradients (Dalfovo et al. 1999), current
experimental techniques (Gaunt et al. 2013) allow box-like trapping potentials which lead
to uniform density profiles in the bulk of the condensate as in the classical point vortex
model. In particular, in the vicinity of a vortex, the classical model assumes constant
density at any radial distance r to the vortex axis, including the vortex axis r = 0 itself. In
BECs, a vortex is a topological defect of the phase of the governing complex wavefunction
(or order parameter), as we shall describe with more detail in § 2.2.1. Therefore, the vortex
core is a thin tubular region around the vortex axis which is depleted of atoms: as r → 0,
the velocity tends to infinity, as in the point vortex model, but the fluid density tends to
zero. The radius of this tube is of the order of the quantum mechanical healing length ξ (see
§ 2.2.1). A similar difference between the classical point vortex model and BECs occurs
near a hard boundary: the classical model assumes that the fluid’s density is constant up
to the boundary; in a BEC a thin boundary region (again of the order of ξ ) forms near
the boundary where, in the case of box-like traps, the condensate’s density rapidly drops
from the bulk value to zero. We conclude that, from a geometrical point of view, the
classical point vortex model can be used to model BECs provided that vortex–vortex and
vortex–boundary distances are larger than the healing length ξ .

From a dynamical point of view, the assumption of constant density implies that the
classical point vortex model neglects sound waves which are radiated away by quantum
vortices when they accelerate (Barenghi et al. 2005). The point vortex model, in fact, is
based on the classical ideal Euler equation which conserves energy. In the low-temperature
limit T/Tc � 1 that guarantees the validity of the Gross–Pitaevskii equation, the total
energy of a BEC is constant, but transformation of incompressible kinetic energy of the
vortex configuration into compressible kinetic energy of the field of sound waves (or vice
versa) is permitted. This dynamical difference between the classical point vortex model
and the Gross–Pitaevskii model is, physically, perhaps the most significant, and will be
addressed while discussing the results in § 3.

Despite these approximations, we believe that the model captures the essential
ingredient of our problem: the motion of quantised irrotational vortices in the presence of
boundaries. Indeed, the classical point vortex model in a circular disk has been already
used with success to model two-dimensional turbulence in low-temperature trapped
condensates, for example, by Simula et al. (2014). It must also be noticed that Mason,
Berloff & Fetter (2006) have shown that the motion of a realistic vortex at distance d to a
boundary can be described in terms of a classical image vortex even if ξ is comparable to d
(although a small correction is needed to account for the density depletion in the boundary
region). In the suitable physical limits, we hence expect the point vortex model to correctly
describe the impact of boundaries on the leapfrogging of quantised vortices.

2.1.1. Equations of motion
Our physical domain under investigation is a two-dimensional infinite strip CR2 defined as
CR2 = {(x, y) ∈ R2 : (x, y) ∈ (−∞,∞)× (0, 2D)}, which hereafter we will refer to as the
channel. We assume the flow to be two-dimensional, i.e. the velocity vertical component
vz = 0 and the horizontal components vx and vy only depend on horizontal coordinates x

912 A9-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1094


Vortex leapfrogging in two-dimensional channels

and y and time t. The incompressibility assumption implies that the continuity equation
can be written as follows

∇ · v = 0. (2.1)

The velocity field v can hence be expressed as the curl of vector field Ψ which, given
the two-dimensionality of the flow, has non-vanishing components only in the z direction,
Ψ = (0, 0, ψ(x, y, t)). The velocity components have hence the following expressions in
terms of the function ψ which is often called the streamfunction: vx = ∂yψ and vy =
−∂xψ , where ∂i indicates spatial derivatives in the i direction.

The irrotationality of the flow implies that the velocity field can be expressed via a
potential function ϕ, i.e.

v = ∇ϕ, (2.2)

leading to the following relations for the components vi = ∂iϕ. Equations (2.1) and (2.2)
imply that both ϕ and ψ satisfy the Laplace equation, Δϕ = Δψ = 0, and the following
equalities between their spatial derivatives:

∂xϕ = ∂yψ, (2.3)

∂yϕ = −∂xψ. (2.4)

Equations (2.3) and (2.4) coincide with the well-known Cauchy–Riemann relations for
the complex functionΩ(z) := ϕ + iψ , where z = x + iy. Hence, following basic complex
analysis, the function Ω(z), called the complex potential, is an analytical complex
function on the simply connected open domain C = {z ∈ C : 0 < Im z < 2D} � C. As a
consequence, Ω(z) is differentiable and its derivative

w(z) := dΩ
dz

= vx − ivy (2.5)

is the so-called complex velocity. In the framework of complex potentials, the impermeable
boundary conditions for ideal fluids correspond in our channel C to the following
constraint: ImΩ(z)|z∈∂C = α(t), with α(t) ∈ R depending only on time t.

The description of incompressible and irrotational flows of ideal fluids via the complex
potential-based formulation is particularly useful in the present work as it allows the
employment of conformal mapping techniques for the derivation of the analytical
expression of the complex potential Ω(z) describing the velocity field induced by a
point vortex in our channel C. The essential steps for this derivation are as follows. The
necessary ingredients are mainly twofold: (a) the knowledge of the complex potentialΘ(ζ)
describing the flow induced by a point vortex in a simply connected open subset D of the
complex plane, with ζ ∈ D � C; and (b) the construction of a conformal map ζ = f (z)
transforming our channel C onto the domain D.

Conformal maps f are transformations defined on the complex plane which preserve
angles. Such maps are performed by analytical complex functions with non-vanishing
derivative, i.e. in the present case, f ′(z) /= 0 for all z ∈ C. The requirement D not coincide
with the entire complex plane C, is fundamental in order to exploit the Riemann mapping
theorem which ensures the existence of the conformal map f mapping C onto D. Once
Θ(ζ) and f (z) are determined, the complex potentialΩ(z) for a vortex flow in C is obtained
by transforming the potential Θ(ζ) via the conformal map f −1(ζ ), i.e.

Ω(z) = Θ( f (z)). (2.6)

The reasons why the complex function Ω(z) derived via (2.6) is the sought complex
potential are the following. First, Ω(z) is analytic on C (as it is obtained via the
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2D z0

Im z Im ζ
ζ = f (z) = eπz/2D

Re ζ

ζ0

Re z

D

C

Figure 1. Schematic illustration of the conformal map ζ = f (z) = eπz/2D transforming C into D and a vortex
placed in z0 into a vortex in ζ0, ζ0 = f (z0).

composition of two analytic functions, f and Θ), implying that the real and imaginary
parts of Ω(z) are related to each other via the Cauchy–Riemann equations and are both
harmonic functions. Hence, they do satisfy all the necessary conditions for corresponding
respectively to a potential function and a streamfunction of an incompressible and
irrotational flow of an inviscid fluid. Second, the correspondence of ∂C and ∂D under the
conformal mapping performed by f transposes the boundary conditions enforced by Θ(ζ)
on ∂D to the boundary ∂C (Lavrentiev & Chabat 1972). Finally, via conformal mappings,
the flow induced by a vortex of circulation κ is indeed mapped to a vortex flow with the
same circulation (Newton 2001).

