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SUPER-EUKASIEWICZ PROPOSITIONAL LOGICS
YUICHI KOMORI

§0. Introduction

In [8] (1920), Liukasiewicz introduced a 3-valued propositional calculus
with one designated truth-value and later in [9], Lukasiewicz and Tarski
generalized it to an m-valued propositional calculus (where m is a natural
number or §R,) with one designated truth-value. For the original 3-valued
propositional calculus, an axiomatization was given by Wajsberg [16]
(1931). In a case of m + YR, Rosser and Turquette gave an axiomatiza-
tion of the m-valued propositional calculus with an arbitrary number of
designated truth-values in [13] (1945). In [9], Lukasiewicz conjectured that
the Y{,-valued propositional calculus is axiomatizable by a system with
modus ponens and substitution as inference rules and the following five
axioms: pDOgDOp, (PO D@>ODr)Ddp>Or,pVgDdqgVp (pDqV
(@D p), (~p D ~q) Dq>Op. Here we use PV @ as the abbreviation of
(PD Q) DE. We associate to the right and use the convention that D
binds less strongly than \/. In [15] p. 51, it is stated as follows: “This
conjecture has proved to be correct; see Wajsberg [17] (1935) p. 240. As
far as we know, however, Wajsberg’s proof has not appeared in print.”
Rose and Rosser gave the first proof of it in print in [12] (1958). Their
proof was essentially due to McNaughton’s theorem [10], so it was meta-
mathematical in nature. An algebraic proof was given by Chang [1] [2]
(1959).

On the other hand, Rose [11] (1953) showed that the cardinality of
the set of all super-Fukasiewicz propositional logics is y{,. Surprisingly
it was before Rose and Rosser’s completeness theorem [12]. The proof in
Rose [11] was also due to McNaughton’s theorem. Some of our theorems
in this paper have already been obtained by Rose [11]. But our proofs
are completely algebraic.

In our former paper [5], we gave a complete description of super-
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Fiukasiewicz implicational logics (SLIL). In this paper, we will give a
complete description of super-Lukasiewicz propositional logics (SLL). We
need the completeness of a theory on some ordered abelian groups in [6]
to give the complete description of SLL. In the first three sections, we
will develope a theory without need of the result in [6]. So some of the
results in §1-§ 3 are included in more generalized forms in the later
sections.

In §1, we will give a complete description of these SLLs which are
obtained by adding only C formulas to the smallest SLL Lu. In §2, we
will discuss the inclusion relations between SLLs. And we will have the
theorem stated in [15] p. 48 without proof. In § 3, we will give a charac-
terization of SLLs without finite model property. §4 is the main section
of this paper. A complete description of SLLs will be given in it. In §5,
we will give some applications of the complete description of SLLs. In
§6, we will discuss the lattice structure of all SLLs and illustrate a finite
sub-structure of it.

We suppose familiarity with [4] and [5]. Only in §4, we suppose
familiarity with [6]. A CN formula (or simply, formula) is an expression
constructed from propositional variables and logical connectives D and ~
in the usual way. By a super-Eukasiewicz propositional logic (SLL), we
mean a set of formulas which is closed with respect to substitution and
modus ponens, and contains the following five formulas:

Al. pDgDp,

A2. (pDg)D(@>Dr)Dp>Dr,
A3. pVgDqVp,

Al pD9V@oOp,

A5, (~pD ~q)DgDp.

A C algebra is an algebra {(A;1, —) which satisfies the following axioms,
where A is a non empty set and 1 and — are 0-ary and 2-ary functions
on A respectively.

Bl. 1-x=x.

B2, x—>y—>x=1.

B3 (x—=y)—-»(@py—-2)>x—>2=1.
B4 xUy=yUx.

B5. (x—-yU(y—-x)=1.
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We abbreviate (x >y) >y by x Uy. We use the same convention as
before. A CN algebra is an algebra {(4;1, —, =) which satisfies the fol-
lowing axiom, where {A; 1, —) is a C algebra and — is an l-ary function
on A.

Cl. x—»>1y<y—>x.

