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PLETHYSM OF S-FUNCTIONS

A. 0. USHER

The S-function {u} ® {A}, u = m, N I [, where {g} ® {\} is the ‘new multi-
plication’ or plethysm of D. E. Littlewood [1], corresponds, in the sense defined
below in (1), to the character afforded by a representation of the symmetric
group S;, induced from a representation of the subgroup S, ¢ S; [3 §6;
4 § 3.5]. The aim of this paper is to define the latter representation and deduce
its character using a somewhat different approach from that in [3].

In Section 2, the character ‘{u} ® {A}’ of the general linear group, GL,,
over the field of complex numbers, is introduced and expressed in a form given
by H. O. Foulkes [5] which suggests that one might usefully consider a certain
irreducible representation of the wreath product S, ? S; It is shown in
Section 3 that the character of S, induced from the character afforded by this
representation has corresponding S-function {u} ® {A}. The connection be-
tween the plethysm of S-functions and wreath products of symmetric groups
has been pointed out by several authors (e.g. [9, § 7; 10 p. 135]) but no proofs
seem to be available. Finally, in Section 4 there is a brief summary of one of
the possible methods of reducing {u} ® {A} into its irreducible components.

2. The S-function {u} ® {\}. Let ¢ be any class function defined on S,,
then the Schur characteristic function, or S-function, corresponding to ¢ is,
by definition, the symmetric function,

1
(1) ® = ﬁ Z 7’p¢oSp

ptl

where ¢, is the value of ¢ on the conjugacy class C, of S,

o = |C,l
Sp = Sla152a2 ... for p = (1”12'12 .. ) (o l
and with S; (k a positive integer) the kth power sum, {* 4+ £,* + ..., in the
variables ¢, 3, .. ..
Now if X\ = (A, Ne, ..., \;) [ then {\} may be defined as the bialternant

symmetric function
Z + tl)\1+1—1t2)\z+t—2 o tl)\l It A+ l—jl Ay
N == 2 + 0L = Itil_jl =A
say, where the (¢, j) entry of the [th order determinant, A, is ¢}/ and where the

sums are taken over all permutations of the suffixes of the #’s, with + or —
sign according as the permutation is even or odd. It follows from the famous
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Frobenius formula for the irreducible characters x® of S, namely,
S,A = Z Xp()\)AX
AR

that {A} is the S-function corresponding to x® [2, §§ 5.2, 6.3]. Thus,

1
@ A} = zT; 7% S,
P

Let the irreducible rational homogeneous representations of weight / of
GL, be ¢™, \ - [ into not more than % parts, then the character afforded by
o™ is {A}, where the variables are now the eigenvalues ¢y, . .., t, of ¢ € GL,.
Thus, {1} =Si=t+...+t, =trkand S, = £+ ...+ 4,7 = tr (&9).

If the degree of the ¢, u - m, representation of GL, is N then for ¢ € GL,,
the entries of ¢® (£) € GLy are homogeneous polynomials of degree 7 in the
entries of ¢ and ¢®(GL,) = R, a subgroup of GLy. Next, consider the ¢®
representation of GLy; the entries of ¢™ (), 7 € GLy, are homogeneous poly-
nomials of degree [ in those of 5 and

1
{)‘} = ﬁ Z rPXP()‘)ZP

okl
where Z, is defined in terms of the eigenvalues t,*, ..., ty* of 7 € GLy in
exactly the same way as S, in terms of ¢y, . . . , £,. Now the restriction of ¢® to

R, ¢®|g, is a representation of R and hence of GL,. In this representation
¢ € GL, is mapped onto the matrix ¢® (¢ (£)), that is, the matrix ¢® () with
n € R and of form ¢® (¢). The entries of ¢® (¢® (£)) are, of course, homo-
geneous polynomials of degree Im in the entries of ¢£. The character afforded by
o®|g is written {u} ® {A}. Thus,

@ o=z,

pkl

a symmetric function of weight Im, constructed from the given S-functions
{u}, {A} of weights m and [ respectively.

We require Z, in terms of the eigenvalues ¢, 2 =1, ..., n, of £ € GL,,
rather than as a function of the ¢t;* 7 = 1,..., N. Now,
1 (w)
{:“} = ml "oXp Sp

where, S, = S;15,°2. . . for p = (112°2...) - mand r, = |C,| of S,,. That is,

tr e (f) = ;,%T 2 7, (r )" (r €)™ ... forallg € GL,.

