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PLETHYSM OF S-FUNCTIONS 

A. O. USHER 

The S-function {/x} ® {X}, /x t— m, X 1— /, where {/*} ® {X} is the 'new multi­
plication' or plethysm of D. E. Lit t lewood [1], corresponds, in the sense defined 
below in (1), to the character afforded by a representat ion of the symmetr ic 
group Sim induced from a representation of the subgroup Sm I St [3 § 6 ; 
4 § 3.5]. T h e aim of this paper is to define the la t ter representat ion and deduce 
its character using a somewhat different approach from tha t in [3]. 

In Section 2, the character '{/x} ® {X}' of the general linear group, GL n , 
over the field of complex numbers , is introduced and expressed in a form given 
by H. 0 . Foulkes [5] which suggests t ha t one might usefully consider a certain 
irreducible representation of the wreath product Sm I Si. I t is shown in 
Section 3 t ha t the character of S Xm induced from the character afforded by this 
representation has corresponding 5-function \\x\ ® {X}. T h e connection be­
tween the plethysm of 5-functions and wreath products of symmetr ic groups 
has been pointed out by several authors (e.g. [9, § 7; 10 p. 135]) b u t no proofs 
seem to be available. Finally, in Section 4 there is a brief summary of one of 
the possible methods of reducing {/x} ® {X} into its irreducible components . 

2. T h e 5 - f u n c t i o n {/x} ® {X}. Let <j> be any class function defined on Sh 

then the Schur characterist ic function, or 5-function, corresponding to 0 is, 
by definition, the symmetr ic function, 

(!) $ = 7, Z ) rp<l>pSp 

where <j>p is the value of <£ on the conjugacy class Cp of Sh 

rp = \CP\ 

Sp = S1
aKS2

a2 . . . for p = ( lG l2 a 2 . . . ) ! - / 

and with Sk (k a positive integer) the &th power sum, tik + t2
k + . . . , in the 

variables /i, t2, . . . . 
Now if X = (Xi, X2, . . . , \i) \- I then {X} may be defined as the bia l ternant 

symmetr ic function 

_ Z ±hM+l-%M+,-\..tïl _ l/x'+'-J] Ax 
| x } = £ ±h1-%1-2...tl° ~ \ti'-'\ --*' 

say, where the (i, j) ent ry of the Zth order de terminant , Ax, is t^j and where the 
sums are taken over all permuta t ions of the suffixes of the / 's , with + or — 
sign according as the permuta t ion is even or odd. I t follows from the famous 
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Frobenius formula for the irreducible characters x(X) of Sz , namely, 

SPA = E XP(X)AX 

t h a t {X} is the 5-function corresponding to %(X) [2, §§ 5.2, 6.3]. Thus , 

(2) W = , T Z WX)SP 

Let the irreducible rational homogeneous representations of weight / of 
GLW be (7(X), X \- I into not more than n par ts , then the character afforded by 
(7(X) is {X}, where the variables are now the eigenvalues t\, . . . , tn of £ £ GL n . 
Thus , {1} = ^ = h + . . . + tn = t r £ and 5 , = h* + . . . + / / = t r (£«)• 

If the degree of the o-(/x), /* h m, representation of GLW is TV then for £ 6 GL„, 
the entries of a(lx) (£) G G L ^ are homogeneous polynomials of degree m in the 
entries of £ and O-(M)(GLTO) = R, a subgroup of G W . Next, consider the o-(X) 

representation of G L ^ ; the entries of cr(X) (77), 77 £ GLN, are homogeneous poly­
nomials of degree / in those of 77 and 

W = ;T Z) W ^ P 

where Zp is defined in terms of the eigenvalues ti*, . . . , tN* of 77 G G L ^ in 
exactly the same way as Sp in terms of tu . . . , tn. Now the restriction of aa) to 
R> °"(X)|R> is a representation of R and hence of Ghn. In this representation 
£ G G L n is mapped onto the matrix <J(X) (O-(M) (£)), t ha t is, the matrix <r(X) (77) with 
77 Ç R and of form O-(M)(£). The entries of o-(X) (<T(M) (£)) are, of course, homo­

geneous polynomials of degree Im in the entries of £. The character afforded by 
cr(X)|R is writ ten {^} ® {X}. Thus , 

(3) M ® M =jiZ rPxP
WZp, 

a symmetric function of weight Im, constructed from the given S-îunctions 
{JU}, {X} of weights m and / respectively. 