Here we denote x >y =1 by x <y. We say simply that A is a CN
algebra, when (A;1, —, =) is a CN algebra. If a formula contains no
connective other than D, it is called a C formula. In [5], we denote the
set of C formulas valid in a C algebra A by L(A). In this paper, we
denote the set of formulas valid in a CN algebra A by L(A). The set
of C formulas valid in a CN algebra A is denoted by L,(A). Lu denotes
the set of formulas derivable from A1-A5, that is, Lu is the smallest SLL.
For any SLL L, L, denotes the set of C formulas contained in L. Let H
be any set of formulas and L be any SLL. Then we denote the smallest
SLL which includes L U H by L+ H. Sometimes, L + {P, ---,P,} is
denoted by L+ P, + --- + P,. A SLL L is called to be finitely axio-
matizable if there exists a finite set H such that L = Lu 4+ H.

We denote the set {0,1/m,2/m,---,(m — 1)/m,1} and the set of all
rationals in the interval [0,1] by S, (m > 1) and S,, respectively. We
define the functions - and = on S, 1 <m<w)byx—y=min(1,1 — x
+ ) and —x =1 — x, respectively. Then we can regard S, as a CN
algebra. S, is the well-known Yukasiewicz (m + 1)-valued (or YR,-valued
if m = w) model. We denote also the CN algebra with only one element
by S,.

§1. SLLs obtained by adding only C formulas

Let A be a CN algebra. A non-empty subset J of A is a filter of A
if it satisfies the following two conditions:

1) 1led,

2) xed and x>yed > yed.

Let A be a CN algebra, x be an element of A other than 1. A is
irreducible with respect to x if x is contained within any filter of A which
contains at least an element other than 1. A is irreducible, if there exists
an element such that A is irreducible with respect to the element or A
has only one element. By Theorem 2.10 in [4], we have

THEOREM 1.1. Any irreducible CN algebra is linearly ordered.
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We can, similarly to Theorems 3.8 and 3.9 in [5], show the following
theorems,

THEOREM 1.2. If a CN algebra B is a subalgebra of a CN algebra A,
or B = AlJ for some filter J of A, then L(B) 2 L(A).

TeEOREM 1.3. For any SLL L, there exists a set {A};c4 Of irreducible
CN algebras such that L = (e, L(A)).

Next theorem gives a complete description of SLLs obtained by adding
only C formulas.

THEOREM 1.4. Let {A,|ieI} be a set of C formulas. If L = Lu+
{A,liel}, then L = (N, L(S;) for some n < w.

Proof. By Theorem 4.1 in [5), if A, & Lu, then A, is interdeducible in
Lu with (pD)™q V p for some m. Here we define (PD)(Q) as (PD)(Q)
= @ and (PD)"*Y(Q) = P D (PDO)"(Q), and we denote (PD)(Q) by (PD)"Q
when no confusion occurs. Because Lu + (pD)"q V p3(p>D)q V p for
! > m, there exists n such that L = Lu 4+ (pD)"q V p. As (pD)qV p is
valid in S, for any 2 < n, L C (1<, L(S,). We can easily shown that if
(p>D)"q V p e L(A), then ord (A) < n. Here we give same definition of order
of a CN algebra as a C algebra, that is, ord (A) = sup {ord (x)|x € A} and
ord (x) is the least integer n such that x U (x—)"y = 1 for any element
y of A (ord (x) = @, if no such integer n exists). Therefore, we have that
if (pD)"q V pe L(A) and A is irreducible, then A is isomorphic to S, for
some k2 < n. Then, we have L = (M, L(S;). Clearly, if A, e Lu for any
iel, then L = Lu = (<, L(S:) = MNi<o L(Sp). Q.E.D.

If L, & Lu, that is, L; ¢ Lu,, there exists a non-negative integer n
such that (pD)"q VpelL. Let I be the set of non-negative integers
{{|]L < L(S)) and i < n}. Then, we can show that L = ();c; L(S,). Let J
be the set of non-negative integers {i|L ¢ L(S,) and i < n}. For each
1 ¢, there exists a formula P, such that P,e L and P, & L(S,). Let H be
the set of formulas {P;|ieJ}. Then, without being depend on the repre-
sentative P, chosen, we have that L = Lu + (pD)"q V p + H. Therefore,
we have the following theorems.

TuEOREM 1.5. If L; > Lu,, then there exists a finite set I of non-
negative integers such that L = (M;e; L(S).

TueorREM 1.6. If L, 2 Lu,, then is finitely axiomatizable.
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CoroLLARY 1.7. The cardinality of the set {L|L is a SLL such that L,
= Lu,} is countable.