' oFm
Replace £ with £¢, hence S; with S, then, since
Zy= 1R = gt = tr (09 (6)F = tr (oW ()
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we have,
1 w
Ztl = Z 7’po“ (tr Eq)m(tr EZQ)DZ cee
m. pFm

Thus, if we write {u}@ for Z,

1
4) {,U'}(Q) = %f Z 7’;OXP(M)SQD

pFm

where gp = (¢"1(2¢)"2...) - gm.

Finally, since Z, = Z;%Zy* ... = {u}({u}@)® ... = {u},, say, then (3)
becomes
. 1
(5) {“} ® {)‘} = ﬁ Zl Tpo()\){p.}p,
tp

a form, used by H. O. Foulkes [5, § 5], which invites comparison with a certain
irreducible representation of the wreath product S,, ¢ S..

3. The character of S,, corresponding to the S-function {u} ® {\}.
Following the definitions and notation of A. Kerber [8, pp. 24-25], we let
(v;x) = (y1, ...,y x) be a general element of the wreath product S,, ¢ S,,
where y maps the set @ = {1, ..., [} into S,, and ¥ € S;. The basis group of
S» Sy, S,*, with elements of form (y; 1g,), v : @ — S, is the direct product
Sp, X ... X Sml of I copies of S,,. The complement S/ of S,* is isomorphic
to S; and its elements are of the form (e; x), x € S;, e the identity of S,*.
Thus, the factor group (S,. ¢ S;)/S,* = S/ and if x is a given element of S,
then the set of elements { (y; x)} constitute a coset of S,,*in S,, ¢ S..

From the definition of S,, ¢ S, it is easily seen that the cycle decomposition
of elements (y;x),x € C,of S;and p = (1%12%, .. s% . ..) a partition of / into
r parts, is of the form

®) vo=vi®D... ®va, D21 @ .- D uyg0, D -

a direct sum of 7 partitions, where the first ¢; terms are of form »;, the next a»
of form 2 v, ..., the next a, of form svy, ... with sy; = (s°1(2s)%2...)  sm
for v, = (1212°2 . )) I m.

Now, Kerber shows [8, §§ 5, 6] that certain irreducible representations of
S,. ¢ S;are of the form (u; N\) = (¢ ® p™’) where, p™’ is the (irreducible)
representation of S,, (! S; derived from the irreducible representation p™ of
the factor group S/, o is the (irreducible) Kronecker product representation
p® ® ... ® p® (I factors) of S,*, with p® the irreducible representation (of
degree n,) of S, and ¢ is the (irreducible) representation, derived from ¢ by
permuting the columns of the matrices o((y; 1s,)). The representation ¢ is
given by ¢ ((y; x)) with (¢4, ..., 7;;j1, . . ., j1) entry equal to

w w () .
Piyjz=1(1) g (%)Pim—l(z) . (y2) CIEI 27 Pt )] g (yl), 1= Tky Jk = n).

Therefore the (21, ..., 7;; 21, ..., 7;) entry of ¢ ((y; %)), if x € C, with
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p = (1%12%2 . ), is equal to
(w) (u) (w) (w)
Piyiy g (yl) « o+ Pigyiay * (yal) * Pigy+1iarte u(ya1+1)piu1+2 iag+1 * (ytl1+2)‘ e

which includes, corresponding to an s-cycle (say the first) in the kth to
(B 4+ s — 1)th parts of p, the product of factors

™ ™ ()
Piierr (Vk) * Piesyikse * (3’k+1) ce Piks—1ik ! Yrgs—1)-
Hence,

tr a((y;%)) = tr p®(y1) ... tr p® (y4,) tr p® (Yo 41Ya,42) -
tr o (ViVers -+ Yersm1) = X0, ¥ x0,* o x5, (r factors)

where 31 € Co, ..oy Yo, € Coupy Yay#1Yay42 € Coapons ooy Vit -+« Vipoot €
Crayt..tag_y 412 - - - of Sy and here all the y,in p® (y,) are considered as elements
of a single S, since the factors of ¢ are all equivalent and so may be made equal.
Thus, the value of the character afforded by the irreducible representation
;M) = (6 Q o) of S, S, 0on (y; x) with x € C,, p = (192% ,,.) [
into 7 parts is equal to I1]_; x,,® x™.