We require Zp in terms of the eigenvalues tu i = 1, . . . , n, of £ £ GL n , 
ra ther than as a function of the t*, j = 1, . . . , N. Now, 

M = -7 X ^Xp0 0^ 
w p H m 

where, 5 P = V 1 ^ 2 . . . for p = (l6 l2& 2 . . .) h m and rp = \CP\ of Sm. T h a t is, 

tr <r°°(É) = - : E W M ) ( t r ?)&1(tr £2)&2 . . . for all £ 6 GL n . 

Replace J with £ff, hence 5* with SffJfc then, since 

Z0 = /t** + . . . + tN** = trT/5 = tr (<r^(£))« = tr (*<">($«)) 
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we have, 

Zt = ^Z W'CtrmtrfV. . . 
7YI. p \-m 

Thus , if we write {M}((Z) for ZQ 

(4) ÎMÎ(î) = ~ Z ^ X P < M X 
YYl. phm 

where qp = (qbl(2q)b2 . . .) h qm. 

Finally, since Zp = Zi a iZ 2° 2 . . . = {M} (ÎMÎ(2))a2 . . . = {/x}P, say, then (3) 
becomes 

(5) U! ® {X( = £ £ rpX;X,{/x}p, 

a form, used by H. 0 . Foulkes [5, § 5], which invites comparison with a certain 
irreducible representation of the wreath product Sm I St. 

3. The character of Sim corresponding to the 5-function {id} 0 {X}. 
Following the definitions and notat ion of A. Kerber [8, pp. 24-25], we let 
(y- x) = (yi, . . . , y i] x) be a general element of the wreath product Sm I Sh 

where y maps the set 12 = {1, . . . , /} into Sm and x c S ( . T h e basis group of 
Sm I Si, Sm*, with elements of form (y; lsz)> y '• ^ ~* Sm, is the direct product 
SOTl X . . . X SOT of / copies of Sm. The complement S / of Sw* is isomorphic 
to S z and its elements are of the form (e; x), x G Sh e the ident i ty of Sm*. 
Thus , the factor group (Sm I Si)/Sm* = S / and if x is a given element of S z 

then the set of elements {(y; x)} const i tute a coset of Sm* in Sm I St. 

From the definition of Sm I Si it is easily seen t ha t the cycle decomposition 
of elements (y; x), x G Cp of S z and p = ( l a i 2 a 2 . . . stts . . .) a par t i t ion of / into 
r par ts , is of the form 

(6) vp = Vl e . . . e vai e 2vai+1 e . . . e 2vai+a2 e . . . 
a direct sum of r part i t ions, where the first a\ terms are of form vu the next a<i 
of form 2 Pf, . . . , the next as of form svu . . . with svt = (sbl(2s)b2 . . .) \- sm 
for Vi = (lôl2&2 . . .) \- m. 

Now, Kerber shows [8, §§ 5, 6] t ha t certain irreducible representat ions of 
Sm I Si are of the form (/x; X) = ((7 0 p(X)/) where, p(X)/ is the (irreducible) 
representation of Sm ? S z derived from the irreducible representat ion p(X) of 
the factor group S / , a is the (irreducible) Kronecker product representat ion 
P(M) 0 . . . 0 p(M) (/ factors) of Sm*, with p(/x) the irreducible representation (of 
degree wM) of Sm, and <r is the (irreducible) representation, derived from a by 
permut ing the columns of the matrices a((y; ls^))- The representat ion â is 
given by a ((y; x)) with (ii, . . . , i z ; j i , . . . , ji) en t ry equal to 

pnix-Hi)^'(yi)pi2jx-H2)^\y2) • • • pinx-Ho^iyùi (i = w * = wM). 
Therefore the (ii, . . . , ix\ i\, . . . , it) en t ry of â ((y; x)), if x G Cp with 
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p = (l«i2a2 . . . ) , is equal to 

P h i / (yi) • • -pia^a/ (yai) Piai+liai+2 

which includes, corresponding to an s-cycle (say the first) in the &th to 
(k + s — l ) t h par ts of p, the product of factors 

