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Abstract

Attempts to formalize inspection and monitoring strategies in industry have struggled to combine evidence from
multiple sources (including subject matter expertise) in a mathematically coherent way. The perceived requirement
for large amounts of data are often cited as the reason that quantitative risk-based inspection is incompatible with the
sparse and imperfect information that is typically available to structural integrity engineers. Current industrial
guidance is also limited in its methods of distinguishing quality of inspections, as this is typically based on simplified
(qualitative) heuristics. In this paper, Bayesian multi-level (partial pooling) models are proposed as a flexible and
transparent method of combining imperfect and incomplete information, to support decision-making regarding the
integrity management of in-service structures. This work builds on the established theoretical framework for
computing the expected value of information, by allowing for partial pooling between inspection measurements
(or groups of measurements). This method is demonstrated for a simulated example of a structure with active
corrosion in multiple locations, which acknowledges that the data will be associated with some precision, bias, and
reliability. Quantifying the extent to which an inspection of one location can reduce uncertainty in damage models at
remote locations has been shown to influence many aspects of the expected value of an inspection. These results are
considered in the context of the current challenges in risk based structural integrity management.

Impact Statement

The primary novel component of this work is that a value of information calculation has been integrated with a
partial pooling degradation model, relating information from inspection data across multiple locations. In
addition, a Bayesian imputation model (of missing data) was used to estimate the prior damage model.
Inspections of engineering structures typically consist of indirect measurements of some complex degradation
process, sometimes in challenging environmental conditions. Even when state of the art technologies are
employed, the information that they provide is imperfect. Improved probabilistic quantification of inter-
dependencies may contribute to the development of risk-optimal inspection and maintenance planning. This
is expected to be of particular benefit to ageing structures, associated with limited, incomplete, and lost
information.
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1. Introduction

1.1. Structural integrity management

Structural integrity management is defined as a structure’s ability to function “effectively” and
“efficiently” (Health and Safety Executive, 2009). This joint optimization of safety and economy is a
basis for selecting appropriate investments for in-service structures. Since all structures degrade or
become damaged to some extent, there may be points in time when it is worthwhile investing in activities
that reduce the risk of failure. Identifying where, when and how to inspect (or more generally, to collect
information) is an on-going challenge to engineers.

Fundamentally, this requires a mechanism for integrating information from an inspection with existing
models of structural condition. There is also the requirement for ameans of determiningwhether or not the
expected utility of an inspection exceeds its expected cost, that is whether or not the inspection is expected
to be worthwhile. As outlined in this paper, Bayesian inference provides the mathematical basis for
achieving this.

1.2. Epistemic uncertainty

In Kiureghian and Ditlevsen (2009) various uncertainties that should be considered in structural engineer-
ing are outlined. The authors identify that contributions from epistemic (statistical uncertainty due to
quality and availability of information) and aleatory (associated with inherent variability) uncertainty can
be treated similarly, and this can be achieved using Bayesian methods, where both are represented in the
posterior distribution. Probabilistic methods in engineering have historically focused on aleatory uncer-
tainty and various Bayesian methods have been proposed to also account for epistemic uncertainty
(Sankararaman and Mahadevan, 2013; Nannapaneni and Mahadevan, 2016). The influence of epistemic
uncertainty will be largest when only small amounts of data are available. In such cases, when neglecting
epistemic uncertainty, engineers will overestimate the precision of their models, which can lead to
ineffective riskmanagement. Engineering structures are often associatedwith the absence of large amounts
of data and the presence of subjectmatter knowledgeDNVGL (2017c). This is often cited as the reason that
quantitative risk-based inspection (RBI) is infeasible in practice (API, 2016; DNVGL, 2017b). Alterna-
tively, this can be considered a reason that structural engineering is well suited to Bayesian methods (Ang
and Tang, 2007). Consequently Bayesian methods have been proposed for managing uncertainty in this
context for many decades (Tang, 1973). Incorporating epistemic uncertainty is more challenging using
other methods. For instance, maximum likelihood estimation is primarily concerned with obtaining point
estimates of parameters, although with sufficient data the variation can also be estimated (Faber, 2012).