In the present work, we choose D to coincide with the upper half-complex plane, i.e.
D = {ζ ∈ C : Im ζ > 0}. In this domain, the complex potential Θ(ζ) describing the flow
induced by a vortex placed in ζ0 ∈ D is obtained by the method of images, namely

Θ(ζ, ζ0) = −sgn(ζ0)
iκ
2π

log
(
ζ − ζ0

ζ − ζ ∗
0

)
, (2.7)

where sgn(ζ0) is the sign of the vortex placed in ζ0 (positive for anti-clockwise induced
flow, negative for clockwise), ζ ∗

0 is the complex conjugate of ζ0 where a vortex of opposite
sign is placed (the image vortex of ζ0) and κ is the circulation of the flow generated by the
vortex. The analytical function f transforming conformally the channel C = {z ∈ C : 0 <
Im z < 2D} into D is as follows (see figure 1 for a schematic illustration)

ζ = f (z) = eπz/2D. (2.8)

The conformal map f transforms ∂C into ∂D, with f ({z ∈ C : Im z = 0}) = R+ and f ({z ∈
C : Im z = 2D}) = R−. Employing (2.6), the determination of the complex potentialΩ(z)
is straightforward, namely

Ω(z, z0) = −sgn(z0)
iκ
2π

log

⎛
⎜⎝1 − exp

(
− π

2D
(z − z0)

)
1 − exp

(
− π

2D
(z − z∗

0)
)
⎞
⎟⎠, z0 = f −1(ζ0) (2.9)

leading to the following complex velocity

w(z, z0) = −sgn(z0)
iπ
4

κ

2πD

{
coth

[ π

4D
(z − z0)

]
− coth

[ π

4D
(z − z∗

0)
]}

= χ(z, z0)+ χ(z, z∗
0), (2.10)

where χ(z, z0) = −sgn(z0)(iπ/4)(κ/2πD) coth[(π/4D)(z − z0)] and sgn(z∗
0) = −sgn(z0).
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The complex function χ(z, z0) (and, correspondingly, χ(z, z∗
0)) can be physically

interpreted as the complex velocity generated by an isolated vortex placed in z0 (whose
complex potential would be Ω(z, z0) = −sgn(z0)iκ log(z − z0)/(2π)) and its infinite
images with respect to the walls of the channel, Im z = 0 and Im z = 2D. The expression
(2.10) for the complex potential w(z, z0) can indeed be derived by considering two sets of
infinite images of a vortex placed in z0 and an antivortex in z∗

0 (Greengard 1990).
If the channel is characterised by the presence of N vortices, the complex velocity

w(z, zk{k=1,...,N}) generated by the the set of N vortices is obtained via the superposition
principle, i.e.

w(z, zk{k=1,...,N}) =
N∑

k=1

w(z, zk) =
N∑

k=1

[
χ(z, zk)+ χ(z, z∗

k)
]
. (2.11)

A crucial role in this N-vortex problem is played by the equations of motion of a generic jth
vortex. In order to derive such equations of motions, we define the position zj(t) := xj(t)+
iyj(t) occupied by the vortex at time t in the channel C. Indicating with the superscript ‘˙’
derivation with respect to time, we define the quantity żj(t) := ẋj(t)+ iẏj(t), where the
real and imaginary parts correspond to the x and y components of the jth vortex velocity.
As vortices are advected by the local fluid velocity, i.e. ẋj(t) = v(xj(t), t), the following
relation holds:

żj = w∗(zj, zk{k=1,...,N}), (2.12)

where we have omitted the time dependence of zj and zk to ease notation and the complex
conjugation on the right-hand side arises from the definition (2.5) of the complex velocity.
In order to determine the complex velocity w(zj, zk{k=1,...,N}), we employ (2.11) subtracting
the term corresponding to the vortex placed in zj, obtaining the following relation:

żj = w∗(zj, zk{k=1,...,N; k/=j})+ χ∗(zj, z∗
j )

=
∑
k/=j

w∗(zj, zk)+ χ∗(zj, z∗
j )

=
∑
k/=j

[
χ∗(zj, zk)+ χ∗(zj, z∗

k)
] + χ∗(zj, z∗

j ), (2.13)

which coincides with the equations of motion of the jth vortex. The equations of motion for
the whole N-vortex problem are hence a set of 2N coupled ordinary differential equations.

2.1.2. Hamiltonian formulation and conserved quantities
The motion of N vortices located at xj{ j=1,...,N} can be described via a Hamiltonian
formalism, where the equations of motion (2.13) may be re-written as follows:

ẋj = 1
sgn(zj)

1
κ

∂H
∂yj

ẏj = − 1
sgn(zj)

1
κ

∂H
∂xj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.14)

where H is the regular part of the (incompressible) kinetic energy, i.e. the kinetic energy
without the vortex self-interaction terms (which we have consistently neglected in the
derivation of (2.13) by subtracting χ∗(zj, zj) from (2.11)). In an N-vortex system with

912 A9-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1094


L. Galantucci and others

circulation ±κ the expression of H is as follows (Newton 2001)

H(t) = κ

2

N∑
k=1

sgn(zk)ψC(xk, t) = κ

2

N∑
k=1

sgn(zk)Im [ΩC(zk, t)] , (2.15)

where with ψC and ΩC we indicate respectively the overall streamfunction and the overall
complex potential arising from the contribution of all vortices, i.e.

ΩC(zk, t) =
∑
l /=k

Ω(zk(t), zl(t))+ sgn(zk)
iκ
2π

log
[
1 − exp

(
− π

2D
(zk(t)− z∗

k(t))
)]
,

(2.16)

whereΩ(zk, zl) is given by (2.9) and the last term is obtained by removing the singular part
from Ω(zk, zk). In an N-vortex problem, H(t) is a conserved quantity, given the absence
of dissipative phenomena in an ideal fluid. In the circumstance where H is invariant with
respect to translations in the x or y directions or with respect to rotations, other constants
of motions exist, namely

Ix(t) = κ

N∑
k=1

sgn(zk)yk(t), (2.17)

Iy(t) = −κ
N∑

k=1

sgn(zk)xk(t), (2.18)

L(t) = −κ
2

N∑
k=1

sgn(zk)[x2
k(t)+ y2

k(t)]. (2.19)

The x and y components of the linear impulse I = (Ix, Iy) are conserved if the domain
is invariant with respect to translations in the x and y directions, respectively, while
the angular momentum L is conserved if the geometry of the system is invariant under
rotations. Thus, in our two-dimensional channel, Ix is always conserved, while in general
Iy and L depend upon time.

