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STOCHASTIC MODELS OF
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Abstract

What is a ‘cascading failure’? Whilst most people have an intuitive idea of what is meant
by cascading, no definition exists within the framework of reliability theory. The aim of
this paper is to explore the field of component dependence within a network structure,
and to construct a definition of cascading failure.
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1. Introduction

The notion of cascading and of cascading failures is not an abstract one, indeed it is very
common in the real world, evident in such events as blackouts in the electric power grid and
failures of electrical appliances. In these events the problem is initiated by the failure of one
component of the system, for example, a resistor in the case of an electrical appliance or, in
the case of the electric power grid, a transmission line or generator. The initial failure alters
the structure function of the system, which leads to subsequent failures within a short period
of time. The meaning of ‘within a short period of time’ is dependent on the type of system. In
the case of an electrical appliance, ‘a short period of time’ is a fraction of a second, whereas in
the case of the electric power grid, it could be minutes or even hours. Engineers refer to this
short period of time as a ‘threshold’.

Whilst the idea of cascading failures is common in the real world, there does not exist an
established mathematical definition, and, thus, there is no comprehensive mathematical model
to represent such a phenomenon. A mathematical definition of cascading failures was suggested
by Lindley and Singpurwalla [2], but the notion has not been fully explored. In this paper we
aim to explore the notion of cascading failures using probability arguments. Using Lindley
and Singpurwalla’s definition as a starting point, we construct a stochastic model representing
a system operating under cascading failures. While our focus will primarily be on parallel
redundant systems, we will also discuss other systems, such as ‘k-out-of-n’ systems.

1.1. Causality and causal failures

In order to define cascading and cascading failures, we first turn to the notion of causality.
This topic has spawned a great deal of literature from philosophers, mathematicians, and
engineers alike, without generating any kind of consensus as to what exactly causality means.
However, one definition of causality, that by Suppes [5], provides us with a platform on which
to construct a definition of cascading. (It is not our intention here to debate the philosophical
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and mathematical arguments surrounding the various approaches to causality; for a recent
discussion of the various approaches, see Singpurwalla [4].) b

Suppes [5, p. 12] stated that D is a prima facie probabilistic cause of & (denoted D — &)
if

(a) D occurs before & (in time);
(b) P(D) > 0; and
(c) P& | D) > PE).

This definition satisfies our intuitive notion of what it means for one event to ‘be the cause of’
another, thatis, that D is a (prima facie probabilistic) cause of & if the probability of occurrence
of event & is increased by the preceding occurrence of event D.

For our purposes, it will be more useful to have a definition of causality in terms of random
variables. Fortunately, there is a direct relationship between events and random variables that
makes this transition very simple. For example, suppose that we have two binary random
variables X and Y. We can define the event D to be the event that X = 1, and, similarly, we
can define the event & to be the event that Y = 1.

Freund’s [1] bivariate exponential distribution allows us to create a model of a parallel
redundant system with two components. In this system, the lifetimes of the two components
behave as if they are independent, until one of the components fails, after which the remaining
component suffers increased stress. As a simple example, suppose that, given 6, the lifetimes
of the individual components are independent, exponential distributions with parameter 6.
Furthermore, suppose that when one of the two components fails, the increased stress on the
surviving component is such that 6 doubles to 26 and its remaining lifetime is exponential with
parameter 26. It can be shown by a simple calculation that the time to failure of the system
has density at u of the form 4u62e~2%* and that the mean time to failure is 1/6. Thus, in this
model, the failure of the first component permanently changes the parameter 6, the failure rate
of the surviving component, to 26. This increase in the failure rate, shown in Figure 1, increases
the probability of failure of the surviving component. Thus, if X; = #; denotes the event that
the first component to fail fails at time #; and if X, = t2, #; < fp, denotes the event that the
surviving component fails at time #,, then the event (X1 = t1) is a prima facie cause of the
event (X, = 1), and, thus, Freund’s model is also a description of causal failures.

A
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Time

FIGURE 1: Failure rate of the second component to fail in Freund’s [1] model.
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This model of causal failures provides the basis for the construction of the model for
cascading and cascading failures, first introduced in [2] and expanded upon in this paper.
It should be noted that many other models satisfy the definition of a causal model (for example,
the bivariate exponential distribution of [3]); however, it is Freund’s model that best provides
a link between causality and cascading.