§2. Inclusion relations between SLLs

Though L,(S,) € LS, for n > m in SLILs, we can easily know that
L(S,) g L(S,). In [9], it is stated that Lindenbaum proved that L(S,) <
L(S,) if and only if m is a divisor of n. We will generalize Lindenbaum’s
theorem. We define the CN algebras S° (n=1,2,3, --.) as follows.

S: = {(x,y)lxe{l/n’ 2/"’3 . "(n'— 1)/n},yeZ}
U{0,5)]yeN} U {1, —y)|yeN},

where Z and N are the set of all integers and the set of all non-negative
integers, respectively.

(1’ 0) if 2> x )
(%, y) > (2, w) = {(1, min (0, u — y)) if z2=x,
QA—x+2zu—y otherwise .
_|(x; y) = (1 — X, _y) .
When n = 1, the first term in Sy is regarded as an empty set. Sy is

essentially equivalent to the MV-algebra C defined in Chang [1]. We can
check easily that {(S¢;(1,0), —, =) is a CN algebra.

THEOREM 2.1. Let I and J be finite sets of positive integers.

ML) N QLS S LS.)

if and only if there exists ne I U J such that m is a divisor of n.

Proof. If there exists ne I U J such that m is a divisor of n, S, is
isomorphic to a subalgebra of S, (or S?). Therefore, we have (M;c; L(S;)
N Myes L(SP) < L(S,). Conversely, suppose that (,e; L(S) N M;es L(S?)
C L(S,). Let r be maxI U J and P be the formula

[[(p2)"* ~p D P2 [(PD)" ' ~ pDI"*'p.

If f assigns the element (m — 1)/m of S, for p, then f(P) is also (m — 1)/m.
Hence, we have P& L(S,)). Therefore, we have P& (\;c; L(S;) N (Mes L(SP).
Hence, there exists i€ I such that P& L(S,) or there exists j € J such that
P& L(Sy). Suppose that P& L(S;). Let g be an assignment of Sy such
that g(P) + (1,0). We can show that for any x, ye Sy and any [ > j, if
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(x—)'y # (1, 0) then x is of the form (1, *). Here by ¢ = (b, ¥) we mean
that the first component of ¢ is . Hence, (a—)"*—a—a = (1, %) and
(a—)"' =1 a = (1, *), where a denotes g(p). Let a = (1 — k[j, ). Then we
have (m — 1)k[j < (j — k)/j and mk[j > 1. Hence, we have that j = mk.
When P & L(S,), the proof is similar. Q.E.D.

CoroLLARY 2.2 (Lindenbaum). L(S,) < L(S,) if and only if m is a
divisor of n 1 <m< o, 1<n< o).

TueEOREM 2.3. Let I and J be finite sets of positive integers.
M L(S) N N L(Sy) < L(Sy)
ter JeET

if and only if there exists ne J such that m is a divisor of n.

Proof. If there exists ned such that m is a divisor of n, (Me; L(S;)
N MNyes L(Sy) S L(Sy) because Sy is isomorphic to a subalgebra of Sg.
Conversely, suppose that (M;c; L(S;) N (Myes L(S) < L(Sy). Let r be max T
U J and P be the formula

([(@2)"* ~p D pI2T*(@PD)" " ~ pDI"*'[(gD)s V q] .
Let f be an assignment of S, such that f(p) = (m — 1)/m, 0), f(g) = (1, —1)
and f(s) = (0,0). Then f(P) = (1, —1). Hence, we have P& L(S;2). There-
fore, we have P& (e L(S)) N (Mes L(Sy). Because Pe (), L(S;), there

exists jeJ such that P& L(S;). Similarly to the proof of Theorem 2.1,
we have this theorem. Q.E.D.

CoROLLARY 2.4. L(Sp) < L(S?) if and only if m is a divisor of n (1 <
m<o,l<n<o).

§3. SLLs without fmp
By the result of [5], we know that any SLIL has the finite model
property (fmp). We will show that there exist SLLs without fmp.

DerFiNITION 3.1. A SLL L has fmp if there exists a set of finite CN
algebras {A,|ie I} such that L = (,e; L(A)).

A finite irreducible CN algebra is isomorphic to S, for some n.
Therefore, by Theorem 1.3, we have

TuEOREM 3.2. A SLL L has fmp if and only if there exists a set I of
non-negative integers such that L = (\ier L(Sy).
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TeHEOREM 3.3. If L % Lu, then L, > Lu; if and only if L has fmp.