2.2. Gross–Pitaevskii equation model
The Gross–Pitaevskii model is a well-established theoretical framework for the
investigation of the dynamics of BECs at temperatures much smaller than the critical
transition temperature. The Gross–Pitaevskii (GP) equation describes the temporal
evolution of the complex order parameter Ψ = Ψ (x, t) of the system, and reads as follows:

i�Ψ̇ = − �2

2m
ΔΨ + VΨ + g|Ψ |2Ψ, (2.20)

where the dot is the time derivative, � = h/(2π) is the reduced Planck’s constant, m is the
boson mass, V = V(x, t) is an externally applied potential and g = 4π�2as/m models the
two-body contact-like boson interaction, where as is the s-wave scattering length for the
collision of two bosons. The order parameter Ψ can be written in terms of its amplitude
and its phase as

Ψ = √
n eiθ , (2.21)

where n = n(x, t) = |Ψ |2 is the particle number density (number of bosons per unit
volume) and θ = θ(x, t) is the phase. Without loss of generality, the order parameter Ψ
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Vortex leapfrogging in two-dimensional channels

can be written as Ψ (x, t) = eiμt/�Φ(x, t), where μ is called the chemical potential and
Φ(x, t) obeys

i�Φ̇ = − �2

2m
ΔΦ + VΦ + g|Φ|2Φ − μΦ. (2.22)

2.2.1. Quantum vortices
In the context of BECs described by the GP equation, quantum vortices are topological
defects of the phase θ of the order parameter, at which Ψ = 0 (hence θ is undefined)
and around which θ wraps by 2qπ with q ∈ Z \ {0}. In three dimensions, vortices take
the form of one-dimensional curves which may form a vortex tangle, as observed both in
BECs (White et al. 2010) and superfluid helium (Vinen 1957). In two dimensions, vortices
coincide with vortex points which have been observed extensively in oblate (pancake-like)
BECs (Matthews et al. 1999). For the purpose of the present work, we will restrict our
discussion to two-dimensional systems.

The velocity field v(x, t) associated with a BEC whose dynamics is described by the
order parameter Ψ , is defined from the phase θ via the relation

v(x, t) = �

m
∇θ. (2.23)

Employing the definition (2.23) of the velocity and the 2qπ phase wrapping existing
around a vortex, it is straightforward to verify that the circulation Γ of the velocity field
on any closed curve γ enclosing a vortex point is quantised in terms of the quantum of
circulation κ = h/m, i.e.

Γ =
∮
γ

v · dl = qκ, q ∈ Z \ {0}. (2.24)

Choosing γ to be a circle of radius r and assuming the flow around a vortex to be
axisymmetric, the azimuthal component of the flow velocity around a vortex is given by
the relation vφ = qκ/(2πr), coinciding with the expression for a classical point vortex.
Hence, from a velocity point of view, quantum and classical vortices are identical. The
important and dynamically significant distinction between classical and quantum vortices
is that the latter are characterised by a finite core whose size is of the order of the so-called
healing length ξ = �/

√
mgn. As we will very briefly illustrate in the next section, quantum

fluids are indeed compressible fluids.

2.2.2. Fluid dynamical equations for a BEC
The GP equation (2.20) may be rewritten via the Madelung transformation consisting in
expressing Ψ in polar form (2.21) and separating the real and imaginary parts of (2.20).
This procedure leads to the following equations:

ṅ + ∇ · (nv) = 0, (2.25)

mn [v̇ + (v · ∇) v] = −∇ (
p + p′) − n∇V, (2.26)

where p and p′ are respectively pressure and quantum pressure

p = gn2

2
, (2.27)

p′ = − �2

4m
nΔ (ln (n)) . (2.28)
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D + r
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x

Figure 2. Initial vortex configuration for the classical point vortex numerical simulations: filled (open) circles
correspond to vortices with positive (negative) circulation. Numerical labels close to vortices indicate the vortex
numeration employed.

Equation (2.25) coincides formally with the continuity equation of a classical fluid, while
(2.26), exception made for the presence of the quantum pressure p′, is formally identical
to the momentum balance equation for a barotropic, compressible classical Euler (ideal)
fluid. At length scales � much larger than the healing length ξ (which is the typical length
scale for density variations, associated e.g. with the presence of vortices or boundaries)
p′/p � 1, implying that in this limit the BEC can indeed be considered as a barotropic,
compressible classical inviscid fluid. Hence, at length scales � 	 ξ , the dynamics of
quantum and classical point vortices only differ on the basis of compressible phenomena
which may arise in BECs. In the other limit of � ∼ ξ , the physics may be significantly
different. For instance, if the relative distance between quantum vortices of opposite sign
is of the order of ξ , the quantum pressure term would trigger the annihilation of the vortex
pair, while in the classical point vortex model no loss of circulation is included in the
model. Moreover, the behaviour of a co-rotating pair of quantum vortices of same sign
also shows dissimilarities with respect to the classical case, in particular for the finite
value of the rotation frequency ωτ as the distance � tends to zero (in the classical model,
the frequency diverges, ωτ ∼ 1/�2).

3. Results

3.1. Classical fluids
To make progress in understanding the impact of boundaries on the leapfrogging behaviour
of classical point vortices in a two-dimensional channel, we consider the motion of four
vortices, half with positive circulation κ , half with negative −κ . In figure 2 we show
this initial condition. If we interpret our two-dimensional configuration as a model of a
three-dimensional configuration of vortex rings, point vortices of same colour in the figure
correspond to cross-sections of the same ring. Initially, the four vortices are vertically
aligned on the y axis, i.e. xj(0) = 0 for j = 1, . . . , 4 and the vortex–antivortex pairs are
symmetrically positioned with respect to the channel mid-axis y = D, namely yj(0) =
D ± R for the first pair j = (1, 2) and yj(0) = D ± r for the second pair j = (3, 4), with
the conditions R/D < 1 and r/R < 1. We have verified that the initial vortex symmetry
with respect to the channel mid-axis y = D is conserved along the motion of the vortices.
This symmetry plays an important role in the dynamics of vortices as it implies that, in
addition to the horizontal impulse Ix ((2.17), always conserved as a result of the channel
geometry), also the vertical impulse Iy (2.18) and the angular momentum L (2.19) are
constants of motion. In more detail, in our channel, with the mentioned symmetry with
respect to y = D, we have Ix = 2κ(R + r), Iy = 0 and L = −2Dκ(R + r).
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In order to characterise the dependence of vortex trajectories on the two
non-dimensional parameters r/R and R/D which determine the flow, we numerically
integrate the equations of motion (2.13) for the four vortices, j = 1, . . . , 4, varying r/R
and R/D. In particular, we choose r/R = n/10 and R/D = m/10, with m, n = 1, . . . , 9.
The time-advancement scheme employed in the numerical simulations is a second-order
Adams–Bashforth method with a time step Δt = T/1000 where T = 2π2δ2/κ is the
rotation period of a pair of vortices of the same polarity placed at distance δ. In our
numerical simulations δ is set to 10−3D.