1.2. Cascading and cascading failure models

To get an intuitive idea of what we mean by cascading failures, picture a row of dominos each
standing on their end. Now, suppose that the first domino topples and collides with its neighbor,
causing it to topple a short period of time after the first domino has toppled. However, now
suppose that the second domino is sufficiently far from the first domino that it is not effected
by its toppling; then, no matter how much time passes, the toppling of the initial domino will
not result in the toppling of the second domino. Hence, the toppling of the first domino causes
the toppling of the second domino, either almost immediately or not at all. This is the critical
idea behind cascading.

How does this idea translate to a mathematical representation? Lindley and Singpurwalla [2]
introduced a formulation of cascading by modifying the model for causal failures described in
the previous subsection.

Suppose that the previous model is modified such that the failure rate of the surviving
component changes at #; from 6 to 26 (as before), but at time #; + § it reverts back to 9, as
illustrated in Figure 2. The quantity § > 0 is called the critical time (or the threshold time),
and the ensuing model is a description for a cascading failure. The choice for § depends upon
the scenario being modeled. Lindley and Singpurwalla considered only the case where § is a
deterministic quantity; however, in Section 2 we will consider the situation where § is a random
variable.

For the modified model described above, it can be shown that the time to failure of the
parallel redundant system has density at u of the form

492146_29”, u <34,
Jelw) = 25.-20 Ou+s 20
4028204 4 20e0WHd) _2pe=20u 4 > §
A
26
8
E
0]
)
s —_—
0 1 H+s >
Time

FIGURE 2: Failure rate of the second component to fail in a model for cascading failures.
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Similarly, its survival function at u is of the form

20ue 201 4 —20u u <8,

Sc(u) = 2056200 4 2e—0U+8) _ o=20u . 5 g

and, thus, its failure rate at u is
QZL
20u + 1’
202089 4 =00 _ g—0u)
205604 4 2605 _gou ° “Z >

The mean time to system failure is 1/6 + (1/260)e2%%; this is larger than 1/6, the mean
time to failure under the causal model of Freund. This is to be expected. We also note that, as
8 1 oo, the mean time to failure converges to 1/6, since the causal model can be thought of
as the cascading model with an infinite value of §. Furthermore, as § | 0, the mean time to
failure of the system converges to 3/26, which is the mean time to failure of a parallel redundant
system with two independent components, each with identical, exponentially distributed life
lengths. Thus, for parallel redundant systems whose component life lengths have exponentially
distributed life lengths, cascading failures result in a larger mean time to failure than causal
failures, but a lower mean time to failure than that under independent failures.

he(u) =

2. Generalizing the two-component cascade model

The example in Section 1.2 gives the basic idea of what we are trying to achieve, however,
it is a very specific example. Before we can look at networks of larger dimension, we need
to generalize the previous two-component model. The most simple generalization is the jump
in failure rate. Let us now suppose that instead of the failure rate of the second component
jumping from 0 to 26 when the first component fails, suppose that it jumps to cf, where c is
some constant and ¢ > 1.

It is easy to show that the time to failure of the system with cascading failures has density at
u of the form

2062 (672914 _ efc9u)’ u <34,

few)y =1~ 206
296—0(14—8-1-08) _ 296—9(2u—28+08) + (6—2914 _ e—@(Zu—25+c§)) u>3
c—2 ’ -

Thus, the expected life length of the system can be calculated and is

22 =3¢+ e — 44 2
2c6(c —2)

which tends to 3/26 as § — 0, as expected.

The generalization above is very basic and does not alter the basic idea of the model.
However, now suppose that instead of regarding &, the critical time, as some deterministic
subjective value, consider 6 to be the realization of a random variable A. Obviously, we must
have A > 0, and it also makes sense for A to be continuous. Thus, suppose that A has a
probability density A (6) and that we are interested in fc(u), the probability density of the
time to failure of the parallel system at #. Then

’

Je) =/5 /o fc(u | t1,8) f (1, 8)dr; dd,
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where ¢ is the time to failure of the first component. It is logical for the failure time of the first
component and the value of § to be independent; thus, the above equation becomes

fe(u) = fa(/;) fe(u | t1,5)f(t1)dt1)m(3)d5~

The choice still remains as to what distribution to assign to A. In the next section we choose
A to have an exponential distribution, whereas in Section 2.2 we choose A to have a Pareto
distribution. In both these cases we have taken ¢ = 2.