Proof. By Theorem 1.5, L has fmp if L; =¢ Lu,. Conversely, L has
-fmp. Then there exists a set I of non-negative integers such that L =
(Mier L(S,). Because L = Lu, I is a finite set. So (pD)"q V pe L where
n =maxI. Hence L; > Lu,. Q.E.D.

For any positive integers m, n, S¢ has a subalgebra isomorphic to S,
if we regard S,, and S? as C algebras. Then we have

Lemma 3.4, L,(S3) = Lu; for any positive integer k.

THEOREM 3.5. If both I and J are finite sets of positive integers, J
¢ and L = (ie; L(S:) N Njes L(S}), then L has not fmp.

Proof. L = Lu because I U J is a finite set. By J % ¢ and Lemma
34, L, = Lu,. Therefore, L has not fmp by Theorem 3.3. Q.E.D.

CoOROLLARY 3.6. L(S?) has not fmp for any positive integer n.

§4. A complete description of SLLs

This section is the main part of this paper.

DerFintTION 4.1. Let A be a linearly ordered CN algebra, and a be
the maximum element of A. An element x of A is called almost maximum
if (x—)" =1 a % a for any positive integer n. An element of x ‘is called
infinitesimal if —x is almost maximum. If A has an element other than
the maximum element, the set M, of all almost maximum elements of A
is a filter of A. The CN algebra A/M, is denoted by A. rank (A) is
defined by rank (A) = ord (4).

Clearly, only one almost maximum element of A is the maximum
element, that is, A is locally finite (This is Chang’s terminology [1].).

THEOREM 4.2. Let A be a linearly ordered CN algebra. If rank (A)
= w, then L(A) = Lu.

Proof. By Theorem 1.2, L(A) < L(A). Because A is locally finite, A
is isomorphic to a subalgebra of the CN algebra of all real numbers be-
tween 0 and 1 (cf. [2] p. 78). By ord (A) = w, A has an infinite number
of members. Therefore, L(A) = Lu (cf. [12] p. 5). Hence, we have L(A)
= Lu. Q.E.D.

For a given model G of SS (cf. [6]), let the segment G[c] determined
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by a positive element ¢ of G be the set of all elements xe G such that
0 < x <c. We define the functions — and — on G|c] as follows:

x—y=min(c,c— x+3),

1x=c— Xx.
Then we can easily prove the following lemma.

Lemma 4.3. The algebra {Glcl; c, —, ) defined above is a linearly
ordered CN algebra. If m satisfies —1 < 2(m — ¢) < 1, then rank (G[c])
= m.

We now wish to establish the converse to Lemma 4.3. Let A be a
linearly ordered CN algebra and 0 be the minimum element of A. We
let A* be the set {(s,x)|se{+, —},x is an infinitesimal element of A}.
We identify (4, 0) with (—, 0) and denote (&, x) by *x, respectively. On
the set A* we define the functions + and — and the relation 0< as
follows:

(+, 0+ (+,9) =+, " x =),

(—’x)_l_(_:y):(—’-'x_)y)’
(+, (x—y) ify<x,

(19 + =+ = {0 L=

_(+’ x) = (—': x) )

_(_9x)=(+,x)’

0<(s,x)©s=+ and x+#0.

Then the algebra {(A*; 4, —,0<)> is a totally ordered abelian group.
Generally, the group ZG =Z X G is a model of S is G is a totally
ordered abelian group, where Z X G is ordered as 0 < (x,y) if and only
if either 0 < x or x =0 and 0 < y. Hence ZA* is a model of SS.

LEMMA 4.4. Let A be a linearly ordered CN algebra, ord (A) = v and
rank (A) = n. Then there exists an infinitesimal element b of A such that
b0 and A = ZA*[(n, +b)].

Proof. By rank (A) =n, A = S,. Let ¢ be an isomorphism from A
to S, and « be an element of A (and hence an equivalence class of A)
such that ¢(@) = (n — 1)/n. Since ord (A) = w, we can take a sufficiently
large element x of « such that (x—)"0 < a (¢ is the maximum element
of A). We can show that for any y = a there is an unique infinitesimal
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element 2z of A such that y = (x—>)"z or y = (x—)""! = (—x — 2) if ¢([y])
= m/n. Let b detote —(x—)"0. Let f be a function from A to ZA*[(n,
4-b)] such that f((x—)"2) = (m, +2), f(x—)""* = (—x — 2)) = (M, —2) and
f(@) = (n, +b). Then f is an isomorphism from A onto ZA*[(n, 4 b)].
Q.E.D.
The first order language .#’ is the same as in [6], which consists of
0,1, —, +,0<, n| (for each integer n > 0) and =. Let %" be the lan-
guage obtained from %’, by adding a binary function symbol min. The
language of the theory S8’ is %" and the set of axioms of SS’ is obtained
from SS by adding the following axiom:

() z=min(x,y)oc@<y—-z=0)A@<x—>2=Y).