For classical unbounded fluids, since the study performed by Love over a century ago
(Love 1894), it is well known that vortices undergo leapfrogging motion only if r/R is
larger than a critical value αc = 3 − 2

√
2 ≈ 0.172. If r/R < αc, leapfrogging does not

occur: the smaller, faster pair moves ‘too fast’ for the larger ring to influence its dynamics
in a significant way, and the vortices separate. More recently, Acheson (2000) extended
numerically the study performed by Love and established that leapfrogging motion is
unstable when αc < r/R < α′

c, with α′
c = 0.382.

In our two-dimensional channel, the confinement of the flow leads to a richer dynamics
than in an unbounded domain. In addition to the distinction between leapfrogging and
non-leapfrogging, which is already known, we also observe image-driven leapfrogging and
periodic orbits. The phase diagram of the system resulting from the numerical simulations
is illustrated in figure 3.

For values of R/D ≤ 1/2, the dynamics is very similar to what is observed in an
unbounded fluid, the role of the boundaries being only marginal. For a given value of
R/D ≤ 1/2, in fact, as we increase r/R, we first observe non-leapfrogging motion (in black
in figure 3), defined as the dynamics characterised by ẏj(t) = 0 for all j at late times; then
we notice unstable leapfrogging motion (open red squares, we refer the reader to § 3.3
for the definition of stable/unstable trajectories), and finally stable leapfrogging (filled
red squares). These dynamical regimes therefore coincide with the scenario outlined by
Acheson (2000), the only significant and important difference being the dependence of
αc on R/D: for small values of R/D, αc is very close to the constant value 0.172 for
vortex leapfrogging in unbounded fluids (e.g. for R/D = 0.1, αc = 0.173), increasing
for increasing values of R/D (e.g. αc = 0.216 for R/D = 0.5). This dependence of αc
on R/D stems from the interaction of the outer vortices 1 and 2 in figure 2) with their
corresponding images with respect to the closest channel wall; essentially, the interaction
with image vortices is stronger compared to the interaction of the inner pair with the
corresponding images. These images, of opposite sign, slow down the outer vortex pair,
allowing the inner pair to escape towards infinity for values of r/R which would produce
leapfrogging motion in an unbounded fluid; in order to recover leapfrogging, r/R would
have to increase. As R/D increases, this effect is amplified as the outer pair is closer to the
channel walls.

This increasing monotonic behaviour of αc with respect to R/D extends also for R/D >

1/2, where the role played by boundaries becomes significant, triggering a much richer
dynamics. As R/D is larger than 1/2, for large values of r/R, we observe image-driven
leapfrogging, indicated by blue diamonds in figure 3. This dynamics, again, originates
from the interaction of vortices with their images with respect to the closest channel
wall. In particular, each vortex, paired to its image of opposite sign, forms a virtual
vortex–antivortex pair on its own. As a consequence, we observe two distinct leapfrogging
motions, each involving two virtual vortex–antivortex pairs. Due to the vortex polarity,
the leapfrogging motion induces a net translation in the opposite direction with respect
to standard (forward) leapfrogging. In the (R/D, r/R) plane, the forward leapfrogging to
image-driven leapfrogging transition occurs via an intermediate regime in which vortices
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Figure 3. Phase diagram of the classical motion of two vortex–antivortex pairs in a two-dimensional plane
channel. All symbols refer to performed numerical simulations. Black circles indicate no leapfrogging motion;
red filled (open) squares stand for stable (unstable) forward, standard leapfrogging; blue filled (open) diamonds
correspond to stable (unstable) image-driven leapfrogging; green stars stand for periodic orbits. The dashed
green lines indicate the analytical solution for periodic orbits (see § 3.1.1 and appendix A). Dark and light
green colours indicate stable and unstable periodic orbits, as discussed in § 3.3. The dashed violet curve is the
numerically computed αc dependence on (R/D): for each value of (R/D) considered, we increase r/D by 0.001
until we observe the onset of leapfrogging motion, identifying the corresponding critical value (r/D)c. The
value of αc is then determined as αc = (r/D)c/(R/D) and indicated with small violet circles.

follow periodic orbits, indicated by dark and light green stars in figure 3 (dark and
light green correspond to stable and unstable periodic orbits respectively, as described
in § 3.3). As shown in detail in the next section and in the analytical derivation presented
in appendix A, periodic orbits are observed when R + r = D, corresponding to the green
dashed line in figure 3. For large values of R/D (R/D � 3/4), the system crosses directly
the no-leapfrogging to image-driven leapfrogging boundary without passing through a
forward-leapfrogging regime. Examples of all the different regimes observed in our system
of classical point vortices are shown in figure 4. Note that in the three-dimensional coaxial
vortex ring analogue, vortices of the same colour correspond to cross-sections of the same
vortex ring.

3.1.1. Derivation of periodic orbits
In this section we derive theoretically the existence of periodic orbits in the leapfrogging
motion of four vortices in a channel using the classical point vortex model. We show that
under suitable conditions, namely when R + r = D, each pair of same signed vortices
moves around a fixed point. Some analytic details are discussed in appendix A.