1.3. System effects

Inspection planning of systems of components within a structure (or systems of multiple structures)
should consider possible dependencies between individual components (Straub and Faber, 2004).
Information (such as detection of the presence or absence of damage) at one location should inform
estimates of the condition of other locations (Straub and Faber, 2005). This concept is intuitive, but
incorporating this effect in a quantitative inspection plan requires models capable of characterizing this
dependency. In this paper, partial pooling of information between locations using multilevel Bayesian
models, as detailed in Section 3, is proposed as a solution to this challenge. Note that for the purposes of
this paper, a multilevel model is considered to be a more general form of a hierarchical model and is used
interchangeably with partial pooling model. In Section 4, it is demonstrated how the results of such a
model can be integrated with a decision analysis for evaluating prospective inspection options.

Sources of variation in degradation rates are expected to differ between equipment that ismanufactured
at scale through more established or controlled processes, and structural systems, which may be
comprised of less common arrangements. In this paper, it is proposed that a binary classification of a
structure or structural component as being either unique, or nominally identical to others in a population is
an simplification that can be overcome. This is discussed in more detail in Section 2.
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Note that there are also system effects in consequence modeling (Straub and Faber, 2004). For
instance, the expected cost of failure of a structural element may be less for structures designed with
redundancy. Additionally, the cost of multiple failures may not increase linearly. The work presented in
this paper focuses on modeling failure probability and not failure consequences. However, Bayesian
methods of quantifying uncertainty are expected to be equally valid for estimating failure conse-
quences, although the details will be conditional on the preferences of the asset operator (and other
stakeholders), which are generally not publicly available. Conversely, certain failure mechanisms are
common across welded steel structures and components, and can therefore be discussed more
generally.

2. Risk Based Inspection

2.1. Historical developments

RBI procedures have been developed for many industries, including petrochemical plant (Wintle et al.,
2001; API, 2008; API, 2016), ship hulls (Lloyd’s Register, 2017), offshore structures (Health and Safety
Executive, 2009; DNVGL, 2015; Bureau Veritas, 2017; Guédé, 2018), and offshore topsides equipment
(DNVGL, 2017b). Despite the variation in application, these procedures share many common features.
Specifically, they are all concernedwith a risk optimal allocation of resources based on some evaluation of
the probability and consequence of failure. However, these high-level principles allow for significant
variation in their application, and catastrophic failures have been recorded at sites with RBI systems in
place. A review of two such incidents Clarke (2016) highlighted (among other issues) that procedures
which prioritize inspections to be completed within a specified time-frame are “doomed to failure.”
Rather, inspections that are shown to be required should be completed. In addition, this report also
recommended that any decisions which results from an RBI assessment should be auditable and
accountable.

Some industries make direct use of large datasets to infer expected probabilities of failure. In API
(2008), the idea of a generic failure frequency (that summarizes failures from large numbers of
components, which have been assumed to belong to a single population) is central to the recommended
RBI practices. In the case of structures, this is generally not considered suitable as the variation between
different structures is considered too great (Thoft-Christensen and Baker, 1982; Straub, 2004). While
structures may vary more than mass manufactured process equipment, there will be some degree of
commonality that they share. Conversely, no two mass manufactured components degrade in a
completely identical manner and so theywill also exhibit some variation. Themodeling approach detailed
in Section 3 is capable of accounting for this on a continuous scale.

Amethod originally proposed inMadsen (1987) and still used in conjunction with structural reliability
analysis (Ditlevsen and Madsen, 2007) is presented in Equations (1) and (2). It shows scheduling of
inspections before a probability of failure, Pr Failð Þ, (due to some active degradation mechanism) exceeds
a threshold. Updating of Pr Failð Þ following inspections assumes that no damage is detected. Here d
represents the extent of damage, dC is the critical dimensions beyond which failure is predicted and H is
the extent of the damage reported by an inspection. This calculation can be completed using methods of
structural reliability, or sampling procedures.

Pr Failð Þ¼Pr dC ≤ dð Þ, (1)

Pr dC ≤ djH ≤ 0ð Þ¼ Pr dC ≤ d∩H ≤ 0ð Þ
Pr H ≤ 0ð Þ : (2)

This approach does account for inspection reliability, as fewer inspections are shown to be required
when a method with a higher probability of detection (PoD) is used. However, it needs to be combined
with some decision rule (such as any detected damage will be immediately repaired). A more flexible
approach may consider the prior likelihood of whether damage will be detected, and use this to help
quantify the value of the data that each inspection will provide.
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2.2. Quantitative methods (Bayesian decision analysis)

