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ON INFINITE-DIFFERENCE SETS
C. L. STEWART AND R. TIJDEMAN

1. Introduction. Let A be a sequence; throughout this paper sequences
are understood to be infinite, strictly increasing and composed of non-negative
integers. We define D, the infinite-difference set of 4, to be the set of those
non-negative integers which occur infinitely often as the difference of two
terms of 4. Plainly D has no positive terms if and only if ¢;4; — a;— © as
1 — . Note that D contains zero. We shall be interested in the case when
d(4) > 0. Then D certainly contains more than one term. In fact, see Corol-
lary 1, §2, d(D) = d(A) in this case. Here d and 4 denote the (natural asymp-
totic) upper and lower density respectively.

Let & be a positive integer and let 44, ..., 4, be sequences with positive
upper densities e, . . ., ¢, respectively. Erd6s asked whether Dy M ... M Dy,
the intersection of the associated infinite-difference sets, necessarily contains
positive terms. We shall show that in fact the intersection has positive lower
density. We put

K
(1) Gi=& and Cy,= [] (e:/5log (h +1)) fork = 2,
=1

and we prove

THEOREM 1. If d(A.) = e, for i = 1, ..., h then there exists a sequence A
with d(A) = C, such that

DCDMN...N\D,
In fact it follows from Theorem 3 that Theorem 1 remains true even with the
stronger conclusion D = DM ... M D,
By Corollary 1 we have 4(D) = d(4) and thus we see from the above
theorem that
dD:"N\ ... N\ D, =z C,

Apart from the factor 5 log(k + 1), which appears in the definition of C,,
Theorem 1 is best possible. For let n, #ns, . . ., n, be positive integers and put
Ai=1{alaz0 and ¢ =0 (mod #)} and 4;,=1{a]la 20 and a =0,
1,...,m...n. 10— 1(modn...n)}fort=2,...,h We thenhaved(4)
= 1/n,fori=1,..., h Furthermore D; = {a¢|a = 0 and ¢ = 0 (mod #,)}
while D; =f{a|la=20anda=0, 1, +2, ..., % (n;...n,, — 1) mod
(ny...n;)} fori = 2,...,h An easy induction shows that

DiN...ND,=1{ala=0anda =0 (mod n,...n,}.
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Therefore
dD,N...ND) = l'_1n) = Il"_1 d4,) = II"_, «..

One might ask whether D; M ... M D, can contain gaps of arbitrary length.
It will follow as a consequence of our next theorem that this is not possible.
Independently Prikry [7] has obtained this result by means of a theorem of
Hindman [5]. Further his proof remains valid if D; is replaced by

{x|dA, N A, + x) >0}

fori =1,...,h; here A + kistheset {a + k|a € A}. From Theorem 1 we
see that it is sufhcient to show that the difference set of a sequence of positive
upper density does not contain arbitrarily long gaps. We denote the non-
negative integers by No.

THEOREM 2. Let A be a sequence with d(A) = e > 0. Then there exist r integers
ki, ..., k, such that

Uj=1(D + k;) 2 No.

with r < (1088 /1082,

It follows from Theorem 2 that D cannot contain gaps of size larger than
twice the maximum in absolute value of the k,'s. For if there was a larger
gap the integers closest to the middle of the gap would not be in the union
of the sets D + k; contradicting Theorem 2. We observe that it is vain to
hope for an estimate for max;| %, | in terms of e. For let 4 denote the

set of integers of the form 3nt + 7 fort=1,...,fand n =0,1,2,....
Then D consists of the non-negative integers of the form 3nt 4 7 for 7 = 0,
...,tand n =0, 1, 2, ... and so contains infinitely many gaps of length ¢.

On the other hand d(4) = 1/3.

Theorems 1 and 2 show that infinite-difference sets possess a certain regu-
larity. This might suggest that every infinite-difference set associated with a
sequence of positive upper density has a density. However this is certainly not
the case since we have

THEOREM 3. Let D be the infinite-difference set of « sequence A. Let E be a set
of mon-negative integers with D C E. Then there exists « sequence B with d(B)
=d(4) und d(B) = d(A) whose infinite-difference set is E.