With reference to figure 2, we consider the pair of vortices P1 = (x0(t),D − R(t)), with
negative circulation −κ , and P2 = (x0(t),D + R(t)), with positive circulation κ , and the
pair of vortices P3 = (x1(t),D − r(t)), with negative circulation −κ , and P4 = (x1(t),D +
r(t)), with positive circulation κ , where t is time. In the complex domain, omitting the
time dependence to ease notation, these vortices are located in z1 = x0 + i(D − R) for P1,
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Figure 4. Examples of dynamical regimes and trajectories for classical 4-vortex motion in a two-dimensional
channel. Filled (open) symbols indicate positive (negative) vortices: (a) R/D = 5/10, r/R = 1/10, no
leapfrogging (vortices moving to the right); (b) R/D = 4/10, r/R = 4/10, forward (standard) leapfrogging
(vortices moving to the right); (c) R/D = 8/10, r/R = 6/10, image-driven leapfrogging (vortices moving to
the left); (d) R/D = 6/10, r/R = 67/100, periodic orbits, showing more than 30 overlapping closed orbits.

z2 = x0 + i(D + R) for P2, z3 = x1 + i(D − r) for P3 and z4 = x1 + i(D + r) for P4, and
they generate the following complex velocity in the point z, as given by (2.11):

w(z) = w(z, z1)+ w(z, z2)+ w(z, z3)+ w(z, z4). (3.1)

We now consider the midpoint M between the vortex points P1 and P3, namely zM(t) =
x0(t)+ x1(t)/2 + i(D − (r(t)+ R(t))/2) and the complex velocity generated by vortices
in zM which we indicate with w(zM)

w(zM) =
iκ
2D

(
−1 + exp

(
2iπ(r + R)

D

))
exp

(
π(x0 + x1)

2D

)
(

exp
(

π(4ir + 4iR + x0 + x1)

2D

)
− exp

(
π(2x0 + i(r + 3R))

2D

)

− exp
(

π(2x1 + i(3r + R))
2D

)
+ exp

(
π(x0 + x1)

2D

))
. (3.2)

If we look for the conditions such that the velocity w(zM) of the midpoint M is zero, we
have

w(zM) = 0 ⇐⇒ exp
(

2iπ(r + R)
D

)
− 1 = 0

⇐⇒ 2π(r + R)
D

= 2kπ, k ∈ Z. (3.3)

Note that the same result equation (3.3) is found for the midpoint N between the two vortex
points P2 and P4.
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Since r, R and D are positive real parameters, the only admissible values of k in (3.3) are
k ∈ Z+. Moreover, we know that r < R < D, leading to r + R < 2D, which implies that
the only admissible value for k is k = 1, i.e.

r(t)+ R(t) = D. (3.4)

This is the most interesting result: it states that when the four vortices satisfy the condition
(3.4) then the midpoints M and N are at rest; the two pairs of vortices (P1, P3) and
(P2, P4) hence move symmetrically with respect to their corresponding midpoints, i.e.
ẋ0(t) = −ẋ1(t) and Ṙ(t) = −ṙ(t). The last equality is fundamental as it expresses that if
condition (3.4) is satisfied at a given t = t0, it will be satisfied for every t > t0. Thus,
if the initial condition is prepared such that x0(0) = x1(0) = 0 and r(0)+ R(0) = D,
vortices will always move symmetrically with respect to their midpoints zM = i(D/2) and
zN = i(3D/2).

The last step to demonstrating the existence of periodic orbits is to prove that the
trajectories of the vortex points are closed curves rotating around the two midpoints M and
N as, in principle more general trajectories with the restriction Ṙ(t) = −ṙ(t) (for instance,
Ṙ(t) = ṙ(t) = 0) could be possible, not leading to periodic orbits. We tackle this issue in
appendix A, to ease the readability of the manuscript.

3.2. Quantum fluids
The next step is to numerically probe the dynamical regimes of two quantum
vortex–antivortex pairs interacting in a two-dimensional channel. We shall compare the
results with the corresponding classical results outlined in the previous § 3.1.

We consider a two-dimensional BEC in a channel geometry, imprinting quantum
vortices in the positions initially occupied by classical vortices. Note that, in addition to
the parameters R, r and D already present in the classical point vortex formulation, in
the GP formulation of the problem we have an extra length scale – the healing length ξ –
which plays a fundamental role in the dynamics. To assess the relevance of this extra length
scale, we present numerical simulations of leapfrogging quantum vortices employing two
distinct values of the channel half-width D: D1 = 40ξ and D2 = 20ξ . In order to model
the channel confinement, we use the following potential V:

V = V( y) =
{

0 if 0 < y < 2D
10μ if y ≤ 0 or y ≥ 2D,

(3.5)

corresponding to a channel of half-width D, where the density |Φ|2 is constant everywhere
with the exception of thin layer whose width is of the order of the healing length at the
channel boundaries y = 0 and y = 2D.

The trajectories of the quantum vortices are calculated as a function of time by
numerically solving the equation of motion of the order parameter Φ, the dimensionless
GP equation

iΦ̇ = −1
2
ΔΦ + V

μ
Φ + |Φ|2Φ −Φ. (3.6)

Equation (3.6) is obtained from (2.22) after introducing characteristic units of length, time
and energy: ξ = �/

√
mμ (the healing length), τ = ξ/c (where c = √

μ/m is the speed of
sound) and μ (the chemical potential) respectively, and normalising the order parameter
with respect to the unperturbed homogeneous solution Φ0 = √

μ/g of (2.22). In these
units the healing length and the bulk density in the channel are unity.
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Figure 5. Initial condition for numerical simulation of leapfrogging of quantum vortices in a two-dimensional
channel for R/D = 0.6 and r/R = 0.3 and D = D1 = 40ξ . (a) The density of the BEC |Φ(x, y)|2 (presented as
a ratio of the bulk density |Φ0|2) is displayed: it is unity (yellow) in the bulk of the channel and vanishes (blue)
in the vortex cores and at the channel’s boundaries; (b) the phase θ(x, y) of the BEC is illustrated in the range
[−π,π). We underline that these figures only show a tenth of the numerical domain which spans from −800ξ
to 800ξ in the x direction.

The numerical integration of (3.6) is performed employing a fourth-order Runge–Kutta
time advancement scheme and second-order finite differences to approximate spatial
derivative operators. Time step Δt/τ is set to 1.5 × 10−2 and spatial discretisation Δx/ξ =
Δy/ξ is chosen to be equal to 0.25. In the set of simulations where D = D1 = 40ξ ,
the numbers of grid points in the x and y directions are Nx = 6400 and Ny = 400,
respectively, leading to the computational box −800ξ ≤ x ≤ 800ξ and −10ξ ≤ y ≤ 90ξ .
On the other hand, when D = D2 = 20ξ , Nx = 3200 and Ny = 240, respectively, leading
to the computational box −400ξ ≤ x ≤ 400ξ and −10ξ ≤ y ≤ 50ξ . We employ periodic
boundary conditions in the x direction and reflective in the y direction where the wave
function Φ → 0 well before reaching the boundary of the numerical domain, given the
buffer layer of 10ξ .