Inspection data, z, of various type and quality may be available to engineers, and can be related to
uncertain parameters of interest, θ, using a probabilistic model, f zjθð Þ. This can be used to update a prior
model, π θð Þ, to obtain a posterior model, π θjzð Þ using Bayes’ theorem, as shown in Equation (3).
Understanding the requirements for information collection requires these probabilistic models to be
combinedwith a decision analysis (Jaynes, 2003) and this principle has been acknowledged in the context
of statistical experimental design for decades (Berger, 1985). Quantification of the expected value of
information (VoI) is a special application of Bayesian decision analysis. It is sometimes referred to as
preposterior decision analysis (Jordaan, 2005), and sometimes as multistage decision-making under
uncertainty (Gelman et al., 2014). Its application to structural integrity management has been investigated
extensively in recent years (Pozzi and Der Kiureghian, 2011; Straub, 2014; Di Francesco et al., 2021).

π θjzð Þ∝π θð Þ � f zjθð Þ: (3)

A decision tree representation of the question of how, and to what extent, an inspection is expected to
benefit risk management is shown in Figure 1. Here, available inspection options, E, can provide
additional data, Z (unless the option not to inspect is selected). Following this, risk mitigation options,
A (again, including the option to do nothing) are available. These decisions will influence the parameters
describing structural condition, Θ. The utility of this outcome is a function of each of these outcomes,
u e,a,π θjzð Þ½ �.

The joint optimization over the two decision nodes (shown as squares in Figure 1) is presented in
Equation (4). It simply states that the optimal inspection, e∗, and risk mitigation, a∗, are those associated
with the expected maximum utility (or minimum cost).

e∗,a∗ ¼ arg max
e∈E,a∈A

u e,a,π θjzð Þ½ �: (4)

The expected value of any given inspection, VoIei , is the difference in expected utility with,
u½ei,a∗ei ,π θjzð Þ�, and without, u a∗,π θð Þ½ �, the information it provides, see Equation (5). As indicated by
the multiple branches in Figure 1, this calculation requires integration over various possible outcomes.
For instance, a continuum of possible inspection results z∈Z can be accounted for by sampling from a
prior probabilistic model and averaging the subsequent expected costs. This method has been used in
Section 4.

VoIei ¼ u ei,a
∗
ei ,π θjzð Þ

h i
�u a∗,π θð Þ½ �: (5)

VoI analysis is capable of identifying risk-optimal inspection strategy for nonintuitive decision
problems. In other instances, the risk-optimal solution may be self-evident to engineers, however, even
in such cases a formal, reproducible analysis will make it easier to revise or audit.

2.3. Inspection quality

The American Petroleum Institute (API) has developed RBI guidance for petrochemical industry (API,
2008; , 2016). These documents acknowledge that the quality of an inspection determines the extent to
which uncertainty can be reduced, and that this can directly influence an estimated probability of failure,

Figure 1. Decision tree representation of inspection evaluation.

e18-4 Domenic Di Francesco et al.

https://doi.org/10.1017/dce.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.18


obtained by a structural reliability analysis. Bayesian analysis is listed as a method of accounting for
Inspection Effectiveness, but the API procedures provide a qualitative ranking method. An inspection is
assigned a rank on a scale of A (representing a highly effective inspection) to E (representing an
ineffective inspection). A damage factor, which is used to obtain a semi-quantitative estimate of the
probability of failure, is reduced based on the inspection effectiveness rank. A similar qualitative
categorization is provided in an RBI recommended practice for offshore topsides equipment (DNVGL,
2017b). Such heuristics allow for the intuitive concept of inspection quality to be accounted for, albeit in a
possibly imprecise way.

Quantifying the expected value of an inspection requires mathematical characterization of the informa-
tion provided and a model relating it to the parameters of interest (Faber, 2000; Straub, 2004; Straub et al.,
2006; Di Francesco et al., 2021). Assuming perfect information results in overestimation of the VoI of
inspection activities. The mechanism for describing how probabilistic models are updated based on new
information (such as inspection) is Bayes’ theorem, as shown in Equation (3). Here, the prior models of
parameters, π θð Þ are combined with a likelihood function, f zjθð Þ (which describes the imperfect features of
the inspection data, z), to generate an updated, posterior model, π θjzð Þ. Reducing uncertainty in probabi-
listic models of damage allows for better informed decisions and improved risk management.