Choosing A to have either an exponential or Pareto distribution was based on the desired
properties of A. Clearly, as A is the critical time, an exponential distribution is a natural
choice, since it is commonly used in many applications to describe the time until an event
occurs. The choice of the Pareto distribution offers some differences over the exponential
distribution, including a nonzero lower bound for the value of A (set to be 1 in Section 2.2) and
‘longer tails’. Other possible choices for the distribution of A are the generalized exponential,
gamma, and Weibull. When modeling a specific application, it will be necessary to select an
appropriate distribution for A.

2.1. Cascade model with an exponentially distributed critical time

Let us suppose that A is exponentially distributed with parameter A. Thus, 74 (8) = Ae™*%.
We are interested in calculating fc(u), the probability density of the time to failure of the
parallel system at u. From the previous subsection we know that

fe(u) = /3(/0 fe(u | t1,3)f(11)dt1>7m(5) ds,

and from Section 1.2 we know that

46%ue=20, u <3,

u
/0 Jew | 0,8 f()dn = szaezeu + 20— 0W+8) _ pge—20u

Thus, we have

fe(u) = /5([0 fe(u | t1,5)f(t1)dt1>ﬂA(5)d5

=/0 (/0 Je(u | t1,5)f(t1)dt1>7m(5)d5

+/ </o feu | t1,5)f(t1)dt1>7TA(5)d5

u o0
- / (462867201 4 200w+ _ 2ge=20uy3 040 45 4 / 40%ue=")e*0 ds
0 u

296_20”

= m(zeﬂ +0x — 2%+ 2% — e M (207 + 61)).

The expected value of the time to failure of the system can be shown to be (46 4-31) /20 (26 +
A). Note that, as A | 0, the expected time to failure of the system converges to 1/6 and, as
A 1 00, the expected time to failure of the system converges to 3/26. These results are consistent
with the results in Section 1.2.
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2.2. Cascade model with a Pareto distributed critical time

Suppose that A has a Pareto distribution with shape parameter a, that is, 7 (8) = a/8%*!
for § € (1, 00). As in the previous section, we are interested in fc(u), the probability density
of the time to failure of the parallel redundant system at u. In this case we have to separate the
calculation into two ranges, u < l andu > 1. Foru < 1,

few) = /8(/0 felu | t1,8)f(t1)dt1>7m(8)d8

=/1 (/0 fc(u|t1,8)f(t1)dt1>m(8)d8

00 a
— / 46%ue2n = __ 43
1 Sa+l

= 49%ue %
which is the expected result, since, as u < 1 < §, the failure rate never returns to its original

level and we can treat this case as in the standard Freund model.
Now, foru > 1,

fe(u) = /a(/o Je(u | t1,5)f(t1)dt1)7m(8) ds

=/1. (/0 Je(u | t1,3)f(t1)dt1>7m(3)d3

+/ (f fc(u|t1,5)f(tl)dt1>m(8)d6

f (4625¢ 720 4 2900+ _ g2y &

sa+l

> 2 —26u_ 4
- u
d5 +/u 49 ue W d8

492 —26u

u
I (a—u"@"Dy 4 296_20"(u_a -1+ ZQG/ e 0u+0) y—a=l gy
a-— 1

Combining the two cases gives us the full probability density function:

46%ye= 20", u <1,
492 —20u
feu) = —ae_ (@ — a0y 4207 @ — 1)
u
—|—2a9/ e ftn)y—a=l gy u>1.
1

The remaining integral in the above expression has no closed-form analytical solution; hence,
numerical integration methods are required to generate the result.

The use of the Pareto distribution for A rather than an exponential distribution results in a
lowering of the expected time to failure of the system. Since the above expression for fc(u) is
not in closed form, this can only be demonstrated numerically. For example, consider a system
where 6 = 0.1. Now, if we use A ~ Pareto(2), we obtain an expected time to failure of the
system of 13.52, whereas if we use A ~ Exponentlal( ), we obtam an expected time to failure
of 13.57. (Note that the comparison of Pareto(2) and Exponentlal( ) was made as each has the
same expected value (equal to 2).)
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3. Extending the model to more than two components

Our initial starting point for defining a model for cascading failures was the bivariate
exponential distribution of Freund [1]. However, there is no multivariate extension of the
Freund bivariate model and, hence, this does not help us when it comes to defining a cascade
model for networks of more than two components. From examination of the two-dimensional
model and by intuitive thought about the nature of cascading, two possible extensions suggest
themselves. In this section we will discuss these two extensions, namely, two-valued cascading
and many-valued cascading, and compare their properties.

