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1. Introduction

The purpose of this article is to present some results on varieties of
metabelian p-groups, nilpotent of class ¢, with the prime p greater than c.
After some preliminary lemmas in § 3, it is established in § 4, Theorem 3,
that there is a simple basis for the laws of such a variety, and this basis is
explicitly stated. This allows the description of the lattice of such varieties,
and in § 5, Theorem 4, it is shown that each such variety has a two-generator
member which generates it. Theorem 7 extends this result to show that there
is in each such variety a two-generator critical group which generates it;
this is established by the help of Theorem 5, which states that each critical
group is a two-generator group, and Theorem 6, which gives explicitly the
varieties generated by the proper subgroups, by the proper quotient groups,
and by the proper factor groups of such a critical group.

Some of the theorems and lemmas, with minor re-wording of their
theses and proofs, also hold for the variety I, of all metabelian groups
of class ¢; in particular, Theorem 1 can be modified to afford an independent
proof of a result due to Magnus, quoted in [2], (and also [9], corollary
36.23), that the basic c-weight commutators of a reduced free group of M,
are independent.

Some of the theorems do not generalise: for example, any generalisation
of Theorem 5 is limited by the existence of 3-generator critical metabelian

3-groups.

2. Notation and definitions

As usual, the commutator z—'y~lzy is written (z, y), with left-normed
commutators of weight 2 being defined recursively by (z,,x,, -, 2;)
= ((#y, %3, = * *, Tx_y), %), & > 2. For repeated symbols in a commutator,
the notation (, ny) is used (# being a positive integer) where (z, ly) = (z, y),
and recursively (x, ny) = ((z, (r—1)y), y), » > 1; the obvious meaning is
attached to the symbol (,, #n,2,, #y2;, - - -, #,,) where all the », are non-
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negative integers, and at least one #, is not zero; the symbol could clearly
be defined recursively. By 7,(G) we mean the %' term of the lower central
series of G, i.e. the verbal subgroup ¥,(G)= Gp{(z,, z,, "+, z;)| z; € G,
i =1, .-, k}. The notation G” means the verbal subgroup Gp {2? | z € G},
and the Frattini subgroup is denoted by @(G), where we know, if G is a
finite p-group, that @(G) = Gp{G?, y,(G)}.

The varieties considered are subvarieties of IR,, the variety of all
metabelian groups of class ¢. The phrase “B is a variety of type M (p, c)”’
is defined to mean that for the fixed prime p > ¢, B has p-power exponent,
is metabelian, and is of class ¢; also, that at least one group in V is not of
class ¢—1, so that there is, amongst the laws of V, a law of the form
(%, ®3, * * +, 2, )?% = 1, where «, > 0. It is to be understood that «, is
minimal for this law in 8, and the symbol «, is used in this sense throughout.

The variety generated by a group G is denoted by Var (G); the variety
generated by its proper subgroups is denoted by Var (S—1)G, and by all
its proper factors by Var (S—1)G. A finite group G is called critical if
G ¢ Var (QS—1)G. The properties of varieties, and the correspondences
amongst varieties, free groups, verbal subgroups, reduced free groups, and
sets of laws of varieties, may all be found in [8] and [9].

Calculations will be carried out, almost entirely, in metabelian groups,
ie. groups for which y,(G) is Abelian. In this case, we have that
(1, %3, 3, T,) = (%4, Z,, T4, 3), and the Jacobi-Witt identity becomes

(@ 9, 2)(y, 2, ) (2,7, 9) = L.
The general rules

(zy, 2) = (=, 2) (2, 2, y) (¥, 2)
(=, 9z) = (=, 2) (=, ) (=, ¥, 2)

are then sufficient to perform any of the calculations used. In particular,
any product of commutators may be rearranged to an equivalent product
of basic commutators, according to some ordering of the generators involved.

3. Preliminary lemmas

The first result is a lemma about possible manipulations in a com-
mutative group; a corollary about certain laws in a variety of p-groups
follows from it.

LEMMA 1. Let G be a group with commuting elements W,, k =1,2,---n
and containing no elements of prime order =< n. If the set {S,} of relations
hold: "

Ss:IIwy=1, . A=12,-
k=1

then W, = 1 foreach kb, k = 1,2, --n.