3. Modeling Imperfect Inspection Data

3.1. Imperfect data

The value of an inspection is dependent on (among other factors) the quality of the data that will collected.
Data from a more precise and reliable inspection will reduce uncertainty to a greater extent. These
qualities should be reflected in its expected value. A detailed review of approaches to mathematically
characterize such features of an imperfect inspection is provided in Di Francesco et al. (2021). In Ali et al.
(2020), an alternative categorization of imperfect information (based on that proposed in Nielsen et al.
(2019) is also presented in the context of VoI.

As identified in Di Francesco et al. (2021), the precision, bias and reliability of inspection data can be
modeled as shown in Equations (6) and (7). Here, a measurement of the extent of damage, dmeas, is
normally distributed with a mean equal to the true extent, d plus any bias, δ, with some sizing variance, ε.
This model is shown graphically in Figure 2. The probability of this damage being detected by the
inspection can be modeled using a logistic regression, where α and γ represent a linear regression
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Figure 2. Gaussian sizing accuracy model.
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co-efficient and intercept, respectively, on the log-odds scale (Health and Safety Executive, 2006). Such a
model is presented in Figure 3.

dmeas �N dþδ,εð Þ, (6)

PoD¼ exp � αþ γ � ln dð Þð Þ
1þ exp � αþ γ � ln dð Þð Þ : (7)

3.2. Incomplete (missing) data

Engineers may often be required to work with incomplete datasets, which is less frequently accounted for
in existing VoI scientific literature. In Qin et al. (2015), cases of an inspection not detecting damage are
considered to be missing data. In Di Francesco et al. (2021), such instances are treated as information in a
Bayesian updating procedure. Rather, missing data represents the absence of information and some
examples of this are listed below:

• Operational constraints: Some part of an inspection not completed, perhaps due to time con-
straints, or unsafe weather conditions.

• Inspection technology not operating: Excursions from normal operating conditions, or mechan-
ical damage, could cause electronic components to stop functioning.

• Lost data: An analysis may be considering historical inspection and maintenance data. If these data
were recorded before a data management system, or when it was operated by a previous asset owner,
then it may be at least partially lost.

The standard approach for analysis of incomplete datasets is to disregard cases with one or more missing
data points. This is known as a complete case analysis, and is only appropriate when the reduced dataset
has not been biased by the removal of incomplete cases. An alternative approach is imputation of missing
data, which uses available information to estimate the missing values.

As outlined in Gelman et al. (2020) andMcElreath (2020), whether the data are missing at randomwill
determine how it should be imputed. For instance, if there is a causal link between the value of the data and
its missingness status then this should be accounted for in a model.
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Figure 3. Logistic regression probability of detection (PoD) model.
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The Bayesian framework is well suited to probabilistic imputation of missing data. Missing values can
be inferred in the same way as other (unobserved) model parameters such that probabilistic estimates are
identified, which are consistent with the other data, in the context of the specified model.

3.3. Multilevel modeling approach to quantifying system effects

In Straub and Faber (2004), the authors suggest that the condition of multiple, so-called hot spots,1 on a
structure should somehow be related. In Straub and Faber (2005), it is proposed that this can be achieved
through a co-variance matrix that describes common factors between locations. In practice, some of the
underlying factors for these dependencies may not be intuitive, and even for those that are identified it is
unlikely that the specific data required will be available for estimating correlation co-efficients or copula
parameters. The solution proposed in this paper is to use multilevel Bayesian models Gelman (2006) to
partially pool information between locations.

When fitting a conventional Bayesian model, a set of parameters, θ, are estimated based on some
measurements, z (described using a likelihood function), and prior models, π θð Þ. Often, engineers must
incorporate data from different sources. In this context, information from an inspection at one location can
help inform models of structural condition at another location. When differing locations are modeled as a
discrete heterogeneity in inspection data, Bayesian multilevel models can be used to estimate degradation
rates, as detailed in this Section.

When combining data from multiple sources, engineers may choose to create a single (fully pooled)
population and use this to fit a model. This approach neglects any variation between the datasets, and
failing to account for this will introduce bias to any predictions. For instance, if the condition of two hot
spots differs significantly, then a model which fully pools data from inspections at these locations will
result in some average, which may not accurately predict the condition of either. This can be addressed by
fitting separate models to each dataset, but could introduce excessive variance to the predictions, since the
models are now being estimated based on less evidence. The optimal solution will be somewhere in
between these two extremes of dependency and can be realized by fitting a Bayesian multilevel model
(Gelman, 2006; Gelman and Hill, 2007).