3.1. Two-valued cascading

In the two-dimensional cascade model first introduced in Section 1.2 and further discussed
in Section 2, the failure rate of the second component takes one of only two possible values
at any given time. That is, the failure rate of the second component is 6 in the interval [0, #1],
jumps upto cf (¢ > 1)intheinterval (¢1, f; + 6], and then returns to 6 in the interval (t; 4+ §, 00),
where #1 is the failure time of the first component. It is this feature that provides the motivation
for two-valued cascading.

Assume that we have a three-component cascading system where each component has an
initial failure rate of 6. Upon the failure of the first component, at time 71, the failure rate of
the remaining two components jumps to cf. If neither of the remaining components fails in
the interval (¢, 1 + 8] then their failure rates drop back to 6 and the system from this point
on acts exactly like the two-component cascade system described earlier (see Figure 3). If,
however, the second component fails at time #; in the interval (¢1, #; + &] then the failure rate
of the third component no longer drops back to 8 at time #; + §, instead it remains at the higher
level of ¢ until time #; + § (see Figure 4). It is useful to note here that, unless otherwise stated,
when we refer to the “first’, ‘second’, ‘third’, etc. component, we are not assigning labels to
the components, we are instead referring to the order of failure. Hence, by definition, the ‘first’
component will always fail first, etc.

The failure rate of the third component at time ¢, #3(¢), depends only on the failure time of
the second component, 7, that is,

0, t>1t+94,

h3(t) =
3(0) {ce, t <th+4.

Now, let X (1), X(2), and X 3) be random variables representing the failure times of the first,
second, and third components, respectively. We are interested in finding f3(¢), the probability
density of the third component failing at some time ¢. This is fairly straightforward, using the
law of the extended conversation:

t
f3() —/(; P(X3) =t | X2 =t) () dn

t
che=0" f exp(cht) f>(12) dta, r <S8,
0

96_0((0_1)8“)/ exp(01) f2(r2) dia
0
t

+ che ™Y / exp(con) fr(t) dto, t> 6
t—48

(see Appendix A). Thus, in order to calculate f3(¢), we need to know the form of f>(#).
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FIGURE 3: Failure rate of the third component to fail when the second component survives past time #1 + 6.
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FIGURE 4: Failure rate of the third component to fail when the second component fails before time #; + 8
and ¢ = 2.

However, f>(#2) can also be easily calculated as follows:

%)
Sf2(t2) =/ PXp)y=0n| X1 =1n)it)dy
0
5]
2cH exp(—208t2)/ exp(2coty) f1(ty) drq, Hh <34,
0
h—§
= 120 exp(—20((c — 1)§ + 1)) / exp(20ty) f1(t1) dt
0

5]
+ 2c6 exp(—2cbty) / exp(2¢hty) f1(t) dey, th >4
h—38

(see Appendix A). So, in order to calculate f>(¢), we need to know fi(z). Note that f1(¢)
is the density of the time to failure of the first of three components, each with independent
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Exponential(#) life lengths; hence,
S1(t1) = 30 exp(—3611).
Thus, by substituting f1(#1) into the formula for f>(#>) we obtain

%]
2c6 exp(—2c9t2)/ exp(2¢0t1)36 exp(—361t1) dty, h <86,
0

th—36

o) = {20 exp(—20((c — 1)6 + tz))/ exp(2611)360 exp(—30t) dt
0

n
+ 2¢O exp(—2ch1t2) / exp(2cOt1)360 exp(—360ty) drq, Hh >4,
th—3§
n
6c6? exp(—2c9t2)/ exp((2ch — 30)ty) dty, th <34,
0

th—§
= 6926Xp(—29((c—1)5+t2))/ exp(—61)) dt;
0

5]
+ 6¢62 exp(—2c61r) / exp((2c — 30)ty) dry, 1 >4,
th—36

exp(t20(2c — 3)) — 1

6c6% exp(—2c0t th<$
cO” exp(—2chty) 02c—3) , 2 =<0,
1 —exp(—(tr — 8)0
= {60%exp(—=20((c — )8 + 1)) exp( 9( 2 = 9)0)
50(2c — 3)) — 2¢ —3)(ty — 8)0
4 666 exp( 2001 SO =) —exp(Qe =D =88
6(2c — 3)
6¢6
< 3 (Exp(=3612) — exp(~2cb12)). <38,

=160 exp(—26((c — 1)d + 1))(1 — exp(—(t2 — 8)H))