It is clear that each model of SS can be regarded also as a model of SS’.
In SS’, for any formula A(x), the following is derivable:

Amin(s, ))<= (s <t—>A@E)) A (E<s— AQ)) .

Therefore, for any formula F of #” we can construct the formula F* of
&’ such that F « F* is derivable in SS’ and each variable of which some
occurrence is bound in F* is also bound in F. Especially, F* is open if
F is open. Hence, by Corollary 2.3 in [6], we have

LemMmA 4.5. For any open formula F of ¥” and any model A of SS’
U (), F is valid in ZQ if and only if F is valid in A.

We now define the term P* of #” corresponding to a formula P of
SLL in the following manner:

p* = h(p),

(P D @)* = min (c — P* 4+ @%,¢),

(~P)* = ¢ — P*,
Here h is an injective mapping from the set of propositional variables of
SLL to the set of variables of %" such that hA(p) = ¢ for any p. We

assume that x,, x,, - - -, x, are the only variables occurring in P*. Next,
we define the formula PPas P = 0 < x, <cA - AN0Lx, <c—P*=¢).

LemmA 4.6. For any formula P of SLL and any linearly ordered CN
algebra A such that ord (A) = o and rank (A) =n, P is valid in A if —1
< 2(n —c¢) <1— P°is valid in ZQ.

Proof. Suppose that P is not valid in A. There exists an assignment
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f of A such that f(P) < @ where a is the maximum element of A. By
Lemma 4.4, there exists an isomorphism ¢ from A to ZA*[(n, +b)]. Let
g be an assignment of ZA* such that g(x) = o(f(h~'(x))) and g(c) = (n, +b).
Then —1< 2(n — ¢) < 1— P° is not true under g. Since ZA* is a model
of S U (1), —1 < 2(n —c) <1— P°is not valid in Z@ by Lemma 4.5.
Q.E.D.

LemMA 4.7. For any linearly ordered CN algebra A such that ord (A)
= w and rank (A) = n, L(A) < L(ZZ[(n, 1)]).

Proof. By Lemma 4.4, A = ZA*[(n, +b)]. A subalgebra of ZA*[(n,
+b)] generated by (1, 0) is isomorphic to ZZ[(n, 1)]. Q.E.D.

LEMMA 4.8. For any integer k,
L(ZZ[(n, 0))) = L(ZZ[(n, R)])) S L(ZZ[(n, 1)]) .

Proof. By Lemma 4.7, L(ZZ[(n, k)]) < L(ZZ[(n, 1)]). Suppose that P is
not valid in ZZ[(n, k)]. Let f be an assignment of ZZ[(n, k)] such that
f(P) = (u,v) = (n, k). Let g be an assignment of ZZ[(n, nk)] such that
g(p) = (m, nl) if f(p) = (m, l) for any propositional variable p. Then g(P)
= (u, nv) x (n, nk). ZZ[(n,nk)] is isomorphic to ZZ[(n, 0)] (isomorphism
¢ is given by ¢((m, 1)) = (m,l — mk)). Hence, P is not valid in ZZ[(n, 0)].

Q.E.D.

LEMMA 4.9. For any integer k,
L(ZZ[(n, 0)]) = L(ZZ[(n, k)]) = L(ZZ[(n, 1)]) .

Proof. By Lemma 4.8, it suffices to show that L(ZZ[(n, 0)]) < L(ZZ[(n,
1)]). Let P be a formula which is not valid in ZZ[(n,0)] and f be an
assignment of ZZ[(n,0)] such that f(P) < (n, —1). Let g,:ZZ[(n,0)] —
ZZ[(n, 0)] be a homomorphism such that (i, j) — (i, mj). Let " be an as-
signment of ZZ[(n, 1)] such that f'(p) = g,.f(p) for any propositional variable
p. For any formula F with the degree d (that is, the number of occur-
rences of logical connectives in the formula F is d), we shall show by
induction on d that

gnf(F) — (0,d) < f'(F) < g.f(F) + (0,d) .