A graphical representation of a partial pooling Bayesian model is shown in Figure 4. Here, a separate
set of parameters are estimated for each group, but population level priors (which control the extent of
pooling for each parameter) are also estimated from the data (and hyperpriors). Further discussion on the
extent of pooling from a multilevel model is presented in Section 4.

As demonstrated in Di Francesco et al. (2020), Bayesian multilevel models can be used to improve
estimates of structural condition at locations remote to where an inspection has been completed. If there is
some commonality between the condition of a location being inspected and the condition of another
location of interest, then engineers can learn indirectly something about the latter, by inspecting the
former. This has the potential to increase the value of the inspection activity, since the same data is now
being used to update models at additional locations.

In a different setting, this approach has also been demonstrated for combining evidence from different
test datasets to estimate the parameters of a fatigue crack growth model (Di Francesco et al., 2020). The
benefit of allowing for possible variability between tests (which were completed in different labs, on
different steels) was quantified using out of sample predictive performance criteria.

The Bayesian models presented in this work have been fit using Markov Chain Monte Carlo
(MCMC) sampling. The suitability of Hamiltonian Monte Carlo (a modern MCMC algorithm) as a
procedure for sampling from multilevel models is demonstrated in Betancourt and Girolami (2015).
The calculations presented in this paper make use of the no u-turn implementation of Hamiltonian
Monte Carlo (Hoffman and Gelman, 2014) in the probabilistic programming language, Stan (Carpenter
et al., 2017).

1Note that in the cited work a hot spot is considered to be high risk locations of active degradation.
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4. Example Application: Inspecting for Corrosion Damage

4.1. Problem overview

Corrosion is considered as the degradation mechanism in the example in this section, primarily because
new data from inspections are typically used to update estimates of degradation rate (Health and Safety
Executive, 2002). Estimation of corrosion rates is a statistical challenge. Unlike traditional alternatives,
Bayesian methods can be used to obtain estimates from small datasets, accounting for imperfect features
of the data available. A simple model of corrosion rate, β, using the inspection data, di is proposed in
Equations (8) and (9).

βi ¼
dt¼T2
meas �dt¼T1

meas

T2�T1
, (8)

β�N μβ,σβ
� �

: (9)

The true corrosion rate (in mm year�1) has been assigned as being normally distributed with a mean
value of 1 and a standard deviation of 0.2. In the case of the first inspection measurements are unbiased
(δ¼ 0) with sizing accuracy parameter, ε¼ 0:5 (see Equations (6) and (7)). The second inspection is more
precise, with δ¼ 0 and ε¼ 0:3.

The challenge of corrosion rate estimation is extended to consider the additional challenge multiple
locations. Thirteen separate sites of corrosion are considered, with identifiers 1–13. Sites 1–10 were
measured at location A and sites 11–13 were measured at location B. There may be reasons to expect
differing corrosion rates between remote locations, for example, due to variation in the local environment
and the performance of any corrosion protection systems. Consequently, combining these data into a
single populationwill result in biased predictions and using separatemodels (and separate data) will result
in additional variance. This will be especially problematic if at least one location has only very limited
evidence. A partial pooling model will allow for information to be shared so that measurements can
inform predictions at different locations. This principle this could be extended to many more locations, as
proposed in Di Francesco et al. (2020) and illustrated in Figure 5.

The corrosion site with identifier 11 (at location B) was assumed not to have been measured during the
second inspection. Therefore, a probabilistic estimate of the extent of the damage at this time has been
imputed, as described in Section 3.

θ̂pr

θpr

θ(1)

z(1)

θ(2)

z(2)

θ(N)

z(N)

Figure 4. Structure of a multilevel (partial pooling) Bayesian model for estimating parameters, θ, from
data, z, priors, θpr, and hyperpriors, θ̂pr.
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4.2. Prior predictive simulation

Sampling from the prior distributions of a statistical model allows for a graphical representation of the
information they contain on a meaningful outcome scale. This approach (known as prior predictive
simulation) is advocated for in Gelman et al. (2017), Gabry et al. (2019), and McElreath (2020). This is
especially important when parameters undergo some transformation, such as in generalized linear models,
whereas the normal likelihood model for corrosion rate is comparatively simple. Nevertheless, prior
predictive simulation for themodel described byEquations (8)–(11) is shown in Figure 6. This demonstrates
that a large range of corrosion rates are considered credible (in advance of conditioning on any inspection
data). They are broadly constrained to be of the order of a fewmm year�1, and corrosion specialists may be
able to provide additional information, when the priors are presented visually in this way.