An immediate consequence of this result is that there exist sequences 4 with
d(A) = d(4) > 0tor whichd (D) > 4(D). Further, Theorem 3 is a step in the
proof of the following theorem concerning D, the collection of infinite-differ-
ence sets associated with sequences of positive upper density. Let 2 (Nj) denote
the set of all subsets of Ny. We have

THEOREM 4. D is « filter of P (Ny). Furthermore all cofinite subseis of Nowhich
contain zero are in D.
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D is not an ultrafilter, for there exist disjoint sets B; and B, satisfying
Bi\U By = Ny and 4(B,) = d(B;) = 0; by Corollary 1 every infinite-dif-
ference set associated with a sequence of positive upper density has a positive
lower density and thus neither By nor B, is in D.

We define the difference set of a finite or infinite sequence 4 to be the set of
those non-negative integers which occur as the difference of two elements of
A and we denote this set by &2 (4). It is interesting to note that the collection
of all difference sets associated with sequences of positive upper density does
not form a filter. First, the collection does not satisfy the superset property.
Observe that while & (E) = E, where E denotes the non-negative even integers
there exists no sequence 4 with & (4) = E U {1}. Second, the collection does
not satisfy the intersection property as the following example shows. PPut
A={alaz0 and ¢ =0 (mod 10)} U {7} and B={b|b =0 and b =
7(mod 10)} U {0}; it is readily checked that 2 (4) N Z(B) = A and that
there is no sequence C of positive upper density with &2 (C) = 4. It would be
desirable to explicitly describe those sets which are infinite-difference sets or
difference sets of sequences of positive upper density. A first attempt for the
case of difference sets has been made by Ruzsa [9].

Obviously one always has D € & (4). On the other hand we have

THEOREM 5. Given « sequence A with positive upper demsity there exists a
sequence A" with d(4) < d(A") such that D (4') C D.

It follows from the above theorem that we may replace D by £ (4) in the
statement of Theorem 1; hence plainly the analogous statement of Theorem 1
holds with difference sets in place of infinite-difference sets.

An infinite difference set need not contain an infinite arithmetical progres-
sion. In fact we shall show that for every a with 0 < @ < 1 there exist se-
quences 4 with density « for which the intersection of & (4) with any infinite
arithmetical progression of difference v is a set of density at most 2a/v. Let
| X | be the cardinality of a set X and denote the set {0, 1, ..., n — 1} by 1.
We have

THEOREM 6. Let 6 be an irrational number and let o be « number between 0 and 1.
There exists a sequence A with density a for which

DU NENR| _

hr{lljnup IAaY] < 2a
for every sequence E = {ei, es, ...} such that {6e,}5-1 1s uniformly distributed
modulo 1.

It is well known (see e.g. [6] Ch. 1, Theorem 4.1) that for any sequence
E = {e), es, ...} the sequence {nei )51 is uniformly distributed modulo 1
for almost all real numbers . Hence, given countably many sequences
EM = {e, ("} we can find an irrational number 6 for which {6e, (¥} is uniformly
distributed modulo one for all 7. In particular it follows from Theorem 6 that
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for every a with 0 < « < 1 there exists a sequence 4 with density a such that

G g
lim sup l‘j(ﬁ}zp\%'m | <

2a

for every arithmetical progression {ak + b}s=1 with «, b € Ny, ¢« > 0, for
every geometrical progression {ab*}5-1 with a, b € No, « > 0, b > 1, and for
every sequence | P (k)}7.1, where P(x) is a non-constant polynomial mapping
No into N().

Theorem 7 concerns sequences which have a non-empty intersection with
every infinite-difference set D associated with a sequence 4 of positive upper
density. We prove that there are arbitrarily thin sequences of positive integers
with this property.