5 n

’
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Proor. By raising the left-hand sides of the relations S, to powers,
taking inverses, and multiplying together, we can derive new relations of
the form R:

R:TIWE =1.
k=1
Now corresponding to the A*® relation of the set {S,}, we have the exponents
of the W, as the A" row of the matrix

]_ 1 . e l

2 22 2n
3 32 3"
n n? nn

Clearly the set of &, in a relation of the form R will correspond to the result,
in some row, after some sequence of row operations has been carried out
on this matrix, entries being considered over the ring of integers, (i.e.
disallowing division). But from an explicit formula [1] for the Stirling
numbers of the second kind, S{”, namely

. .
Sy=ilSP =3 (1)~ (’) o
¢=0 t
(which yields S = 1, S{¥ = 0 for 7 > §), it is clear that ring operations
alone suffice to bring the matrix, by row operations, to the form
1 1 1 | R 1
0 2! 6 14
0O o0 3! 36 --- .

0 0 0 o - mnl

The entry in the #*® row and j*® column is S;;, and the entries in a suitable
row now correspond to the &, of some relation of the form R. In particular,
since Wy' =1 is a law, and G contains no elements of prime order <,
it follows that W, = 1. Since the »** row of the matrix corresponds to the
relation

Wi Wi =1, r <m,

k=r41

an induction over (n—7) completes the proof of the lemma.

We now turn to an immediate corollary, which deals with certain
laws in a variety B of p-groups. When dealing with laws in a variety,
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certain transformations applied to the laws (e.g. thorough replacement of
one variable by another, thorough replacement of a variable by 1, etc.)
yield valid laws; essentially, such transformations are endomorphisms on
the reduced free group of suitable rank. Such a transformation is termed
“valid” in the following:

COROLLARY 1.1. Let B be a variety of p-groups, with the law {[p., W, =1,
n < p, where the W, are distinct commuting words. If there is a set of valid
transformations {$,}, A =1, 2, - - -, n, such that g (W,) = W5, then W, = 1
isalawin B foreachk: k=1,2,---, n.

ProoF. By the transformations ¢,, we deduce the set {L,} of laws

of B:
Lo:TIWY =1, A=1,2,- m.
k=1

Interpreting these laws as relations on the generators of a reduced free
group of suitable rank, Lemma 1 applies, and the corollary follows. [An
example of such a set of words and transformations is as follows: Let 8 be a
subvariety of R, (the variety of all groups nilpotent of class ¢), with F a re-
duced free group on generators z, y, z,, - - -, and let W, = (=, (c—k—1)y, kz)s,
k=1,2,---,¢—1. Then a set of endomorphisms with the required property
is given by ¢, being the substitution of 2* for z, leaving z, y, w, - - -, fixed, in
every word of F.]

We now turn to varieties of type It(p, ¢), and first consider laws which
involve two variables only, in commutator words of weight ¢. From corollary
1.1 we derive the further corollary:

COROLLARY 1.2. Let B be a variety of type M(p, ¢). If B has a law of the

form
c—2

II (=, (c—1—4)y, ix)P = 1, (with some B, +# 0)

=0
then B also has the set of laws {L},
L;:(z, (c—1—d)y, sz)™ =1, t1=0,1---¢c—2,
where u > 0, and p* is the g.c.d. of the non-zero B,.

ProoF. We may regard (x, (c—1—1)y, «z)? as a W, of corollary 1.1,
with 2 =1+1, n = ¢—1, and the ¢, being afforded by the substitution
of z* for 2. It then follows that (z, (c—1—%)y, 4z)?¢ = 1 is a law for each 1.
Since B is of type M(p, ¢), clearly we may take §, = p* for some &; = 0,
(or else B; = 0, and the corresponding term is trivial in the original product).
Further, if (2, (c—1—1)y, i) =1 were a law, then a result due to Gupta
and Newman [4] would require that, for any G € B, the exponent of ¥,(G)
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divide the number c(c—7)(c—2—%)!(c—1—d)}!d! TTi, #! TIiZE~* ¢!. Since
P > ¢, this is clearly not so, and thus &, > 0. Then for any non-zero g, of
the original law, we have the law L,:

L;: (2, (c—1—i)y, iz)% =1, B, = pfs, &, > 0.

In L,, substitute zy for : then

i i
LTI (=, (c—1—i+s)y, (z'——s)x)(‘)ﬂ‘ =1.
8=0
In L, substitute xy for y: then
17 o2t . . (c—i-i)ﬁ‘
LY . TI (=, (c—1—i—s)y, (i+s)z) =1
=0

By what we have already proved above, each of these laws may be ap-
propriately “factored”; since p divides neither () nor (°~2~*), we have for
each non-zero 8, the set of laws {S,,}

{Su}: (2, (c—1—m)y,mz)fs =1, m=0,1,2--- c—2.

Since each non-zero B; is of the form %, &, > 0, we may take the
minimal &, and the corollary has been proved.

It is worth noting that the following corollary, which will be used
in § 4, can be derived immediately from Gupta and Newman’s result;

CoOROLLARY 1.3. If B is a variety of metabelian p-groups, of class c,
with p > ¢, and the n'™-Engel law (x, ny) = 1 holds in B, with n < c, then
B is of class n+1.