Suppose F is G D H and the degrees of G and H are e and ¢, respectively.
By the inductive hypothesis,
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gxf(G) — (0,¢) < f'(G) < g.f(G) + (O, ¢) ,
gnf(H) — (0,¢) < f'(H) < g.f(H) + (0, ¢) .

Since

f(G 2 H) = min ((zn, 1) — f(G) + f(H), (n, 1)),
&f(G D H) = min ((n, 0) — g./(G) + g.f(H), (n, 0))

and d =e + ¢ -4 1, we have
&.f(GD H)— (0,d) <f(GDH)< g,f(GD H)+ (0,d) .

The case that F is ~G is similar. Therefore, we have that f(P) <

(n,d—m). If m>d, P is not true in ZZ[(n,1)] under the assighment

f. Q.E.D.
We are now in a position to prove the following key theorem.

THEOREM 4.10. For any linearly ordered CN algebra A such that
ord (A) = w and rank (A) = n, L(A) = L(ZZ[(n, 0))).

Proof. By Lemma 4.7 and Lemma 4.9, we have L(A) & L(ZZ[(n, 0)]).
We shall show that L(A) D L(ZZ[(n,0)]). Let P be a formula valid in
ZZ[(n,0)]. By Lemma 4.9, P is valid in ZZ[(n, k)] for any integer k.
Hence —1<2(n —¢)<1— P° is valid in ZZ. By Lemma 45, —1<
2(n — ¢) < 1— P° is valid in Z@. By Lemma 4.6, Pis validin A. Q.E.D.

ZZ[(n, 0)] is isomorphic to S? defined in § 2. Now, we can prove the
main theorem.

THEOREM 4.11. For any SLL, there exist sets of non-negative integers
I, J such that L = (e L(S) N MNjes L(SP). If L = Lu, then both sets I
and J are finite.

Proof. By Theorem 1.3, there exists a set {A;};c, of irreducible CN
algebras such that L = (M, L(A,). By Theorem 3.13 in [5], L(4,) = L(S,)
if ord(A)) =n. By Theorem 4.10, L(A)) = L(S?) if ord(4,) = o and
rank (A)) = n. By Theorem 4.2, I(A,) = Lu = (<. L(S,) if rank (4,) = o.
Therefore, L = (Nicr L(S) N (Mjes L(Sy) for some I and J. If TU J is
infinite, then L < (Mscrus L(S)) because L(S?) < L(S,). By Theorem 20 in
[15] p. 49, Nierys L(S,)) = Lu. Hence, we have L = Lu. Q.E.D.
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§5. Applications of the main theorem

By Theorem 4.11, Theorem 3.5 gives a complete characterization of
SLLs without fmp. For example, we can show as follows that Lx + P has
not fmp, where P is the formula (p D ~p) D(~pDOp)DpV ~p. Because
Pe L(S,) N L(Sr) and P& L(S,) for n=2 or n> 4 and P& L(S®) for n >
2, we have Lu + P = L(S,) N L(S?) by Theorem 4.11. Hence, Lu -+ P has
not fmp by Theorem 3.5.

The following theorem, that was proved in Rose [10], is easily obtained
from Theorem 4.11.

THEOREM 5.1. The cardinality of the set of all SLLs is countable.

Rose [11] also showed that any SLL is finitely axiomatizable. We
will show it as follows.

LEMMA 5.2. Lu+ A, = (Nugn L(S?), where
A, =[@ED)"~pl D (ED)* ' ~pDpl D @ED)"'~pVp.

Proof. By Theorem 4.11 and L(Sy) < L(S,) for any k, it suffices to
show that (1) A, e L(Sy) for £ < n and that (2) A, & L(S,) for &> n.

Proof of (1). Let f be an assignment of Sg. If f(p) < (B — 1)/%,0)
or f(p) = (1, 0), then f((pD)"* ~p V p) = (1,0). Therefore, f(A,) = (1,0).
If f(p) = (K — D/k, %), then f((pD)"* ~p Dp) < f((pD)** ~ p). There-
fore, f(A,) = (1,0). If f(p)=(1,%), then f(pD)" ~p) <f(p). Hence,
f(A,) = (1,0). ‘

Proof of (2). Let f be an assignment of S, such that f(p) =1 — [k/n

+ 1]-1/k, where [x] is the integral part of x. Then f(pD)y* ~p) =1,
f(po)* ' ~pDp)=1and f(pD)*' ~ p V p) = 1. Therefore, f(A,) = 1.
Q.E.D.