THEOREM 7. For every sequence f1, fs, . . . there exisis a sequence E = {eq, ea. ..}
with e; = f; for all § such that for every sequence A

. l_QQEf\izi> -
llrl(lnnf B N7 T d(A4).

The sequence £ constructed for the proof of Theorem 7 has the property
that for all positive integers #,

llm inf €j+;,,/€j = 1.

jo
This condition is critical. On the one hand we have
THEOREM 8. If ky, ke, . . . 15 « sequence of positive integers satisfying

lim inf kj+h/kj =1
jo

for every positive integer h, then there exists a sequence £ = ey, ¢s, ...} with
ep1/e; = kia/kforj =1,2,... suchthat D M\ E 5= @ for every sequence A of

positive upper density.
On the other hand, if &y, k2, . . . is a sequence satisfying

lim inf kj+),/k]' > 1

J®

for some k, then for every sequence E = {ey, ey, ...} with eji1/e; = ki1/k;
forj = 1,2,...there exists a sequence 4 withd(4) > 0for which DN £ = @.
This result is a consequence of Theorem 9.

THEOREM 9. Let ky, ko, . . . be a sequence of positive integers. If, for a positive
integer h and for real numbers ¢, . . . , ¢y larger than 2, we have

Riisvne i/ Rinei = C1,
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fori=1,..., handj = 0,1, 2, ..., then there exists a sequence A, having a
density, with

i) = 1 (ch:igl‘)) ‘

i=1

for which k; ¢ 2 (A) forj =1,2,....
Observe that if k., /k; =2 a > 1forj =1,2,...,and if g is an integer with

¢ = (log 3)/log «, then k; ,n/k; = 3forj = 1,2,...since

j Jt+h «
S = B > o > 3,

k; Rt o—nn k; -

Further, if lim inf,_, k,.,/k; > 1 for some positive integer / then there exists

a real number o with @ > 1 such that k;,,/k; = aforj = 1,2,.... Thus we
may apply Theorem 9 with h = ¢gland ¢, = ¢o = ... = ¢; = 3 to conclude that
there exists a sequence 4 having a positive density with k;, ¢ 2 (4) for j =
1, 2,...as was asserted previously.

To illustrate Theorem 9 we show that there exists a sequence 4 with d(4) =
2/11 which does not have a factorial as the difference of two terms. Thi
follows on putting k; = 1!, ks = 2!, ... and applying the theorem with & = 2,
¢1 = 6and ¢, = 12.

Theorem 9 is related to a general problem of Motzkin who asked how dense
a sequence A can be if £ (4) does not contain any elements from a given set
K. Cantor and Gordon {1] and more recently Haralambis [4], have obtained
some results in this connection, mainly for finite sets K. Sarkozy [10], [11] and
[12] considered the case of some interesting infinite sets K. He obtained results
like: if A is a sequence with positive upper density then two distinct elements
of 4 differ by a square. Furstenberg [3], using the methods of ergodic theory,
has also proved this result. Let K = {ki, ks, ...} be a sequence of positive
integers for which k;;; — k; — o as 1 — . In response to a question of
Erdés and Hartman, Rotenberg [8] showed that every infinite sequence 4
possesses an infinite subsequence A’ for which 2 (4’) M K = @. In conclusion
we should like to thank M. Best and P. Erdés for some helpful comments.

w

2. Preliminary lemmas. For any subset 7" of 7 and any integer ¢ we put
T'(@)y =T+ aM# where T 4+ a denotes the set of numbers ¢t + a with
t ¢ T. We prove

LEMMA 1. Let 6 and € satisfy 0 <6 < 1,0 < e < 1. If T is a subset of #i
with | T'| Z en then there exist integers k, ay, . . ., a,and a set E with | E | £ én
such that

U T()\J...UT() = A\E
and such that
k = 2[(log 6)/log(1 — €)].
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Proof. We first observe that C(«) = 1'(a) \J T'(« — n) is a cyclic shift of 7'
fora = 0,...,n — land hence |C(a)| 2 en. Further, given any subset G of 7
with 6z terms for 0 < 0 < 1 we may find an integer b for which |C(b) N G|
> efn. To see this note that each integer from 7 is contained in at least en of
the cyclic shifts C(0), ..., C(n — 1). Thus

o
2
0

==

Cl@)yNG|l =z n’

and as a consequence |C(b) M G| = efn for some integer b, as required.