We now turn to laws involving more than two variables.

LEMMA 2. In a variety B of type IM(p, c), there is no law of the form
(), g, S35, * **, 5, %)™ =1, with u <o, where the commutator is of
weight ¢ in the t distinct variables x,, x,, - -, x,, t = 3, and all s; > 0.

This lemma can be extended to the case of two variables by a corollary:

COROLLARY 2.1. In a variety B of type M(P, c), there is no law of the
form (z, (c—1)y)* = 1, with p < «,.
The proofs follow.

PrOOF OF LEMMA 2. Since the result for ¢ = ¢ is immediate by definition
of B, we proceed by induction on ¢—¢, the inductive hypothesis being that
the lemma is true for £ =¢, c—1, - - -, c—7, with » < c—4. Then if there
were a law of the above form for £ = ¢c—7—1, it could be written in the
form L:

L:(xy, 25,00, SepaBor2s Woypy)™ =1

where the commutator is of weight ¢, and ¢+ = s,_,_, > 0. By substituting
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Z, , %, for z,_ . , wherever it occurs, and using L to remove the term
with 2 = 0, we have the new law L';

{)pu
kI]; (@1, Ty = s Bopg, (E—R)Zopy, kxc—r)(k)’ =1L

Lemma 1 now applies to L', W, being the power of the commutator with %
entries of z,_,, # being 7, and ¢, being the substitution of z} , for =z,_,
throughout. Thus, in particular,

(@, 5, ", %y, (—1)x(,y, 2, )" =1,

and since p > ¢ > ¢, we have a contradiction to the inductive hypothesis
if 4 < a,, and the lemma is established.
We turn to the corollary;

PROOF OF COROLLARY 2.1. In the proposed law (z, (c—1)y)* =1,
substitute yz for y, giving the law
c—2
(=, c—1)y)* TI Wi (=, (c—1)z)* =1
k=1
where

W, = (2,9, (c—2—Rk)y, kz)

(&%) (z, 2, (c—1—R)y, (k—1)z )('ﬁ)

But the proposed law gives []iz} W, =1, to which Lemma 1 may be
applied, ¢, being the substitution of z* for z; in particular,

Wea= (2,9, (c—2)2)" (2,2, ¥, (c—3)z)lc-d = 1.
In this law, interchange z and y and take inverses: this gives

W;—z = (xr Y, (6_2)2)0“ (Z, Yy, (‘:"—3)‘2)(6_2“’"l =1L
Since B is metabelian, we have the Jacobi identity

@29y 2 22 =1,

from which, since R is of class ¢,

(=, 2,9, (c—3)2) (2,4, 2, (c—3)z) (y, 2, (c—2)2) =
Taking this relation with the law W,_,W,_,=1, we derive (z,y, (c—2)z)°*'=1,
and since p > ¢, we have (z, y, (c— 2)z)"‘ 1, so that 4 < «, by Lemma 2,

and the corollary is proved.
From corollary 2.1, we have immediately:

COROLLARY 2.2. In a variety B of type M (p, c), the laws (z, (c—1)y)?* =1
and (z,, x,, - - -, x.)#% = 1 are equivalent.

By taking Corollary 1.2 and Corollary 2.1 together, we have the
stronger result:
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LeMMA 3. For a variety B of type WM(p, c), any law of the form
TI12E (&, (c—1—12)y,sx)f =1 cam be assumed to have B, = 0mod pe
for each 1.

The next lemma will provide an inductive step to help establish a
theorem about basic commutators in a reduced free group of a variety 8
of type IM(p, c). Using the properties of metabelian groups, any commutator
law can be shown to be equivalent to a law which involves basic com-
mutators only, according to some ordering of the generators of the cor-
responding free group. Lemma 4 will be used later to establish Theorem 1,
which deals with basic commutators; to state Lemma 4, we need the fol-
lowing notation.

Let A(z,§) be a product of commutators of weight ¢, whose entries
are from the set of n variables z,, z,, - - -, z,,, of the form

A(G, §) =TI @i 25, Ny, Ny @4y, 0 - 0, Npn )99, nzi>7 21

aeQy
@, is the set of all possible partitions of c—2inton—j+1 parts {8, B,41,"*, Bu}
so that g;4+ 8,4+ - +B,=¢—2, B =0for k=74,j+1, -, n; qis the
element of Q, with ﬂk N,, and «,(¢, 1) is an integer.

Using this notation, we establish

LeMMA 4. If, for a variety B of typeIN (P, c), thereis anintegers,2 s <mn
such that all laws of the form

L(s): A(s+1,s)A(s+2,5) - A(n,s) =1

are consequences of the law (x,, x,, * * +, 2,)P% = 1 in the sense that all o (k, s)
in L(s) are 0 mod p*e, then the same is true for all laws of the form L(s—1).