Finally, we show that the S-function corresponding to the character ¢, say,
afforded by the induced representation, (u; A) T Sy, is {u} ® {A]. Now, the
element (y; x) € S,, ¢ S; with x € C,, from (6), corresponds to a partition
of Im of the form », and therefore belongs to the conjugacy class C,, of S;,.
Thus [6, Theorem 16.7.2], the value of the character ¢ on (y; x) is

. — _ Um)! <m( (#))
qb((y’X)) - d)vp h (m‘)ll' Vu (y; x)g': ﬂSmZSz H X

the sum being over all (y; x) of S, 2 Sl of the form »,. But the number of
cosets of S,* in S,, ! S; corresponding to a particular p [ is 7,, the number
of ways of building v, in each of these cosets is

> (11 +)

?vi=vp i=1

and every one of these occurs (m!) =" times in each such coset. Hence,

_ (Um)! p m ( <u>)
¢yp N ll"v "‘llntozrparts (m‘) Z H Tri X '

@y._y i=1

for given »,. Now, the corresponding S-functlon,

1 1
P = Gyt 2, S Gyt 2, %

-
P 1

since ¢, = 0 unless { = v, for some p 1. Thus,

_ 1 m[ 1 ( (m) J
2= Gy @Z L roe™)s.

i

now summed over all v,.
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But S, =S, ... 5S0a; 41+ - - Stvayvay - - - (7 factors) for p= (11122, ..) I
into 7 parts. Therefore,

1 IS 1 (™) 1 ®
2= L x| 2 @S] o %, S,
1

* Vay

1 W 1 )
X (__ Z Vo, o1 Xy, g S2va al | = ﬁ Z 7o Xp {P«}pr
o+ 1 1 1 < okl

as required.

4. The reduction of {u} ® {A\}. We conclude with a brief reference to the
problem of reducing the S-function {u} ® {\} to a sum of S-functions, that is,
to the decomposition of the character ¢ of Sy, with corresponding S-function
{u} ® {A} to a sum of irreducible characters of S;,. Many methods (e.g. [1],
also [4, p. 166] for more references) have been devised for this reduction; we
consider {u} ® {A} in the form (5).

The x,™ may be found from the character table of S,, or by applying the
Littlewood-Richardson recurrence rule [2, § 5.3, Theorem II] and the order of
C,is

I

T 1%y 2%, ...

for p = (1%12%2 . . ) | I The differential operator method of H. O. Foulkes [5]
gives a simple determinantal procedure for the coefficient of {v}, v - Im, in
{u},; it is also very useful in conjunction with other methods which may
determine the coefficients of S-functions {»} in {u} ® {A\} = >, canlv}
corresponding to certain - but not all - forms of the partition v of m.

If, however, each {u}@ in {u}, were expressed as a sum of S-functions, the
problem would then reduce to that of the ordinary multiplication of S-functions
[2, § 6.3, Theorem V]. We have,

7o

) 1
{u} @ = 12 T X Se
S pEm

from (4). But
Sp = Z Xﬂ(#) {F"}
wkm
for each p - m. In particular for ¢p - gm,

qu = Z qu(v) {‘7}

okFgm

Thus,

@ _ 1 W _ @
= 7 g
} m! &, p Xp  Xap { }
akgm

{n
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where, x®, x© are irreducible characters of S, and S,, respectively. Hence
{u} ® {A} becomes a sum of products of S-functions, the coefficients in which
are integral multiples of products of characters of S;, S,, and S,,, (¢ a divisor
of im). Now we require the values of x?, ¢ I gm, on classes of form C,,
p = m, only. But D. E. Littlewood [2, § 8.1] has shown that x,,(® may be
expressed in terms of the irreducible characters x® of S,,; we therefore require
the irreducible characters of only S; and S,,.

REFERENCES

1. D. E. Littlewood, Invariant theory, tensors and group characters, Trans. Royal Phil. Soc.
239 (1944), 305-365.
2. The theory of group characters (Oxford, 1940).
3. G. de B. Robinson, On the disjoint product of irreducible representations of the symmetric
group, Can. J. Math. 1, (1949), 166-175.
4, Representation theory of the symmetric group (Edinburgh, 1961).
5. H. O. Foulkes, Differential operators associated with S-functions, J. London Math. Soc. 24
(1949), 136-143.
6. M. Hall, The theory of groups (Macmillan, 1959).
7. C. W. Curtis and 1. Reiner, Representation theory of finite groups and associative algebras
(Wiley, 1962).
8. A. Kerber, Representations of permutation groups, Lecture notes in Math. vol. 240 (Springer-
Verlag, 1971).
9. R. C. Read, The use of S-functions in combinatorial analysis, Can. J. Math. 20 (1968),
808-841.
10. D. Knutson, Lecture notes on \-rings and the theory of the symmetric group, Lecture notes in
Math. vol. 308 (Springer-Verlag, 1973)

Royal Holloway College (University of London),
Englefield Green, Surrey

https://doi.org/10.4153/CJM-1976-044-7 Published online by Cambridge University Press


file:///-rings
https://doi.org/10.4153/CJM-1976-044-7