The initial imprinting of vortices is made by enforcing a uniform 2π phase wrapping
around the positions employed as initial condition for the classical point vortex simulations
and letting the system relax in imaginary time before starting the integration of (3.6) for
t ∈ R. In figure 5 we report the density |Φ|2(x, y) (a) and the phase θ(x, y) (b) of the
initial condition employed for R/D = 0.6 and r/R = 0.3 and D = D1 = 40ξ . It can be
easily observed that the density |Φ|2 rapidly drops to zero at the vortex positions and
outside the channel. Correspondingly, the four 2π phase wrappings can be distinguished
in figure 5(b).

To verify the existence in a BEC of all distinct regimes observed in the classical point
vortex model (§ 3.1), we perform numerical simulations of quantum vortex leapfrogging
along the vertical line R/D = 0.6 of the phase diagram reported in figure 3; we have
chosen this value of R/D because, along this line, as r/R varies from 1/10 to 9/10, all
regimes which we have identified using the classical point vortex model are present. To
reconstruct the vortex configuration, we print to file the non-dimensional wavefunction
every 100 time steps; the position of each vortex is precisely determined by monitoring
the density as well as the circulation.

The results are schematically outlined in figure 6, where classical vortex dynamics (left)
is compared to quantum vortex dynamics at D = D1 = 40ξ (middle) and D = D2 = 20ξ
(right). When D = D1, the boundaries of the phase diagram at R/D = 0.6 are at the same
values of r/R in the classical and in the quantum case: the two cuts in the phase diagram
coincide. When D = D2 we observe two differences: first, at (R/D, r/R) = (0.6, 0.1) the
internal vortex–antivortex pair annihilates as their initial distance is only 2.4ξ ; second, the
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Figure 6. Cuts in the dynamical regimes phase diagram corresponding to R/D = 0.6 for the classical point
vortex model (left), the GP model with D = D1 = 40ξ (middle) and D = D2 = 20ξ (right). Symbols as in
figure 3 except for the newly introduced up-pointing orange triangle corresponding to the annihilation of the
inner vortex–antivortex pair.

no leapfrogging and the unstable leapfrogging regions are shifted towards larger values of
r/R. For r/R > 0.5 the phase diagram at R/D = 0.6 is identical to the classical diagram.
These differences at the smaller value of channel size D are expected, as the healing length
scale starts playing a role: only if D/ξ is sufficiently large we can expect classical and
quantum dynamics to be the same.

The matching of the observed dynamical regimes when comparing classical and
quantum leapfrogging in a two-dimensional channel if D ≥ 40ξ is confirmed in figure 7,
which shows the trajectories of quantum vortices for (R/D, r/R) pairs selected as
for the classical trajectories illustrated in figure 4. We in fact observe that the
same regimes (no leapfrogging/leapfrogging/image-driven leapfrogging/periodic orbits)
occur in the quantum system for the corresponding parameters (R/D, r/R) selected
for the classical case.It is, however, worth noting some minor differences between
the quantum vortex trajectories and their classical counterparts reported in figure 4.
Since the initial condition is not stationary with respect to any frame of reference,
when we start integrating in time (3.6) for t ∈ R there is a sudden emission of
sound waves, and as a result the entire vortex configuration is translated towards the
positive x direction. The effect (which has been reported in the literature Frisch et al.
(1992)), is visible in figure 7(b,c,d) when compared with figure 4. In particular, this
horizontal shift affects the periodic orbits reported in figure 7(d) whose centre is
slightly shifted towards positive x values. The orbits illustrated in figure 7(d) are indeed
periodic, as, after the initial sound-induced translation towards the right, the vortex
trajectories do follow the same closed orbits (more than five closed orbits are shown
in figure 7). For the sake of completeness, in appendix B we show the comparison
between classical and quantum vortex trajectories for (R/D, r/R) = (6/10, 67/100)
(d of figures 7 and 4) and (R/D, r/R) = (72/100, 39/100). For both choice of parameters,
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Figure 7. Dynamical regimes observed in a quantum 4-vortex configuration in a two-dimensional channel with
D = D1 = 40ξ . Filled (open) symbols indicate positive (negative) vortices: (a) R/D = 5/10, r/R = 1/10, no
leapfrogging motion is observed; (b) R/D = 4/10, r/R = 4/10, forward (standard) leapfrogging; (c) R/D =
8/10, r/R = 6/10, image-driven leapfrogging; (d) R/D = 6/10, r/R = 67/100, periodic orbits, showing more
than five completed periods.

as R + r = D, classical vortices perform periodic orbits, while in the quantum case, for
(R/D, r/R) = (72/100, 39/100) vortices perform a very slow image-driven leapfrogging.
We can hence conclude that while all regimes identified in the classical point vortex model
occur in quantum fluids, not necessarily the same regime takes place at given parameters
(R/D, r/R).

In addition, we observe the number of periods observed in the x range [−2D, 2D] is
different from the classical counterpart. This difference in the average x velocity of the
vortices cannot be ascribed to the well-known additional average velocity uGP in the
x direction possessed by quantum vortices (with respect to the classical system) when
periodic boundary conditions are used in GP numerical simulations (Griffin et al. 2004).
In fact, the periodic boundary conditions employed in the x direction imply that the
constant superposed velocity uGP is given by uGP = κ(R + r)/(2DLx), where Lx is the
length of the numerical domain in the x direction. As the r < R < D and in figure 7
Lx/D = 40, the magnitude of uGP is too small to account for the distinct average velocity
of vortices in the x direction observed while comparing classical and quantum trajectories.
These dissimilarities between classical and quantum trajectories are possibly due to the
compressible nature of a quantum Bose gas and hence to the interplay between vortices and
sound. An example of vortex–sound interaction in BECs reported in the literature (Parker
et al. 2004) is the transformation of incompressible kinetic energy into compressible
kinetic energy (sound) when vortex–vortex pairs of the same polarity rotate in a dimple
trap: the vortex pair radiates sound similarly to charged particles radiating electromagnetic
waves. The role played by this effective dissipation of kinetic energy into sound will be
assessed in a future study.
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3.3. Stability of periodic orbits
In this section we address the numerical stability of periodic orbits for the leapfrogging
of vortices occurring in both classical and quantum fluids. The aim is to provide an
optimal range of parameters (R/D, r/R) for the experimental observation of such novel
leapfrogging regime in confined BECs. In order to probe the stability of the orbits in
the classical point vortex model, we follow the green line R + r = D in figure 3 and for
each simulation indicated with a green star (corresponding to a step increase of 0.02 in
R/D) we perform an additional simulation where the top vortex in figure 2 is initially
translated by a small amount ε in the x direction, i.e. x2(0) = ε (Acheson 2000). We
choose ε = ηR, with η = 0.005. We then numerically determine the time t∗ where for the
first time |y2(t∗)− yN | > 2A, where A = (R − r)/2 is the amplitude of the unperturbed
(ε = 0) periodic orbits of vortices 2 and 4 (see figure 2) and yN = 3D/2 is the vertical
coordinate of the centre N of such periodic orbits (cf. § 3.1.1). Conceptually, the time t∗
indicates the amount of time which is necessary for vortex 2 to reach a vertical distance to
the centre N larger than twice the amplitude A of the corresponding unperturbed periodic
orbit. As the period T of periodic orbits depends upon R/D, we successively define the
ratio P = t∗/T for each value of R/D, and consider a periodic orbit unstable if P < 5.
With this criterion, we conclude that periodic orbits are stable for R/D < 7/10. This is
due to the fact that when R/D → 1/2, r tends to the value of R, i.e. pairs of vortices of
the same polarity are closer. As a consequence, the predominant dynamics is the relatively
fast rotation of same signed vortices which is less affected by the initial displacement ε.
In the other limit of large R/D, the overall velocity of vortices is slower and hence
more affected by the non-symmetrical initial vortex configuration. In figure 3 we indicate
unstable (stable) periodic orbits with light (dark) green stars. This procedure based on
the threshold value of P = 5 has been employed throughout the paper for distinguishing
stable from unstable vortex trajectories.