ProoF. Any particular law of the form L(s—1) may be explicitly
written out as
L(s—1): P(1) H (@) Zogs Noey ey, 0, N,z,)%® D =1
€ Qpy
where P(1) is the case 4 = 1 for the product

n

P(}') = H H (xkr Zy 1, N:—lxs—l’ ° .N"x”)f.

kw=gt1 (13 Qg_l
with &, = A% q(k s—1), 4 an integer, the elements q of Q,_l being identified
by the entries in the (n—s+2) tuple {N,_;,N,, -+, N,}. (The form P(4)
is needed later.)
Substituting x} for z, throughout L(s—1), we derive the law L':
L':P(4) H (®s) Boe1s Nyy Zoyy * 7 Nnxn)ﬂ' =1
€Q,,

where 8, = A¥+tl ¢ (s, s—1). Then substituting z, for z,_; throughout L’,
we have L':
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n

L": H ].—.[ (xk» X, (Ns—1+Ns)x:r Na+1xs+1’ Tt N”:II")E' = 1.
k=stl ¢€Q,_,
Now this last law L’ may be written as a law of the form L(s) by collecting
terms, and considering the product over the set Q, of partitions. Thus, for
each element of Q, of the form {8,, N,,;, N,ys, -+, N,}, and each & > s,
we have in L’ a term of the form

(xk’ Z,, ﬂcxu Na+1xa+1’ T Nnxn)”

where n = 3 £,, &, = AMoa, (k, s—1), g is the element of Q,_; of the form
{N,;,N,, -+, N,}, and the sum ranges over N,, (N, =0, 1,- -+, 8,), with
g restricted by N,_,+N, = B,. But by the inductive hypothesis, since L”
is now of the form L(s) we have = 0 mod p%.. TakingA =1,2,---, §,+1,
we have the set E of equations:

1 1 1 e 1 oy
1 2 22 2hs oy
E: |1 3 32 R : | = 0mod p*

i (ﬁ:+l) (ba+1)2 (:Bs+1)ﬂ' a.ﬂ.

where «; denotes «,(k, s—1) for ¢= {(B,—%), % Nypy, -, N,} €Q,;.
Since the determinant of the matrix is J[%, 7!, and $ > ¢ > B,, each of
the «;, = 0 mod %, and hence, by considering all the elements of Q,, we
have «,(k, s—1) = Omod p* forall 2 > sand allg e @Q,_;. Thus, P(1) =1,
and the law L(s—1) reduces to
L: H (., Ty 1, Ny a®eqs0 Nnxn)aq("‘—l) = L
eQ,

By substituting 1 for z,., throughout L, we have
H (xcr Ty1, Na—lxa—-l» <o, Nz, )pe=1

2€Q,
with p, = ANe1g (s, s—1). Substitution of z,,, for z, throughout this last
law gives
1;.[ @st1> To1s No1 oy (NgHNo)Zopn, - o0 Ny )e =1,
EQ,

and substitution of z, for z,_; throughout this then gives
l;I (xc+1’ z,, N, 1 2,, (N8+Nl+1)x8+1’ s, Nozg)e= 1
€Q,
By collecting terms, and rearranging, this last law may be put in a form
L'(s):
L'(s) : H (xs+1’ z,, N2, Bes1%esrs * ° 5 Nnxn)s' =1

e,
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where 7 = {B,, for1, - *» Bn} €Q,, and 7 is related to the elements ¢ of
Qs—l by ﬂs = Ns—l’ ﬂ8+1 = N8+Ns+1! ﬂa+2 = Ns+2’ Y ﬂn = Nn' The
indices 6, are given by 0, = 3y Mtrg (s, s—1), and by hypothesis each
é, = 0 mod p%.

Putting A =1,2,---, f,,,+1, a set of equations of the same form as
E is obtained, and the same argument then applies, since p > ¢ > 8,,,,
and so each a,(s, s—1) = 0 mod p*.

Thus, all indices in L(s—1) have been shown to be zero mod p%,
and the lemma is proved.

So far, all the lemmas have been concerned with commutators of weight
¢ in a variety B of class c. If all the laws of B are to be examined, we need
a result which will allow some induction along the weight of commutators
occurring in a law. The last lemma of this section provides that step:

LEMMA 5. Let the variety B of type M(p, n+2) be generated by a reduced
free group F. Then if (x, (n+1)y)* =1 is a law in B, and (z, ny)” =1
is a law in Fly, o(F), then (x, ny)* = 1is a law in B.