Now set G, = #\1. We have |G1| = 6;n where 6; £ 1 — esince | 1’| = en.
By the above paragraph we may find an integer 0; such that |[C() N G
2 efin and thus G» = A\{T U C(b;)} satisfies |G, = 6sm for §: < 0, — €,
< (1 — )2 Iterating this argument [ — 1 times yields integers by, ..., b,
and a set G, = A\{7"\J C(by) U ...\U C(b,—1)} satisfying |G,] < (1 — €)'n.
On recalling that C(b,) = T(b,) \J T'(b, — n) we see that if [ — 1 = [log &/
log(l — &)]then U T(0) I Ty —n)J ... ITO) I T, —n)=
A\G, where |G,| £ én. Putting 2(I — 1) =k, b; = «»; — land b, — n = «y, for
1=1,...,1 —1and G, = E the lemma follows.

LimMa 2. Let A be a sequence with d(A) = e. For any positive integers b and r
there are at least | er] of the integers b, 20, . .. ,vbin D.

Proof. Split A4 into b subsequences A4; = 4 M {10 + jl7°o for j =
0, 1,..., b — 1. At least one of the sequences 4 ; satisfies d(4,) = ¢/b. We
define the sequence B by ¢ € B if and only if i0 4+ j € 4, for this particular
value of j. Let D be the infinite difference set of B. It is clear that if d € D, then
bd € D; C D. lence, it suffices to prove that at least [er] of the integers
1,2,...,7rbelong to D,. Plainly we may assume that e > 0.

Since d(B) = ¢, there are infinitely many integers m; such that
|B M [mym, + r]| > er. By the box principle there is a set of [er] 4+ 1 integers

boy ..., bpen with 0 = by < by < ... < breyy = 7 such that for infinitely many
integers m; one has m, + b, ¢ B for k=0, 1, ..., [er]. It follows that
by — by (B =1,...,|er]) are [er] differences which occur in Dy. This proves

our assertion whence the lemma follows.
COROLLARY 1. For any sequence A we have d(D) = d(A).
Proof. The result follows on taking & = 1 in Lemma 2.
Let ||x|| denote the distance from x to the nearest integer.

LEMMA 3. Let ¢ be a real number, larger than 2, and let ky, ko, . . . be « sequence
of positive integers with

Bk, = ¢,
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forj = 1,2,. ... Then there exists a real number 6 such that
k6] = (c —2)/2(c — 1),
forj=1,2,....

Proof. See Lemma 1 of [2].

3. Proof of theorem 1. Let 4,, ..., 4, be sequences with d(4,) > ¢; > 0
for =1, ..., h. We first observe that if ¢; > % for some integer ¢ then
D, = N,. For if there is a positive integer k which is not in D, then the sequence
A = A4,\U A,; + k satisfies d(4 /) = 2d(4;) which is plainly impossible for
e, > L. To see that d(4,) = 2d(4;) note that |[4,N 4, + k| =1 < o by
assumption and thus for all # > 0,

from which the conclusion follows. Accordingly we may assume that the e,'s
are all at most 1.
We shall construct, for each positive integer n, a set W, = W with

2) WCh |W|zCnand (W) S DN ...N D,

Since d(A4 ;) = e, for each positive integer #n there are infinitely many integers
k for which (4; — k) M # contains at least e terms. By the pigeon hole
principle there exists an infinite subsequence ki, ks, ... of the k’s for which
A, —k)NAd= A, —k)NA=.... Set T;= (4; — k1) N #A. Plainly
we have 'y C 4, [Ty = em and

8) 2(Ty) €D,

Thusif 2 = 1 we may take W = 7'y and (2) holds.