In figure 8 we report vortex trajectories with x2(0) = ε = ηR for R/D =
6/10, 66/100, 7/10 (classical point vortex model) and R/D = 7/10 (GP model).
Relatively to the classical point vortex model, we observe that as R/D increases the number
of periods P completed by the vortices before crossing the line y = yN − 2A decreases,
eventually falling below 5. We also observe that for R/D = 7/10, quantum trajectories
follow quite closely the corresponding classical trajectories. Together with the similarity
between classical and quantum trajectories already described in the previous paragraph
3.2, this suggests that the conclusions concerning the stability of periodic orbits in the
classical case may be extended to the quantum case.

In the last paragraph of this section we address the possibility of observing
periodic orbits in experimental accessible BECs. We believe that in order to achieve
this aim, three criteria have to be satisfied: (a) periodic orbits have to satisfy the
stability requirement determined previously, i.e. R/D < 7/10; (b) vortices have to be
distinguishable experimentally and therefore their distance has to greater than at least
twice the size of a vortex core, i.e. R − r > dcore = 10ξ (as a vortex core is of the order
of five healing lengths); (c) the period of the periodic orbits has to be larger than the time
interval between consecutive images of the BEC. As we are interested in periodic orbits,
condition (b) can be written as follows R/D > 1

2 + dcore/D, which becomes R/D > 0.625
if we consider a width D = 40ξ , easily achievable in current experimental facilities. As
for condition (c), we first approximate for simplicity the period T of periodic orbits as
the period of two co-rotating vortices in an unbounded BEC, i.e. T = 2π2(R − r)2/κ . We
then take into account the experimental setting employed in previous work (Serafini et al.
2017) where the imaging time interval Δtimg ∼ 10 ms and the atomic species condensed

912 A9-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1094


Vortex leapfrogging in two-dimensional channels

–2D

2D

D

x

y

y

0

0

2D

D

0

2D

D

0

2D

D

0

2D –2D
x
0 2D

–2D 0 2D –2D 0 2D

(b)(a)

(c) (d )

Figure 8. Vortex trajectories with the initial position of vortex 2 (cf. figure 2) being translated by the small
quantity ε = ηR, with η = 0.005, in the positive x direction. Symbols as in figures 4 and 7. Green dashed lines
correspond to y = yN + 2A and y = yN − 2A: (a) R/D = 6/10, r/R = 67/100, classical point vortex model;
(b) R/D = 66/100, r/R = 52/100, classical point vortex model; (c) R/D = 7/10, r/R = 43/100, classical
point vortex model; (d) R/D = 7/10, r/R = 43/100, quantum GP model. All trajectories correspond to the
same interval in physical time.

is 23Na. With these parameters and requiring T > 2Δtimg we have that R/D > 0.64. Thus,
combining conditions (a)–(c) we have that the optimal range of parameters for observing
experimentally periodic orbits is 0.64 < R/D < 0.7.

4. Conclusions

In conclusion, we have demonstrated that, in the confined space of a two-dimensional
channel, the classical problem of vortex leapfrogging acquires new aspects. Using
the point vortex model we have found that, besides the known regimes of standard
leapfrogging and absence of leapfrogging, there are two new regimes: image-driven
leapfrogging and periodic motion. Using the GP equation to model an atomic
Bose–Einstein condensate (a compressible quantum fluid) confined within a channel, we
have verified that all four regimes also exist for quantum vortices. In large channels,
the boundaries between these regimes are the same for classical and quantum vortices
although some differences arise while comparing the trajectories of individual vortices.
Further differences appear if the channel size is reduced, and the finite-size nature of
the quantum vortex core starts playing a role, or if the vortices are very close and
sound radiation becomes important. The determination of a richer dynamics for the
leapfrogging of vortices occurring in confined geometries will be particularly important
for the interpretation and planning of ongoing and future experiments with atomic BECs,
where the dynamical regimes reported in the present work can be potentially observed.

Future work will address the problem in three dimensions, paying attention to the
excitation of Kelvin waves along the vortex rings and the departure from axisymmetry.
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Appendix A. Derivation of periodic orbits

In order to show the existence of periodic orbits, we have to prove that, if condition (3.4)
is satisfied, the trajectories of the vortex points are closed curves with vortices rotating
around the two midpoints M and N defined in § 3.1.1.

For the sake of simplicity, and with reference to § 3.1.1, we prove the closedness of the
trajectory only for the vortex point P1, as the proof for the other vortex points is an iterative
procedure.

We consider (2.12) for the vortex point z1 with the complex velocity given by the
expression (3.1) evaluated on the vortex point z1. Since the middle point zM is at rest
for r + R = D, we rewrite the dynamic equation of z1, namely ż1 = w∗(z1), in the polar
coordinate system (ρ, θ) centred on zM . The middle point zM , under the condition r + R =
D, becomes zM = (x0 + x1)/2 + i(D/2), which requires the condition ρ < D/2 to ensure
that vortices P1 and P3 are in {z ∈ C : 0 < Im z < D}.