(Note: from the proof, the lemma is true for » = 0, if we interpret
(x, Oy) as z).

Proor. By Corollary 2.2, we have that the pair of laws
@1, @y, ", 2y)” =1 and (z, (n4+1)y)" =1
are equivalent in %, and that the pair
(1, %o, ** " 2, )” =1 and (z,ny)” =1

are equivalent in Var (Ffy,,(F)).

If (x, ny)” was not always trivial in F, there would have to be at
least two free generators z,;, z, of F such that (z,, nz,)” # 1; but
(z;, nx;)” € y,.2(F) by hypothesis, so (z,, nz,)® would be a product of
commutators of weight #n4-2 in the generators z,, «,, 2;, * - - of F, and this
yields a law in F and hence in B. By putting 2, = 1 whenever % is neither
1 nor j, we could then deduce a two variable law in z, and z,. Reading z
for z; and y for z;, we have that there would be a law in ¥ of the form L:

nt1
L: (z,ny)” =TI (=, ky, (n+1—Ek)z)*.
k<1

By commuting once with y, we see that » = «, and hence (z, ny)”
becomes (z, ny)*"” under the substitution of y* for y. By first writing Z
in the form L’:

n4l

L' :TIWe=1, W= (z, by, (n+1—k)z)?,
- k#En, W, = (z, ny)™ (x, ny, z)
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we deduce, using corollary 1.1 with ¢, being substitution of y* for y, that
W,=1, and hence by Lemma 3 that g, = 0mod 5%, for each % # #n.
The only non-trivial part of the law remaining is W, = 1, i.e.

(=, ny)™ (z, ny, x)%» = 1.

By using the substitution of ™! for  we deduce that (z, ny)*" = 1 is a law
in B, and of course 8, = 0 mod p*.

4. Theorems on laws

In this section, we consider the laws which a variety 8 of type I(p, ¢)
may have. It is found that these laws have a basis which may be stated in
terms of the maximum exponents of the lower central series of groups in 8.

THEOREM 1. Let F , be a reduced free group (of a variety B of type M(p, c))
of finite rank m, on the free gemerators g,,8,, -, &, with ordering
&1 < 8y <+ < g,. Thenthe basic commutators, of weight c, in these generators,
are independent.

Proor. The proof depends on the fact that the free generators of F,
are such that any relation amongst them is a law in F,(B) ([8], [2]).

Take the forms A4 (z, ) as defined for the purposes of Lemma 4, with
symbols g,, g5, - - -, £,; by the ordering g, < gs < -+ <g,, any relation
amongst the basic c-weight commutators may be written in the form (R):

(R): Ty T, -+ T,y =1 with T,=T[A s).
k
nzk>s

This relation gives a law in F,(8), and hence in Var (F,(®8)), which is
a variety of the type under consideration. By substituting 1 for the symbols
81,82 * " En—pinthislaw, wehave T, =1lisalaw,andso T, T, T, ,=1
is a law. Continuing by substituting 1 for g,, g,, - -, £,—3, and so on, we
have that each of 7, =1 is a law, for s=#%—1, n—2,.---1. But
T, ,=A4(n n—1), so by Lemma 3 (using symbols = for g, and y for
£.-1), thelaw T, _, = 1is a direct consequence of the law (z,,z,, -, ,)?% =1,
in the sense that each exponent of each commutator is 0 mod p%:. Lemma 4
now provides the inductive step, and hence all the exponents of all the
distinct commutators in each factor T, of the relation (R) are 0 mod p%,
the left side of R is identically 1, and the theorem is established.

Considering the remarks preceding Lemma 4, we can restate Theorem 1
as a theorem about the laws of a variety 8 of type M(p, ¢), since B is in
fact generated by F,(8) ([56], [2]). Thus:

THEOREM 2. For a variety B of type M(p, ¢), all laws of the form
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TI. Wi =1, where W, are commutators of weight c, in n variables, are con-
sequences of the single law in ¢ variables:

(Tg, Tg, = = =, )P = 1.

We can now give the form for a basis of the laws of any given variety
of the type IR(p, ¢), and name any such variety by giving its relevant
exponents. This is done in Theorem 3. The existence of, and generation of,
such varieties, is dealt with in § 5.

THEOREM 3. The laws of a variety B of type M(p, c) can all be derived
from the following basis:

(i) the metabelian law ((x,, x,), (x5, 24)) = 1

(ii) the nilpotency law (x,, Xy, * * *, Ty, Toqq) = 1

(ili) @ set of two-variable laws, ¢ in number, of the form

%1 =1, (x’ ky)P“H-l, k=1,2-++-¢—1
mwhichoy, Z oy =+ Za, = 1.