THEOREM 5.3. Any SLL is finitely axiomatizable.

Proof. Let L be a SLL. If L = Lu, then L is finitely axiomatizable.
Suppose that L 2z Lu. Then there exists a positive integer n such that
My<n L(S?) < L. Hence A,e L. Because A, ¢ L(S,) and A, ¢ L(Sy) for any
k > n, there exist two sets of positive integers I’ and J’ such that L =
Meer LES) N Myes L(Sy) and I',J” S {i|i < n}. Let I and J be the sets
of positive integers {i|L £ L(S;) and { < n} and {j|L g L(Sy) and j < n},
respectively. For each ie I (jedJ), there exists a formula P,(Q;) such that
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P,eL (QeL) and P, L(S) (Q,&L(Sy). Let G and H be the set of
formulas {P,|ie I} and {Q,|je€ J}, respectively. Then, we have that L =
Lu+ G+ H+ A,. Q.E.D.

We denote the set of all formulas by W. By Theorem 4.11, W — L
is recursive enumerable for any SLL L. By Theorem 5.3, L is recursive
enumerable for any SLL L. Hence we have

THEOREM 5.4. Any SLL is decidable.

Krzystek and Zachorowski [7] proved that L(S,) (2 < n < w) has not
Interpolation Property. Quite similarly, we can prove the following
theorem.

THEOREM 5.5. Any SLL except W and L(S,) has not Interporation
Property.

Proof. Let L be a SLL except W and L(S,). Let P and @ be the
formulas (r >r>p) DrDOp)Dp and (s D s Dp) DsDp, respectively.
The formula P O @ is valid in S,. Hence we have PD Qe Lu. Let A
be a CN algebra such that A is S, (n>2) or S? (n>1). Let f be an
assignment of A such that f(r), f(s)&{0,1} and f(p) =0. It is easy to
observe that f(P), f(Q) & {0, 1} but for every formula R, built up from the
variable p only, f(R) € {0,1}. Hence, for every such R, P DO R¢& L(A) or
R D @& L(A). By Theorem 2.1 and Theorem 4.11, L SL(S,) for some n
> 2 or L € L(S?). Therefore, P O Qe L but for every R, built up from
the variable p only, P D R&L or RD Q¢&L. Q.E.D.

§6. Lattice structures of SLLs

Hosoi [3] showed that the set # of all intermediate propositional
logics is a pseudo-Boolean algebra (PBA). We can similarly prove that
the set % of all SLLs is a PBA. Let {L},., be a set of SLLs. Then
(Mies L; is naturally a SLL but | J;c,L is not always a SLL. But there
exists the minimum SLL including (J,;es L;. So, by U,es L;, we mean the
minimum SLL including \U,es L;. By the definition, we have

THEOREM 6.1. L% forms a complete lattice with < as the order relation.
Further, we have

THEOREM 6.2. | ;eaL: N L = Uses (L; N L).

Proof. It suffices to prove that | ,c,L; N L S U,;ex(L; N L). Suppose
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that Pe|,e4L; N L. Then there exist formulas @, @, - -+, @, € U,es L;
such that @ D@, D --- D> Q, D PeLu Hence, @ VPOQVPD...
ODQ.VPDOPelLu because (@, 0@, D ---DQ,DP)DEVPDOQV
P> ..-.5@Q,VPDPeLu On the other hand, as each @, belongs to
some L,, each @, \V P belongs to some L, N L. So P belongs to ;e (L,
N L). Q.E.D.

Remark. (MN;eaL, U L= N;ea(L, U L) does not always hold. For
example, (Nieny I(S,) U L(St) = L(Sr) = L(S)) = (Mien (L(S) U L(S7)).

Theorem 6.2 is a necessary and sufficient condition for a complete
lattice to be a PBA.

THEOREM 6.3. ¥ is a PBA with W and Lu as the maximum element
and the minimum element, respectively.

We denote by S #(L) the set of all SLLs including L. By Theorem
411, ¥(L) is a finite set if L 2 Lu. Hence we have

THEOREM 6.4. If L x Lu, then ¥%(L) is a finite PBA.

We illustrate the lattice structure of FZ(L(S¢)) in the following
Figure using Theorems 2.1, 2.3 and 4.11. Here we use the abbreviation
such as (2, 3, 1°) = L(S,) N L(S,) N L(Sp).
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