Assume that # = 2. On setting 6§ = (A +1)7!, e =¢; and 7'= T, in
Lemma 1 we conclude that there exist integers k(z), a1, ..., a; 4 and a
set E; with [E;| £ n/(h + 1) such that

4) T,Y Tiai)\J...JTi(airn) = A\E;
and such that

(5) k() = 2[— log(h + 1)/log(1 — )],
fori=1,...,h Put

By construction, | F| 2 n/(h + 1). Setting a;0 = 0, so that T, = T(as,),
we find from (4) that

h
FCcuU Ol Ti(asi0),
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where the union is taken over the (k(1) 4+ 1)... (k(k) 4+ 1) h-tuples

Gy, ..., 7)) with 0 = j(z) £ k(3). Thus for at least one k-tuple the set
W = Ti(ar,;00) M .o O Ty(an, 5m0)

contains at least

©6) w=mn/(h+1)k1A) +1)... (k%) +1)

terms. Clearly 2 (W) C Ny D (T (a1 ;) and therefore, since 2 (T (a))
C (T, for all integers a, 2 (W) C N'i_y D (T';). Thus from (3),

W) CDiN...N\ D,

Since W is plainly contained in # we need only show that | W | = w = Cyn.
We have from (6) and (5) that

n 2 (210g (h+1) )_1
w2 U\ Dga—ey 1

which, since 0 £ ¢, £ 2 fori =1, ..., h, gives
2

h
w> n H( —log (1 — €) )
h+1 33 \2log (h+ 1) + log 2
We may now use the inequality —log(1 — x) = x, which holds for 0 £ x < 3,
and the fact that 2 = 2 to deduce that

€

" Q (\/3(2 + log 2/log 3) log (& + 1)) :

It is easily checked that w = C,n. Thus (2) is seen to hold for & = 2 as well as
for b = 1.
We construct the sequence A from the sets W, in the following way. For

n=1,2 3, ... we set Q(n) = (2) and put 4 N [Q(n), Q(n + 1)) =

W—tiogn) + Q(n). The sequence A is well defined since, for n = 1, W,_nogn
+ Q(n) C[Q(n), Q(n) + n) and Q(n) + n = Q(n + 1). We now show that
d(4) = C,. Given a positive integer m we define k& by the inequalities Q(k)
<m £ Q(k + 1). From (2) we have |[W,| = Cynforn = 1,2, ... and thus

v

w

AN 2 2 Wl 2 3, Gl — llognl) = Co(Q() — Hllog £)).

Therefore
ANm > C,Q (k) — kllog k] >0 2(1 + [log k1)
m = Qk+1) = k '

Letting m and hence k tend to infinity we see thatd(4) = C,.
Finally we show that DC D; M ... M D,. The terms of 4 in the interval
[O(n), Q(n + 1)] differ, by construction, by at least [log #] from the terms of
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the interval [Q(n + 1), Q(n + 2)]. Thus if a difference occurs infinitely often
in 4 it must occur as the difference of two elements from the interval [Q(m),
Q(m + 1)] for some positive integer m and so it must be contained in
D (W—tiogm)- From (2) we see that the difference is containedin D; M\ ... N D,
as required. This completes the proof.

4. Proof of theorem 2. We set D* = D and /[, = 0. For 7 2 1 we define
[, and D? whenever D! 2 N, by the following inductive process: set [,
equal to the smallest positive integer which is not in D*~! and put D’ =
D=1\U D=t 4+ [;\U D=1 — [, We shall prove that D* D N, for some positive
integer s satisfying s < [— (log €)/log 2] where C, is defined as in (1). This will
establish the theorem since

D' = (D' + k),
i=1

where the k; are the r = 3° finite sums of the form a; + ... + a, with a; one
of 0,l;or —l;fort=1,...,s.