ProoF. It is known ([5], [2]) that there must be at least one reduced
free group F in B such that B = Var (F). Now B certainly has laws of the
form stated in the theorem, as we know by corollary 1.3, and we will take
the «; as minimal. Then F/y (F) has the law (z, (c—2)y)?*~1 = 1, since
Fly (F) e®; by Lemma 5, o, , is minimal for F/y (F), and by corollary
2.2, this is equivalent to the law (z,, «,, - - -, ,_,)?*~1 = 1in Var (F/y (F));
by Theorem 2, any law of Var (F/y,(F)) of the form [T, W = 1, where
the W, are commutators of weight ¢—1, can be derived from it. Lemma 5
now provides the inductive steps necessary to establish:

“For all & < ¢,

(x’ (c_k)y)ﬁ“e-ku =1

is a basis law in Var (F[y,_,,,(F)) in the sense that all laws of the form
II W4 = 1, W, commutators of weight c—&-+1, follow from it.”

Consider now F, and B, and take any #n-variable law of 8. Then this
law may be written in the form L:

L:xpxp---2p PyPy--- P, =1

where each P, is a product of commutators of weight ¢. By substituting
z, =1, for all 7 k, we have 7, = 0 mod p* for each &, and the law
remaining is P, Py -+ P, = 1. But this law holds also for Var (F/[ys(F)) C%,
and hence P, = 1 is a law which follows from (2, y)?** = 1 and the metabelian
law in the strict sense of Theorem 1 and Theorem 2, (i.e. if P, is written
in the form [, W%, all W, basic commutators of weight 2, then g, = 0
mod p%). Thus P, = 1is a law i 8. The obvious induction, using Theorem 2
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at each stage, then gives that the whole law L follows from the basis ex-
plicitly stated in the theorem, and the theorem follows.

From Theorem 3, we may name any given variety 8 of type M(p, ¢)
by the minimal indices in the basis laws, writing 8 = [a,, a5, * * -, ]
Clearly the varieties of type IM(p, c) for p, ¢ fixed, form a lattice under the
obvious rules. For fixed p, and 2 < ¢, we may include all varieties of type
M(p, k) in the lattice; by interpreting the symbols [«,, a5, - - -, «,] and
(81, Ba, * * *» B.] as equivalent when o, = f, for ¢ =1,2,--- 2 and §, =0
fori = k+1, k42, - - -, ¢, (which is consistent in the light of corollary 1.3),
the obvious rules then become

[ﬁl! Bas Bl Vv [ﬂ],.: /3;’ Yy ﬂ;] = [max (ﬂl’ ﬂ;): *rc,max (ﬂc: ﬂ;)]

and

[.Bl» Bz Bl A [ﬁ;» ﬁ;r Tt ﬁ;] = [min (ﬂl' ﬂ;)» * -+, min (ﬁc:ﬂ:’:)]

5. Theorems on generation and critical groups

Theorem 4 establishes the existence of each variety, and its generation;
Theorems 5 and 6 deal with critical groups, and Theorem 7 deals with the
generation of each variety by a critical group in it.

THEOREM 4. Any given variety [«,, @y, - - -, «,] of type M(p, c) can be
generated by a two-generator group, and hence by ils free group of rank 2.

ProoF. The following group G, of order p1+22s+---+2e may be constructed,
as shown in the Appendix:

G=Gpfab|atr=0bt"rv= (a,b)p's =--- = (a, (c—1)b)P% = (a,cdb) =1,
(a, b, a) = 1, metabelian}.

A simple calculation shows that G € [«,, «,, - * -, 2] and that these indices
are minimal for G and hence for Var (G). Since Theorem 3 applies to Var (G),
we have Var (G) = [y, ap, = - -, ).

We now examine critical groups, and can immediately state:

THEOREM 5. When p > ¢ > 1, any metabelian critical p-group of class ¢
is a two-gemerator group.

Proor. Let H be such a critical group. Then Theorem 4 applies to
Var (H), so that there is a two-generator group G, with Var (H) = Var (G).
Then by a theorem of B. H. and H. Neumann (see [7]), H can be generated
by »n generators, n < 2.

We pass immediately to

THEOREM 6. Let H be a metabelian p-group of class ¢, p > ¢ > 1, with
Var (H) = [o;, oy, * + -, a.). If H is a two-generator group, then
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(i) Var (S—1)H = [0y, B3, ***, Be—1, 2, —1] where B, =max (a,—1, #;,,).
If H is critical, with monolith N, then

(l]) Var (H/N) = [ﬁl’ /32’ Y ﬂc—lr ac—‘l]

(iii) Var (QS—1)H = Var (S—1)H 2 Var (H|N).