+ exp(—2chtr) (exp(260 (2c — 3)) — exp((2c — 3)(t2 — §)0)), t > 6.

c
2¢c -3
From the above, we can calculate the probability density of the failure time of the network,

f3(t). Because the expression for f3(¢) is long, it has been omitted. What we are mainly
interested in is the survival function for the network, that is, S3(¢) = P(X 3y > ). We find that

t
S$3() =P(X3) > 1) :[ P(X3) >t | X = 1) f2(t)dn,
0

where

exp(—ch(t — 1)), t<th+§6,

P(X3) >1t|Xp =h)=
X > 1] X =1) {exp(—cea—e(r—(terS))), t>n+0

Thus, it is straightforward to calculate the survival function for a three-component parallel
redundant system under two-valued cascading. Again, the expressions are rather long and,
hence, have been omitted.
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The densities of the failure times are defined recursively, and because the system failure time
is equal to the failure time of the final component we have a simple recursive definition for the
probability density of the failure time of the system.

3.1.1. A system with n components. Now suppose that instead of three components we have
n components, where n > 2. What is the probability density of the network failure time?

The network failure time is the same as the failure time of the last component. From above
we know that we can define a recursive formula for the density of the failure time of any
component. Let f;'(r) be the probability density function of the ith failure in a system of
n components. Then, by a simple extension of the three-component example above, we see
that, for i > 1, we have

(n—1i+ DcOexp(—(mn —i+ 1)cot;)
X fti exp(—(n —i + Deft; 1) fiL (ti—1) dt 1, ti <6,
(n— i0+ DO exp(—(n —i+ 1)0((c — 1)d +1;))
X /h_s exp(—(n —i + DOti_y) f* (ti—1) dti—;
+ (r(1) — i+ Dchexp(—(n —i+ 1)cot;)
x /ltiaexp(—(n — i Dbt G oy, 6> 8,

fi'@) =

and, for i = 1, we have
FiHt) = nf exp(—nbiy).

We can thus obtain an expression for f,(t,), the probability density function for the time to
failure of the network.

3.1.2. k-out-of-n networks. Now suppose that we are not dealing with a parallel redundant
system in which all the components must fail in order for the network to fail. Instead, suppose
that we have a k-out-of-n network in which only & of the n components need to fail in order for
the network to fail. Then, by the methodology detailed above, it is straightforward to compute
the probability density of the network failure time. Indeed, this is simply £} (¢).

3.2. Many-valued cascading

What is the difference between many-valued cascading and the two-valued cascading dis-
cussed in the previous subsection? Let us consider the three-component problem as we did
previously. At the failure of the first component at time ¢#1, the failure rate of the remaining two
components jumps to cé for the interval (¢, 1 4 8], just as in the two-valued cascading model.
However, the difference between the two models becomes apparent if the second component
fails at some time #, < 71 + 6. If this happens then the failure rate of the surviving component
jumps up again to 2¢6 until time #; + § when the failure rate drops back down to c6 until time
ty + 8, after which it returns to its original level of 6 for all the remaining time. Whereas in the
two-valued cascade model the failure rate at any given time is dependent only on whether or not
there has been at least one failure in the previous § units of time, in the many-valued cascade
model the failure rate at a given time is dependent on the existence of failures in the previous &
units of time and on how many failures have occurred within that interval. The possible failure
rate combinations for three components are shown in Figures 5 and 6.

The first thing to note, even from this simple illustration, is that the failure rate in the many-
valued model is always equal to or greater than the equivalent failure rate in the two-valued
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FIGURE 5: Failure rate of the third component to fail when the second component survives past time f1 + 8.
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FIGURE 6: Failure rate of the third component to fail when the second component fails before time #; 4 8.

model. This model can easily by extended to more than three components. For the case of
n components, the failure rate of the surviving components at any given time is equal to (j+1)c6,
where j is the number of components that have failed in the previous § units of time.

The many-valued cascade model suffers from one major drawback. The computations to
derive the probability density and survival functions for the time to failure of the system are
very difficult. This complexity is a result of the dependence of the failure rate of surviving
components on the number of components that have failed in the last § units of time. Thus, a
conditional probability argument like the one used in the two-valued cascading model does not
work because we need to condition on the times of all previous failures. This in itself would not
be too difficult except for the fact that every possible sequence of failures must be accounted
for. Consider the three-component case described above. If the second component survives
until after time #; + &, as in Figure 5, then there are two possible scenarios for the failure of
the third component, either it can fail in the interval (¢, > + 8] or it can fail in the interval
(t2 + 8, oo]. Now, if the second component fails in the interval (z1, 1 + 6], as in Figure 6, then
there are three possible scenarios for the failure of the third component. Either it can fail in the
interval (¢, t; + 8], in the interval (¢; + &, fp + 8], or in the interval (#, + §, oo]. Thus, for a
three-component, many-valued cascade model there are five possible scenarios for the failure
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TaBLE 1: The number of scenarios for varying network sizes.