As in the proof of Theorem 1, for any positive integer » there exists by the
pigeon hole principle; a set 77 C # with |T] 2 en satisfying 2 (7)) C D.
Assume that D7, hence also /;, has been defined forz =0, ...s. Set T = 710
and define 7 tobe T0*\U T"—' + [, fori = 1,...,s. For any set of integers
A and any integer [ it is readily checked that 2(4 \J 4 + 1) C Z(4) J
D(A)+1\J Z(A4) — 1. From the definition of D’ and the fact that Z (1) C D°
we conclude that Z(T'") € Difori =0, ..., s. Therefore l;,; does not occur
as the difference of two terms in 7'¢ since by assumption /;, isnotin D Accord-
ingly 7PN T? + 1,41 = @so that || = 2|7 and thus |77 = 2°|T° 2 2%n.
On the other hand 7% C [0, #n + [; + ... 4 [.] and therefore

2Ben=n+hLh+lL+...+10+ 1
Dividing by # and letting # tend to infinity we see that 2%¢ < 1 whence

s £ [—(log €)/log 2]

as required.

5. Proof of theorem 3. Let E = {ej, ¢, ...}. We construct a sequence
F = {f1, fs, ...} by setting, for w = 1, 2, ...: f, = ¢; where j is the unique
integer satisfying both n = (T)n + jand 1 £ j < m for some positive integer

m. Note that every element of E occurs infinitely often as a term of F.

We now construct B. The terms of B are the integers 3 + ¢, and 3%
+ e, + f, and those integers of A which do not lie in the intervals [3, 3¢ + 3e,]
forw = 1,2,....Since £ is an increasing sequence of non-negative integers,
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e, 2 n — 1 and lim,,, (3ne,)/3% = 0, whence B differs from 4 only on a set
of density zero. Thusd(B) = d(A4) and d(B) = d(A4).

The intervals [3¢, 3% 4 3e,] are disjoint for » = 1, 2, .... Further,
fa = e, for all # > 0 and thus the difference of an element of B from the
interval [3%, 3% 4 3e¢,] with one not from this interval is = e,. Since e, — o
as n — o0 the infinite difference set of B is equal to the union of those integers
which occur infinitely often as the difference of two terms of B neither of which
is in Usp=1 [3%, 3 4+ 3e,] with those integers which occur as the difference of
two terms of B in [3%, 3 + 3e,] for infinitely many integers #. The former
set is plainly contained in D C E while the latter set is exactly E since
3 4 ¢, + fn — (3 4 ¢,) = f, is the only positive integer which occurs as
the difference of two terms of B from [3¢, 3% 4 3¢,] and since every element of
E occurs infinitely often as a term of F. This completes the proof.

6. Proof of theorem 4. To prove that D is a filter of (N,) we must show
that (i) D # @, (ii) D # 0 for D ¢ D, (iii) D € D and D € E C Ny then
E €D, (iv) D1\ D, € D for Dy, D, € D. Properties (i) and (ii) are readily
seen to hold. Property (iii) follows from Theorem 3. Property (iv) follows from
property (iii) and Theorem 1. Therefore D is a filter of Z (Ny).

Further we must show that every cofinite subset of Ny which contains zero
is in D. Given a set of positive integers #; < 7y < ... < n; we consider the set
of positive multiples of #, + 1. This has an infinite-difference set which does
not contain #4, . . ., n; and so by the superset property (iii) we can find a D
which is exactly No\{#n1, . . ., #;}. This completes the proof.

7. Proof of theorem 5. Put ¢ = d(4) and let # be any positive integer. We
prove first that there exist infinitely many integers m such that

AN [m, m + k)| = ekfork = 1,...,n. Suppose this statement is false. Then
for every m = m, there existsa k,, with 1 < k,, < nsuch that |4 M [m, m + k,,)|
< ¢k,. Put

¢ ={maxi/k|1,k € Noy1 Sk = n,i/k < «}.