Proor. We prove (i) first. Since H has two generators, we can designate
any maximal subgroup S of H as S = Gp {g, ®(H)}, where ®(H) is the
Frattini subgroup of H, and g is some element of H. It is clear that if
(z, (1—1)y) € y?yia (> 1) then (z, dy) € y2, ;.2 A simple calculation,
using the forms z = g°f,, ¥ = g'fs; f1, f; € P(H), shows that (z, y) € yfys,
so we have by induction that (z, 7y) € ¥, ;7,2 (# = 1). Thus, for all proper
subgroups S of H, we have laws giving Var (S) C [, 85, * * *, Be_y» ®.—1].
That there are proper subgroups of H such that each of these indices is
minimal is established as follows:

Consider first the case where a; = «,,, for a particular ¢ > 1. Then
in H there must be two elements g, and g, such that (g,, 7g,) has order
pe+t. But S, = Gp {(g,, &), &2} C H, since (g;, g,) € ®(H), and H is two-
generator. Taking (g;, &,;) for z, and g, for y, we have a contradiction to
(z, ({—1)y)?*! being trivial in S;. Consider next the case a; > a,,, for
some ¢ > 2; there must be elements g, and g, in H such that (g;, (i—1)g,)
has order p*. Then S, = Gp {g2, g,} C H, and using g% for z, g, for y, we
have (z, ({—1)y)?*2 = (g5, (1—1)g,)?* not trivial in S,. Finally, there
must be an element of order p*t in H, which by itself generates a proper
subgroup of H. Thus the result (i) follows.

We next consider H critical, in which case it is a two-generator group,
by Theorem 5, so that (i) still applies to H.

(ii): We note first that for all x and y in H, (, (c—1)y)#*=" is central,
of order p if not trivial; since IV is the monolith of H, it follows that N is
the corresponding verbal subgroup, and so (z, (c—1)y)#*! = 1 isa law in
H|N. Since it is not a law in H, there exist elements g;, g, in H such that
(g5, (c—1)ge)?*® is of order p?, hence not in N, and so (z, (c—1)y)?*2
is mot always trivial in H/N.

Consider now the case when «,_; > «,. Then

(@, (c—2)y)P*erD, 2) = (2, (c—2)y, 2)P %)) = 1

in H. [The equivalence of the two- and three-variable laws is dealt with
by corollary 2.2]. Thus, (z, (¢—2)y)#*-1? is always central, and of order
» when not trivial, and hence lies in N, so that (z, (c—2)y)?*+ ) =1
is a law in H/N. Since there are -elements g,, g in H such that
(87, (c—2)gg)?®-r"® is of order p?, and hence outside N, the index
{o;—y—1) is minimal for Var (H/N) when «,_; > «,.

The case when «, ., = a, i3 iransparent: there are elements g,, &1
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in H such that (g, (c—1)gy)?* ' # 1, i.e. (g, (x—2)gy0)?* ! is not central,
and hence lies outside N, so that (z, (c—2)y)?*~11) is not always trivial
modulo N.

Thus, f._; is the minimal index for Var (H/N); the rest of the 8,
for £ > 1 follow by induction. Whenever «; = «,,,, the centrality argument
applies as above, but whenever «; > «,,,, then (z, ({—1)y)?*~! is central,
of order p or less, and so is trivial modulo N. In that case there are elements
(as g7, gs above) so that (z, (i—1)y)?*~? is not a law in Var (H/N).

Finally, if «, > a,, then #*! is always central, of order p if not
trivial, and hence lies in N. Thus a#*r™! is always trivial modulo N. But
since there must be an element z#*~2 of order $2, hence not in N, we have
that ##*1™2 is not always trivial modulo N, and z?*1! = 1 is appropriate
for H|N.

If o, = «,, we have that if z#*! js always trivial modulo N, then
x#*171 is always central, and hence (21, y) =1 is a law of H, and this
is equivalent to the law J]Z2 (z, y, i) ") — 1. But (by Corollary 1.1),
this would imply (z, y)?**! = 1 as a law of H, which is a contradiction.
We conclude that 2?1 = 1 is the appropriate law for H/N, and so (i) is

established.
The result (iii) follows from (i) and (ii) since

Var (0S—1)H = Var (S—]1)H v Var (H|N),

H being monolithic, and the theorem is proved.

It is worth noting that if «; = g, which occurs if and only if «; = «,,
we are forced to Var (S—1)H = Var (S—1)H = Var (H/N). Two corol-
laries also follow from Theorem 6; examples of the properties they deal
with are to be found in an earlier paper [3].

COROLLARY 6.1. If Var (H) s of type M(p, c), and H is critical, then at
most c—2 varieties B, may be found such that

Var (H)D28,2%8,0---2%B,DVar (0S—1)H,
the inclusions being proper.