Number of components ~ Number of scenarios

2 2
3 5
4 14
5 42

of the third component that must all be considered when deriving the survival function of the
network. Now, five scenarios is not a large number and can be handled with only a moderate
amount of thought and computation. The problem occurs, however, because the number of
scenarios increases rapidly as the number of components increases. Table 1 shows the number
of scenarios for networks with two, three, four, and five components.

The numbers in the right-hand column of Table 1 are recognizable as the Catalan numbers,
and, thus, for a system of n components, the number of scenarios would be (2n)!/(n + 1)! n!.
The Catalan numbers increase at a rapid rate, for example, the 9th and 10th Catalan numbers
are 4862 and 16 796; thus, it is virtually computationally impossible to obtain an analytical
expression for the survival function of a network that contains more than a few components.

3.3. Uses of the many-valued cascade model

Although it is analytically impossible to derive the survival function of the network using
the many-valued cascade model, there are situations where this type of model is appropriate
for modeling a network. In addition, with slight modifications, it becomes very easy to analyze
the network using this model.

Suppose that we have a network consisting of n components, each performing the same task,
for example, engines on an aeroplane. Now, suppose that initially (at time 0) all components
are operational and that the time to failure of each of the components are independent random
variables with parameter 6. At some time, #(1) > 0, the first component failure will be observed.
At this point the failure rate of each remaining component will increase to c. It is important to
note that this increase in failure rate is not due to the fact that this is a network operating under
the assumption of cascading failures. On the contrary this network is not operating under the
cascade assumption. The increase in failure rate of the remaining components is due to the fact
that there is now one less component performing the same task and, hence, each component is
required to share more of the load.

Now, as soon as a component fails, work is started to repair it. Suppose that the repair takes
exactly § units of time, after which the component returns to operation and the failure rate
returns to its initial value of 6. Of course, it is possible for another component to fail while the
first component is under repair. That is, that 71y < f2) < (1) + 8. If this is the case then the
failure rate jumps again from ¢ to 2c6, and repair begins on that component also. Clearly, the
model used to describe this situation is analogous to the many-valued cascade model discussed
in the previous subsection. The main difference in this scenario is that the components are
repaired; thus, there will be no time after which the network will cease to operate indefinitely.
In this scenario we are interested in the percentage of time that the network is nonoperational,
that is, the percentage of time when none of the components are operational.
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FIGURE 7: Transition rate diagram for a Markov process representing the number of working components.

Trying to analyze this situation has the same problem as analyzing the many-valued cascade
model, namely, that there are far too many scenarios to consider. In this problem, because
components can be repaired once they have failed, the analysis is even more complicated
than that of the cascading model. However, suppose that instead of the repair time being a
deterministic value § it is a realization of an exponential random variable with parameter A.
Then we may set up a Markov process to represent the number of working components at any
given time; see Figure 7.

From this we can use standard Markov process analysis to calculate steady-state probabilities
and, hence, gain some insight into the amount of time that the network is nonoperational.

4. Summary and further investigation

In this paper we have introduced the idea of cascading failures of components in networks.
We discussed in depth the motivation behind the problem and the philosophical arguments
surrounding the field of analyzing networks of dependent components. We have suggested
two possible models to representing cascading failures, and have discussed the problems with
each. The main problem is that the analysis of cascading components on a continuous-time
scale is very difficult, and requires a great deal of computational power even for the simplest
of networks.

The choice of which of the two described cascading models to use will be motivated by the
situation that is to be modeled. Both suggested models satisfy our philosophical definition of
what we mean by cascading; however, the many-valued model will lead to system failure in a
shorter amount of time than the two-valued model and, thus, is suited to modeling situations
in which a component failure institutes a large increase in stress on the remaining working
components.

We see this paper as an introductory step into the world of cascading, hopefully leading
to more general results and the solutions to more complex problems. We hope that we have
performed an important task by introducing the idea of continuous-time stochastic models to
represent cascading failures.
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Appendix A. Probability densities for two-valued cascading
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