μβ �N
1
2
,3

� �
, (10)

σβ � exp
1
3

� �
: (11)

Location i

Location j Location k

Figure 5. Representation of dependencies between inspected locations (i) and non-inspected locations (i)
in a partial pooling Bayesian model.

Figure 6. Prior predictive simulation of corrosion rate.
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4.3. Value of information calculation procedure

Figure 7 shows the measurements from location B, including the missing data which has been imputed
using an independent (no pooling) model. Figure 8 shows the data from all sites, including the missing
data, which has been imputed using a multilevel (partial pooling) model.

Figure 9 shows the 1,000 samples from the imputed depths at site 11 that have been selected for theVoI
analysis. The samples (shown as histograms) are compared with the MCMC samples from the posterior
distributions (shown as density plots). These samples represent possiblemeasurements from the proposed
inspection of site 11.

In Figure 10, the predictions of corrosion at site 11 from both the independent and partial pooling
model are compared. On this scale, it is evident that the uncertainty in this parameter has been reduced by
leveraging the information from location A. However, in both models, it has not been quantified as
precisely as the sites which were measured (as shown in Figures 7 and 8). AVoI analysis can be used to
quantify the expected value of completing the inspection at the location of the missing data.

As shown in Equation (5), the VoI is the difference between the utility with (posterior expected cost)
and without (prior expected cost) the inspection. The expected costs are calculated based on the below
decision problem.

All sites of corrosion damage in this simulated example are considered to be axially oriented in a 20-
inch, schedule 60-Grade B (ASME International and American Petroleum Institute, 2012) linepipe. The
failure pressure has been taken to be 38.6 MPa. This results in a hoop stress just below the specified
minimum yield strength and could represent an overpressure event during normal operation. Considering
only loads from internal pressure (and assuming a constant aspect ratio of 102), themodifiedASMEB31G
assessment method (ASME International, 2012) has been used to predict failure. Similar procedures are
provided in BSI (2019) and DNVGL (2017a). The failure stress, Sfail, is related to the corrosion depth, d,
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Figure 7. Bayesian estimate of missing data using independent models.

2 In practice the length of such corrosion could also be measured by inspection and an analogous model could even be used to
model the corrosion rate in this dimension. However, to avoid repetition, a constant aspect ratio (corrosion length divided by
corrosion depth) has been assumed in this example.
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axial extent, l, normalized axial extent, lz, and pipeline (outer) diameter, D, as shown in Equation (12).
Here, the flow strength, Sflow is equal to the mean of the yield and tensile strength and M is defined in
Equations (13) and (14).

Sfail ¼ Sflow �
1�0:85 � dt

1�0:85 � dt �M�1

" #
, (12)
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Figure 8. Bayesian estimate of missing data using multilevel (partial pooling) model.
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Figure 9. Samples from the Bayesian imputation models for the missing data site.

Independent models Partial pooling model

1 7 13 19 1 7 13 19

0.0

0.2

0.4

Imputed corrosion depth (Anomaly 11, Inspection 2), mm

P
ro

b
a

b
il

it
y

 d
e

n
si

ty

Posterior Prior

Figure 10. Comparison of Bayesian estimates of missing data between two model structures.
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M¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:6275 � lz� :003375 � lz2,

p
for lz ≤ 50,

0:032 � lzþ3:3, for lz > 50,

(
(13)

lz ¼ l2

D � t : (14)

Following the second inspection (and the identification of the apparently high corrosion rates, a repair
plan is required for the next year. Prior probabilities of failure for each site are presented in Figure 11. The
calculation outlined in this section details how the expected value of completing the inspection at site
11 can be calculated for both independent and partial pooling Bayesian models. As detailed in Section 1,
this work does not include detailed cost modeling. For the purposes of this example, normalized values
have been assumed, where the cost of each repair is 1.0 and the cost of each failure is 10.0.