Thus, in the new reference system the vortex points correspond to

z1 = zM − ρ cos(θ)− iρ sin(θ),

z2 = zM + iD − ρ cos(θ)+ iρ sin(θ),

z3 = zM + ρ cos(θ)+ iρ sin(θ),

z4 = zM + iD + ρ cos(θ)− iρ sin(θ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A1)

where zM is now the origin of the new frame of reference, which can be set zM =
0 + 0i. Note that the condition (3.4) is automatically satisfied by construction; indeed,
(z2 − z1)/2 = i(D/2 + ρ sin(θ)) and (z4 − z3)/2 = i(D/2 − ρ sin(θ)), implying R ≡
D/2 + ρ sin(θ) and r ≡ D/2 − ρ sin(θ) and, hence, condition (3.4). We now substitute
the coordinates (A1) into the equation

ż1 = w∗(z1, zk{k=1,...,4}), (A2)

according to (2.12), and change the vectorial basis from (x̂, ŷ) to (ûρ, ûθ ) by means of
the following rotation:

ûρ = cos(θ)x̂ + sin(θ)ŷ, ûθ = − sin(θ)x̂ + cos(θ)ŷ. (A3a,b)

By writing ż1 = −ρ̇ûρ − ρθ̇ ûθ , we then find the following equations for ρ̇ and θ̇ :

ρ̇ = f1(ρ, θ) = k
4D

csch
(

π e−iθρ

D

)
csch

(
π eiθρ

D

)

×
[

cos(θ) tan
(

πρ sin(θ)
D

)
cosh2

(
πρ cos(θ)

D

)

− sin(θ) cos2
(

πρ sin(θ)
D

)
tanh

(
πρ cos(θ)

D

)]
(A4)
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θ̇ = f2(ρ, θ) = − k
4Dρ

csch
(

π e−iθρ

D

)
csch

(
π eiθρ

D

)

×
[

cos(θ) cos2
(

πρ sin(θ)
D

)
tanh

(
πρ cos(θ)

D

)

+ sin(θ) tan
(

πρ sin(θ)
D

)
cosh2

(
πρ cos(θ)

D

)]
. (A5)

From (A4) and (A5), we finally derive the equation for ρ′ = dρ/dθ as follows:

ρ′ = ρ̇

θ̇
=

ρ sin(θ) cos2
(

πρ sin(θ)
D

)
tanh

(
πρ cos(θ)

D

)

−ρ cos(θ) tan
(

πρ sin(θ)
D

)
cosh2

(
πρ cos(θ)

D

)

cos(θ) cos2
(

πρ sin(θ)
D

)
tanh

(
πρ cos(θ)

D

)

+ sin(θ) tan
(

πρ sin(θ)
D

)
cosh2

(
πρ cos(θ)

D

)
, (A6)

which is well defined in A = {(ρ, θ) ∈ R+ × R : 0 < ρ < D/2} because (a) all the
elementary functions are well defined (included the function tan(· · · ) through the
condition 0 < ρ < D/2); (b) the denominator is positive (in the first term cos(θ)×
tanh(πρ cos(θ)/D) ≥ 0 and in the second term sin(θ) tan(πρ sin(θ)/D) ≥ 0) and never
zero (both terms are never zero in A).

In order to prove that the trajectory of vortex P1 is a closed curve, we need to show
that the function ρ(θ) is a continuous and periodic function. However, the integration of
(A6) is a hard task to achieve. Therefore, we choose to prove that ρ(θ) is a continuous and
periodic function without finding the exact integral of (A6). In order to achieve this goal,
we first need to recall a result from mathematical analysis, which states

THEOREM 1. Given a continuous and periodic function f : R → R with period T such
that

∫ T
0 f (x) dx = 0, then the primitive function of f (x) is periodic with period T.

Having recalled Theorem 1, we now need to prove the following theorem:

THEOREM 2. The primitive function ρ(θ) of ρ′(θ) (as defined in (A6)) is C1(R) and
periodic with period at least 2π.

Proof . The proof consists in three steps:

(a) ρ(θ) is a C1(R) function;
(b) ρ′(θ) is a periodic function, at least of period T = 2π; and
(c)

∫ 2π

0 ρ′(θ) dθ = 0.

Below we give the proof of each step:

(a) As stated in the previous sections, the complex velocity w(z) is an analytic function,
and hence the curve describing the trajectory of the vortex point P1. This implies
that the function ρ(θ) is C1(R). Moreover, we can assert that the denominator of
ρ′(θ) is /=0, or, better, it is easy to show that it is always positive for (ρ, θ) ∈ A.
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Figure 9. Comparison of classical (red) and quantum (blue) trajectories of vortices 1 and 2 for:
(a) (R/D, r/R) = (6/10, 67/100) and (b) (R/D, r/R) = (72/100, 39/100). For each separate set of parameters,
the same physical time is shown. For (R/D, r/R) = (6/10, 67/100), quantum trajectories are shown for more
than five periods.

Indeed, the two terms in the denominator in (A6) are always positive (both for sin θ
and cos θ positive, negative or null).

(b) That ρ′(θ) is a periodic function in fact follows directly from (A6) as

ρ′(θ + 2π) = ρ′(θ). (A7)

(c) A sufficient condition to prove the last step is that the function ρ′(θ) is an odd
function in R. The proof follows directly from (A6) after substituting θ by −θ
obtaining

ρ′(−θ) = −ρ′(θ). (A8)

Finally, we apply Theorem 1 to our function ρ′(θ) and the theorem is proved. �

Theorem 2 leads hence to the conclusion that ρ(θ + 2π) = ρ and thus that the trajectory
of vortex point P1 is a closed curve.

Appendix B. Comparison of classical and quantum trajectories for periodic orbits

In this appendix we compare the trajectories of vortices 1 and 2 (cf. figure 2) determined
with both the point vortex model and the GP model for two cases where classically we

912 A9-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
94

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1094


Vortex leapfrogging in two-dimensional channels

expect periodic orbits: (a) (R/D, r/R) = (6/10, 67/100) (figure 9a) and (b) (R/D, r/R) =
(72/100, 39/100) (figure 9b). For (R/D, r/R) = (6/10, 67/100) we observe for both
models a periodic orbit regime, although the quantum trajectories undergo an initial
translation towards the positive x direction arising from the sudden emission of sound
once we start integrating the GP equation (3.6) for t ∈ R as the initial condition is not
stationary with respect to any frame of reference. On the contrary, for (R/D, r/R) =
(72/100, 39/100) quantum trajectories do not coincide with periodic orbits: they perform
a very slow image-driven leapfrogging (each period, orbits translate towards the negative
x direction by a distance of the order of 2ξ ). These results show that while all regimes
observed classically can effectively occur in quantum fluids, in certain circumstances some
differences exists between the trajectories of corresponding vortices, as also noted in §§ 3.2
and 3.3. This may imply that, for given set of parameters (R/D, r/R), regimes observed in
classical and quantum systems may slightly differ.
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