=< €'k,. Define the sequence m,, mi, mq, ... inductively by putting m ;1
= m; + k;. Letx be atleast moand define J by the inequalities m, < x < m 1.
Since for every positive integer j we have |4 M [m;, m ;1) < € (m0 — m;)
the number of elements of 4 less than x is at most

Note that ¢ < e and that for every m = m, we have |4 M [m, m + k)|

mo + € (my — my) +x —my; £ €x + mo + n.

Thus d(4) £ ¢ which is a contradiction.

Let 1™, r,®™ ... be a sequence such that [4 M [r;™, 7, 4+ k)| = €k for
i=1,2,...and k = 1,...,n We consider the sets (4 — r;™) M 7. By the
pigeon hole principle there exists on infinite subsequence {s,;™} of {r,;®™} such
that (4 — s,™) M 7 is the same set S™ for every j. We obtain in this way a
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set S™ | for every positive integer #, such that fork = 1, ..., % the number of
elements less than & is at least ek. We now construct the sequence 4’ by induc-
tion. Suppose A’ M 7 has been constructed in such a way that there are
infinitely many integers » with S® N4 = 4" M 4. We put # € A if and only
if there are infinitely many integers »' among these integers » with n € S¢". It
. . . . —
follows that there are infinitely many integers v with S® M (r + 1) =
’ T . ’ .
A" M (n + 1). By construction the number of elements of 4’ less than # is
equal to the number of elements of S® less than # for some » > n and hence is
at least en. Thus d(4’) = e Let «)’ and ;' be any two elements of 4" with
a\" < ay’. Then ai’ and ay" are in S for some integer v. Therefore ¢/ + s, € 4
and ay’ + s, € A forj = 1,2,... whence ¢y’ — «\' € D. This completes
the proof.

Note that we have even proved that the Schnirelmann density of 47 + 1
is at least e since |4’ M [0, n)| = en for every positive integer 7.

8. Proof of theorem 6. Let 6 be an irrational number and let & be a number
between 0 and 1. Define 4 to be the sequence composed of those non-negative
integers 7 for which an integer m exists with n6 — m ¢ (0, ). Since {n8}g.; is
uniformly distributed modulo 1, d(4) = a. If n € D (4), then n = n; — n,
with ny, ne € A, and there exist my, m, such that 0 < n,0 — m; < a, 0 < nq0

— my < aand hence —a < (n; — #n2)0 — (m; — my) < «. Thus Z(A4) con-
sists of non-negative integers n for which an integer m exists with n§ — m €
(—a, @). Therefore, if E = f{ei, e2, ...} is a sequence for which {fe} is

uniformly distributed modulo 1, we have

. |2 (A4) N\ EN ]
lim sup Y]

1A

2a.
9. Proof of theorem 7. Clearly we may assume, for all positive integers
n, that

(7) fusi/fo > n, for all n.

Put Q(m) = (;n) form = 1,2,3,.... Wedefine the sequence E by setting

€oum-n+; = Jfawm

forj=1,2,...,m —landm = 2,3,.... It follows that
€om-—v+; Z fam = fam—v+m Z fom-1+;

for these values of j and m. Thus e; = f, for all j. Further, by (7), form = 2,
eoomy = (M — Df oy = Qm)foum < fomin = Comm11-

It follows that the sequence E is strictly increasing and further that the ele-
ments of E in the interval [fowmy, fomin) are jfom for j =1,2, ... m — 1.
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Let 4 be a sequence with d(4) = «. By Lemma 2, the number of elements of
D M Ein the interval [ foon, fomsn) is atleast [(m — 1)a]. Let # be an integer

larger than f. Take m such that fou) < 7 < fouyn. Then, as the numbers ¢;
are distinct,

m—l)
]DmEﬂm>[a]-|—['2a]-|—,..+[(m—2)a]>( o Ja—m
ENAl = 14+24+...+m—-1) = (m)

2
Hence,
(m a — 2m
limianDmEmmglim 2 _ = q.
N> |Emﬁ| m-sco (m)
2

10. Proof of theorem 8. Let j(1), j(2),j(3), . . . be a sequence with j(k + 1)
>j(h) + hforh =1,2,...such that

kiman/kijm <1+ 1/h.