Differences in the probabilities of failure between the two model structures are primarily due to the
differing corrosion rates that have been estimated. As shown in Figure 12, the corrosion rate can be
estimatedmore precisely (with less variance in the probabilistic estimate) at locationA, and this is because
more inspection data are available than at location B. However, both locations can be estimated more
precisely by the partial poolingmodel. The reduced probabilitymass at the tails in the predictions from the
partial pooling model results in extreme corrosion rates being considered less likely. This includes very
low corrosion rates, which would have reduced the estimated probability of failure of large damage, and
very high corrosion rates, which would have increased the estimated probability of failure of small
damage. This effect is evident in Figure 11, and is larger at the sites at location B, where there is a greater
improvement in the corrosion rate predicted by the two models.

As discussed in Section 3, the extent of pooling between locations is not arbitrary. Rather it is
determined from the variance parameters of the (population level) priors for the parameters that are to
be partially pooled. An example of the posterior distribution of the mean corrosion rate is presented in

Figure 11. Probability of failure for each corrosion site from both model structures.
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Figure 13. Here, values approaching 0 would indicate very little variation between the locations and
would therefore justify a greater extent of pooling of information between them. Conversely, very large
values would be associated with models that exhibit very little pooling.

In this example, the two locations have been assumed to share the same corrosion rate, and this have
been identified by the model as shown by the posterior distribution in Figure 13. A consequence of this

Figure 12. Posterior distribution of corrosion rates from each model structure.

Figure 13. Posterior distribution of parameter controlling pooling of the mean corrosion rate.
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assumption is that the model is expected to identify evidence of commonality, and partially pool estimates
of corrosion rates. This model structure is equally valid for examples when “true” corrosion rates differ
between locations, although this will result in less pooling.

5. Results

For each sample in Figure 9, the Bayesian models are re-evaluated and a decision analysis is completed.
A PoD was estimated, based on the PoD curve defined in Equation (7), with parameter values α¼�3
and γ¼ 5. As shown in Figure 14, these probabilities may appear to be relatively high, but recall that
earlier, reduced damage was previously identified at these locations. In cases where the damage was not
expected to be detected, reduced corrosion rates were estimated and propagated through the decision
analysis.

The subsequent preposterior costs are shown in Figure 15, which also includes the difference between
the expected value of the prior and preposterior costs (labeled as the expected VoI). These results are also
shown in Table 1 as proportions of the cost of a repair. As stated in Section 4.1, the cost of each failure is
assumed to be 10 times the cost of each repair, with the repair given a unit cost. Thus, the expected VoI of
the additional inspection is estimated to be equal to 33% of the repair cost (for independent models) and
circa 86% of the same cost (for the multilevel model).

6. Discussion

The additional expected value of partially pooled inspection data (shown in Table 1 and Figure 15) is
attributed to the wider use of the data (in the context of the multilevel corrosion rate model). However, it is
also acknowledged that precise values cannot be generalized since VoI analysis is case-dependent andwill
vary with new utility functions and structural reliability assessments.

An additional novel feature of the VoI analysis, is that the prior damage model (which is used to
generate hypothetical inspection data) has been obtained using a Bayesian imputation model. That is to
say, it is a probabilistic model, consistent with available inspection data (of some known precision and
reliability) at all other locations.
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Figure 14. Histogram of simulated probability of detection (PoD) for each of the samples.
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The simulated corrosion rate did not vary between locations, so the model was expected to identify
evidence of similarity and therefore pool estimates, as was shown to be the case in Figures 12 and 13.
Further work could be completed to investigate the extent of poolingwhen there ismore variation between
locations. When the variation extends to the point that a single underlying model is no longer considered
appropriate for all locations, multilevel models are no longer suitable. A full probabilistic analysis of such
data could provide quantitative justification for separate models, but this finding could be hidden if
outliers are removed, or any other cherry picking of data are completed.

7. Computational Considerations

7.1. Fitting multilevel Bayesian models

Transitioning from conventional Bayesian models to a multilevel structure increases the number of
parameters to be estimated significantly. Each parameter being partially pooled is now estimated for each
exchangeable group, and a prior is also now inferred from the data. Navigating a higher dimensional
probability space will be more challenging for any algorithm and so the efficiency of these models suffer.
When using partial pooling models to account for system effects in VoI analysis, these issues are
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Figure 15. Comparison of expected value of inspection between two model structures.

Table 1. Results from the value of information (VoI) analysis.