Pikik+i Pik+i ik+2 Pik+s-lik 

Hence, 

tr ô=((y; *) ) = tr p^(yi) . . . tr p^ (y f l l ) t r pc> (3^+13^+2) . • • 

tr pM(ykyk+i . . . y*+*-i) = Xv^Xv™ • • • X,/M) ( ' factors) 

where 3/1 £ C^, . . . , ya, £ C„01, 3^+0^+2 G C, a i + 1 , . . . , 3 ^ + 1 • • • Jk+s-i G 
CVai+ . . .+as_1 +1, . . . of Sm and here all the yt in p(M) (3^) are considered as elements 
of a single Sm, since the factors of a are all equivalent and so may be made equal. 
Thus , the value of the character afforded by the irreducible representation 
(/x; X) = (<r ® p<x') of Sm ? S* on (y; x) with x £ Cp, p = ( 1 ^ 2 ^ . . .) h / 
into r par ts is equal to IT; = i X^ ( M ) X(X)-

Finally, we show tha t the 5-function corresponding to the character </>, say, 
afforded by the induced representation, (/*; X) | S j m , is {p} ® {X}. Now, the 
element (3/; x) G Sm ^ S z with x £ Cp, from (6), corresponds to a parti t ion 
of /w of the form vp and therefore belongs to the conjugacy class Cv of SZm. 
Thus [6, Theorem 16.7.2], the value of the character 0 on (y; x) is 

[ml) II TVp (y;x)£CVpnSmlSl \ i = l / 

the sum being over all (y; x) of Sm \ S j of the form vp. But the number of 
cosets of Sm* in Sm I Si corresponding to a particular p (— / is rp, the number 
of ways of building vp in each of these cosets is 

x ( n r,4) 
and every one of these occurs (m!)*_ r times in each such coset. Hence, 

(lm)l 

to r parts ^ i j \ (±>j ,=„ t = l / 

for given vp. Now, the corresponding S-iunction, 

since 0 f = 0 unless f = ^p for some p h 1. Thus , 

/! ^rj L(w!) ,p=©»,-i-m \ , t i • • / 

now summed over all vp. 
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But S,p = 5 F l . . . S,aiSifai+1 . . . 5 „ . 1 + . I . . . (r factors) for p = (1«'2«». . .) h I 
into r par ts . Therefore, 

* = | £ r , x , W [ f ô E r , x , W * „ ) • • • ( ^ Z ^ x , " * , , ) 

as required. 

4. T h e r e d u c t i o n of {/z} ® {X}. We conclude with a brief reference to the 
problem of reducing the 5-function {/z} ® {X} to a sum of 5-functions, t h a t is, 
to the decomposition of the character 0 of S Xm with corresponding 5-function 
{\x\ ® {X} to a sum of irreducible characters of Sim. M a n y methods (e.g. [1], 
also [4, p . 166] for more references) have been devised for this reduct ion; we 
consider {JU} ® {X} in the form (5). 

The XP(X) may be found from the character table of Sh or by applying the 
Lit t lewood-Richardson recurrence rule [2, § 5.3, Theorem II] and the order of 
Cp is 

l\ 
Yp l a i a i ! 2 a 2 a 2 ! . . . 

for p = ( l a i2 a 2 . . .) I- /. T h e differential operator method of H. O. Foulkes [5] 
gives a simple determinanta l procedure for the coefficient of [v], v \- Im, in 
{/x}p; it is also very useful in conjunction with other methods which may 
determine the coefficients of 5-functions {v} in {/x} ® {X} = YLvy-im c^^v] 
corresponding to certain - bu t not all - forms of the part i t ion v of Irn. 

If, however, each {JJL}(Q) in {/x}p were expressed as a sum of ^-functions, the 
problem would then reduce to t h a t of the ordinary multiplication of 5-functions 
[2, § 6.3, Theorem V]. We have, 

from (4). Bu t 

sP = E x/M) M 

for each p |— m. In part icular for gp h cm, 

S<ZP = 2 ] Xqp
M {*} 

a y-qm 

Thus, 
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where, x(M\ X(<r) are irreducible characters of Sm and Sqm respectively. Hence 
{fji} ® {X} becomes a sum of products of S-lunctions, the coefficients in which 
are integral multiples of products of characters of Sh Sm and Sqm (q a divisor 
of Im). Now we require the values of x((r\ ^ h p , on classes of form Cgp, 
p h m, only. But D. E. Littlewood [2, § 8.1] has shown that XqP

((T) m a y be 
expressed in terms of the irreducible characters x(/x) of Sm; we therefore require 
the irreducible characters of only S* and Sm. 
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