COROLLARY 6.2. If Var (H) 1s of type M(p, c), then Var (QS—1)H is
maximal in Var (H) if and only if it is the unique maximal subvariety of
Var (H). -

The final theorem establishes the existence of critical groups.

THEOREM 7. For any given variety [a;, as, - * +, &,] of the type M(p, c),
there exists at least one critical group H such that Var (H) = [ay, oy, * * +, a,]-

ProoF. (We note first that if ¢ = 1, the cyclic group is critical, and so
consider ¢ > 1). For the given variety 8 = [a,, a,, * - -, «,], We determine
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those positions where «; > a;,,, and so determine the subscripts
(s1), (s2), - - - (sm), that

O =0y == °* "= Q) = &
Upy41 = Ogrpg == °* ° ° == Oyy == €y
Hgp == XLgpty — " ° = Ugy em

withk=n—1,(sn) =c,e;, >e > -+ >e¢, = 1.
Let G, be the group which was constructed for the proof of Theorem 4:
we use the notation 4, = a, 4, = (a, (—1)b), to write

Go=Gplablars =brr= AP = ... = AP* =1,(4, 4, =1
for all 7,7, 4,,, =1}

Then Var (G,) = [«,, o3, - - -, a,]. By a simple calculation it is immediate
that Af‘(l")‘"”, Af.(;)'_l’, <o, Aﬁ‘:;"” are all central. Hence, by factoring out

the product of the normal subgroups N,, N,=Gp {Aﬁ‘;‘"” A('.f)""" 1, we have

a group G, ~ Gp {a, b | R} where R includes all the relations in G,, and

also the relations Afc(l’)‘"l’ == A(?‘(:;'_”. It js easily verified that Var (G,)
is still B. (In the extreme case that ¢, = a, = -+ - = «,, G, = G,). Consider

now the set of quotient groups G,/K of G,, where K is normal in G,. Since
this set includes both G, and {1}, there must be at least one group H in the
set which has the property Var (H) = %, and is minimal with this property.
(Thus if N is any proper normal subgroup of H, Var (H/N) is a proper
subvariety of 8.)

We now assert that H is critical.

Clearly H is a two-generator group, inheriting all the relations of G,,
and we adopt the same notation a, b, 4, for it. But part (i) of Theorem 6
was proved using only that H was a two-generator group, hence

Var (S—1)H = [e,, ¢,, ", e,—1, ¢y, -+, a—1,---¢,,¢,—1]

and so H ¢ Var (S—1)H. Suppose H is not critical; then by a theorem of
Weichsel [10] and Kovécs and Newman [7], H belongs to the variety gener-
ated by its proper quotient groups, and from this we derive a contradiction.

Since N, = Gp {42} is still non-trivial and normal in H, we form
H|N, and hence

Var (H[N,) = [&1, &, 0+ Ea—ns Ewns * 5 Ers * 0 5 Eom ]

where &) < e,—1, £, = e3—1, - -+, &, = ¢,—1. Now since H belongs
to the variety formed by its proper quotient groups, and Var (H) = B,
there must then be af least ore other proper normal subgroup N, of H such
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that Var (H/N,) = 11, %, " *, 5.} Where 5,y =¢,. But since g, =9, = -+ 5,,,
this forces n; =9, =+ ++ =5y = ;- But now if any 7, <e¢,; then
A?l e Ny and hence A{"(:)"'” eN,, and so %, < ¢, a contradiction to
Ny = €. Thus 7, = ¢, for each 7, and this forces Var (H/N,) =%, a
contradiction to the choice of H. Thus H is critical, and the theorem is

proved.

6. Appendix

For the purpose of proving Theorem 4, we needed the particular group
G, the recipe for which is given herewith.

Take the ¢ cyclic groups C, = Gp {4,| A?*=1}i=1,2,---,¢, and
form their direct product P. We now split-extend this direct product by
the cyclic group B = Gp {b | b»** = 1} by using the mapping
Al =A4,A4,, -+, A% = A, A, A" = A, which defines an automor-
phism of the direct product. That this has the order p* follows from

k k
AY = A‘A’fHA,(i) e A£°“) (which follows from the commuting of the
4,1in P) and the facts p > c and a3 = a3 = - - - = «,. The mapping itself
gives immediately (4,, ) = 4,,, for 7+ < ¢, and the structure of P gives
(4,, 4;) = 1 for all (z, §). The resulting group is then isomorphic to G by
identifying 4, with a. By adopting the obvious normal form & ], 47
for an element of G, from which any element of y,(G) is of the form
ITiex 4%, £ > 1, it is clear that G is metabelian, of class c, satisfies the
basis laws of [a,, ay, -+ -, «,], and that these indices are minimal for the

laws of G.
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