Such a sequence exists since

lim inf kjsn/k; = 1

J-so

for every positive integer #. We define the sequence £ inductively. Put e; = 1.
If 7 is not of the form j (k) + [ for some h and / with 2 < [ < &, then we choose
e; to be the smallest integer with e;/¢;—1 = k;/k—1. On the other hand, if 7 is of
the form j(h) + [ with 2 = [ £ h, we put e¢;gn+1 = lejm+1; since j(h 4 1) >
j(k) + h, both h and [ are uniquely determined and the sequence E is well
defined. By construction

Cimii/€imri— = 14+ 1> kios /R -1

forl = 2,3,...,hand hencee;/e;1 = k;/k,_1forall . By Lemma 2 (compare
with the proof of Theorem 7) the subsequence ¢;y+1, €;2+1, €j2+2) €5@3)+1s
€42, Cidis Ciwt1, - - - of E has a non-empty intersection with D for every
sequence A of positive upper density. Hence, D M E # @, as required.

11. Proof of theorem 9. By Lemma 3 there exists a real number 4,, for

i =1,..., hsatisfying

8) kpr bl = (i —2)/2(c; — 1),

forj=0,1,2,....Put

9) gi= (ci —2)/2(c; — 1),

for2 =1, ..., h. Let {x} denote the fractional part of x. Given 7 with 1 £
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1 < hand an integer [; we put \; = {/,¢;} and v; = {(l; + 1)g;}. We then define
the set A, 4, in the following manner: if y; = \; then

Aoy = 1{n| N = {nbd < v,
while if y; < \; then
A = {nleither \; £ {(nd,} < 1or0 = {n;} <73}
We have D (4,,,;) C {n|||nd)|] < g} fori=1,...,h We now set

Ay = 1An|lnc A, fori=1,...,ht

so that

D(Ar.ow) Sinl|nd] < gifori=1,..., h}
It follows from (8) and (9) thatk; ¢ Z(4,,....,) forj = 1,2, . ... Therefore
it suffices to show that for some choice of [y, . . . , I, the sequence 4, ... » has
a density which is at least gig>. . . ¢.

We observe that for any real numbers Ay, ..., N\, and vy, ..., v, the set
{n| N < {n;} <vfori=1,...,hpossessesa density; thisisa consequence
of the uniform distribution of the points ({n}, ..., {n6,}) in the maximal
linearly independent subspace generated by 6y, ..., 8, in the A-dimensional

unit cube and may be deduced from Weyl’s criterion, (see p. 48 of [6]). Further-
more if 4 and B are disjoint sets possessing densities then d(4 \U B) = d(4)
+ d(B). Using these observations we see, after taking an appropriate partition
of the unit cube in blocks and a corresponding decomposition and regrouping
of sets A ,,..... 1, that for every positive integer L

2o 2azed(Ay ) 2 [Lallle] .. [Lgld(fn |0 £ (noy) <1
fori=1,..., k).
Butd({n|0 = {n8,} < 1lforz=1,...,hk}) = d(N,) = 1 and therefore

L—1 L—1

P |
llln lﬂfI—‘ﬁ P d(A [TU lh) 2 g21g2 . . . Eny
Lo ~ UL=0 =0
whence for some choice of /y, ..., [, we have

d<A I,eee, I/L) = gig2. .. gn

The result now follows.

Remark. As the referee has pointed out, by considering the cartesian product
of measure preserving systems associated with sequences of positive upper
density as elaborated by Furstenberg in [3] it is possible to remove the factor
5log (B 4+ 1) in Theorem 1. Recently Y. Katznelson and I. Ruzsa have found
elementary proofs of this fact. Furthermore Kamae and Mendes France have
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used Fourier analysis to obtain some of the results of Sirkozy referred to in
§1, (see Van der Corput's difference theorem, Israel J. NMath., 81 (1978), 335—
342).
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