Decision analysis Independent models Multilevel model

Expected prior cost 4:791 4:341
Expected preposterior cost 4:458 3:479
Expected VoI 0:333 0:862

e18-16 Domenic Di Francesco et al.

https://doi.org/10.1017/dce.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.18


5000

10000

15000

20000

25000

Independent models Partial pooling model

E
ff

e
ct

iv
e

 s
a

m
p

le
 s

iz
e

Figure 16. Effective sample size of parameters from each model structure.

0.9995

1.0000

1.0005

Independent models Partial pooling model

G
e

lm
a

n
-R

u
b

in
 d

ia
g

n
o

st
ic

Figure 17. R̂ for parameters from each model structure.
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compounded with the existing challenges of computational preposterior decision analysis, described in
Straub (2014), Pozzi and Der Kiureghian (2011), and Di Francesco et al. (2021).

7.2. Model diagnostics

A comparison of quantitative MCMC diagnostics are shown for each of the models in the example
calculation in Section 3. The effective sample size, neff and the Gelman–Rubin auto-correlation measure,
R̂ (Gelman et al., 2014) are shown in Figures 16 and 17, respectively for each model structure. In
Figures 16 and 17, each data point represents an unobserved parameter that the model has estimated. In
Figure 18, each data point represents a separate Markov chain.

Although there is no substantial evidence of a lack of convergence, excessive auto-correlation or
insufficient length of any of the Markov chains, it is noteworthy that the parameters with the lowest value
of neff and the value of R̂ that deviates most from 1.0 are both from the partial pooling model.

In Figure 18, the time taken to obtain samples from the partial pooling model are shown to be
(approximately) between 10 and 40 times longer in this analysis. Additional time and/or computational
resources will be required when working with multilevel models.

8. Conclusions

Bayesian multilevel models are proposed as a solution for probabilistic modeling when only limited data
are available. The Bayesian framework is sufficiently flexible to interchange missing data with model
parameters, and multilevel (partial pooling) models introduce dependencies between discrete groups.

These models are also compatible with quantitative inspection planning (VoI analysis), although they
are associated with greater computational requirements.

Bayesian imputation of missing data has been used to generate prior models for the VoI calculation,
which are consistent with all other sources of information (locations where inspection data is available) in
the context of themodel. An additional possible application of this method is in estimation of the expected
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Figure 18. Run-times for each model structure.
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value of inspections that were not completed. Although it is not possible to act upon these calculations,
since the inspection opportunity has passed, it could be used to inform policy and further demonstrate the
utility of statistical decision analysis in industry. In such cases, the model could either make use of current
information or only use what would have been available at the time. The selected approach would have
implications for the meaning of the result.

An example calculation was presented that demonstrated a procedure for partial pooling inspection
data, to estimate corrosion rates at two distinct locations. The expected VoI was found to be higher when
estimated using a partial pooling than when using independent (no pooling) models. In the partial pooling
model, the proposed measurement would also have informed predictions at the other location.

Whilst it is difficult to extrapolate specific conclusions about these effects (since outcomes from the
decision analysis are heavily context dependent), this work has shown how multilevel Bayesian models
can be applied in the field of VoI.

Nomenclature

Parameter Meaning Units

a risk mitigation action �
a∗ expected optimal risk mitigation action �
A available risk mitigation actions �
e prospective inspection �
e∗ expected optimal inspection �
E available inspection options �
d corrosion depth mm
dC critical corrosion depth mm
dmeas measured corrosion depth mm
D outer diameter mm
H extent of damage as identified from an inspection mm
l axial extent of corrosion mm
lz normalized axial extent of corrosion mm
M empirical bulging factor �
neff effective sample size from Markov chain �
Pr Failð Þ probability of failure �
R̂ Gelman–Rubin diagnostic parameter �
Sfail failure stress MPa
Sflow flow strength MPa
u normalized utility �
t thickness mm
T time years
z inspection data �
Z domain of possible inspection outcomes �
α probability of detection model parameter (log-odds

intercept)
�

β corrosion rate mm year�1

γ probability of detection model parameter (log-odds gra-
dient)

�

δ inspection bias mm
ε inspection sizing uncertainty mm
θ generic uncertain parameter(s) �
θpr prior model parameter(s) �
θ̂pr hyperprior model parameter(s) �
f zjθð Þ likelihood function for data,z �
μβ mean corrosion rate mm year�1

π θð Þ prior distribution of parameter(s),θ �
π θjzð Þ posterior distribution of parameter(s),θ �
σβ standard deviation of corrosion rate mm year�1
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