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1. Introduction

First consider some familiar results, the inequality of the arithmetic
and geometric means is:

J f(x}dx 2; exp J log f(x) dx for all / > 0.

Kantorovich's inequality (reference [1]) asserts that if 0 < A 5g f(x)
^ B then:

The Cauchy-Schwarz inequality is:

This paper discusses a certain class of inequalities which includes the
three above.

Three theorems are proved which apply to any inequality of this class;
then follow some examples. They are mainly to show how the general theory
helps in the finding of inequalities, but the result of Example 1 seems worth
reporting for its own sake.

Roughly, the conclusion is that the problem of finding the best possible
inequalities connecting any k such integrals is the problem of finding a con-
vex hull in ^-dimensional space.

2. General results

Let / i , / 8 , • • • / , be measurable functions on a set E, which is either
the unit interval (0,1) or the real line (— oo, oo), their values being restricted
to sets Slt S2, • • • ST respectively. For each i = 1, 2, • • • k let <f>{ be a real
continuous function on the product space S1xS2x ••• xSr, and let
ui — J s &(/i> ft>" ' fr) &*>• We restrict ourselves to functions such tha t each
ut is finite.

For each family of functions flt- • • fr, there is a point ( « ! , • • • «*)
in ^-dimensional space. Let C be the set of all such points.
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THEOREM 1. The set C is convex.

PROOF. Take any two points u = (wx, • • • uk) and u* = (u*, •••«*)
in C, and let X and fi be positive numbers with sum equal to I.

Let / j , • • • / , be a family of functions that gives rise to the point a in C,
and similarly take any f*, •••/*. Define a new family of functions as follows,
if n is an integer and 0 sS 0 < 1 then:

= ff(n+6)
Corresponding to this family of functions is the point given by »** =

J <Ps(f**>''' /**)d». anc* it is clear that u** = Xus-\-/iu* so that the point
Xu+/xti* is in C, which proves convexity.

The set C is not in general closed (see Example 3 below) but its closure
C is convex. In the next theorem we use the fact that a closed convex set in
finite-dimensional space is the intersection of all the closed half spaces that
contain it (see for example Bonnesen and Fenchel (2) page 5).

THEOREM 2 (a) If the interval of integration, E, is (0, 1) then C is the
intersection of all the half spaces:

{u; a1u1+ • • • +ahuk ^ a0}

that have coefficients such that:

S^V. fcn ' " xr) s^ ao for aM x in Stx • • • xSr.

(b) If E is (—oo, oo) then the same result holds except that a0 is to be put
equal to zero.

PROOF OF (a) First it follows by integration that every point of C is in
the intersection of these half-spaces, and therefore so is every point of C
(because the intersection is closed).

To prove the converse, take any point (yx, • • • yk) not in C; since C is
a closed convex set there must be coefficients bo,bl,---bk such that both:

< K
and for all z in C and a fortiori for all z in C:

From this last inequality, taking the case of functions flt • • • / , ,
each constant, it follows for all hlt • • • hT in SXX • • • x S r that

Therefore the half-space defined by these coefficients is one of those
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mentioned in the statement of the theorem. This proves that the point
Vi>'"' Vk (which was just an arbitrary point not in C) is not in the inter-
section of the set of half-spaces, so that part (a) is established.

PROOF OF (b) In this case the set C is a cone, in the sense that with any
point u it also contains tu for any t > 0, because

= * J
Therefore C is also a cone. The proof of case (a) may then be taken over

with two modifications, that the coefficients a0 and b0 are zero and that we
use the theorem that a closed convex cone with vertex at the origin is the
intersection of all the closed homogeneous half-spaces that contain it.

LEMMA. Given any sequence flt /2 • • • of measurable functions on (0, 1)
with values in a compact set S, there exists a subsequence /(1>, /(2), • • • and a
function f {also on (0, 1) with values in S) such that if q> is continuous then

PROOF. TO any function / on (0, 1) with values in S corresponds another:

f*(x)=ini{y;p{t;f(t)<y}>x}

which is increasing and equimeasurable, so that $cp(f)dx — fq>(f*)dx,
(see chapter 10 of [4]).

Therefore we may assume without loss of generality that the given
functions are all increasing.

Let r(l), r(2), • • • be the rationals in the unit interval. From the given
sequence of functions choose a subsequence such that the values at r(l)
converge. Denote the first member by /(1), and from the others choose a
sub-sub-sequence for which the values at r(2) converge. Denote the first
member by fm, and so on. The function f(x) is defined for rational x by
fix) = lim/<">(a;) and for almost all irrational x by the condition that it is
monotonic. It remains to prove convergence of the integrals; first we note
that for a uniformly bounded sequence of increasing functions, convergence
at the rational points implies convergence p.p. and therefore convergence of
the integrals. Since any continuous <p can be uniformly approximated by the
difference of two increasing functions, the lemma is established.

The following result then becomes clear.

THEOREM Z. If r = 1, the set E is (0, 1), the functions <plt • • • g>k are
continuous and the set S of permitted values for the functions f is compact,
then the set C is closed.

It is sometimes of interest to obtain strict inequalities, that is to
distinguish the interior points from the boundary points of C. If a point
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(«*, • • • «J) of C is on the boundary then it is on the boundary of some half-
space containing C, let it be that defined by:

Then the function 2«,?i(/ i( i) ,1"7r( l t ))~< l i must be ^ 0 on E,
and the families of functions, if any, that give the point («*, •••«*) are
those whose values are the zeros of 2 a,q>,—a0 (as a function of the r variables
h, • • • / , ) •

These considerations generally make it easy to find the cases where the
inequalities that we seek cannot be improved to strict inequalities; also they
enable us to find what points of C are not in C.

3. Some illustrations

Example 1. Take real numbers r < s and 0 < A < B. For any measur-
able function f(x) that satisfies A ^ f(x) 5S B in the interval (0, 1), let:

f(x)ytx and Ut{f)

The problem is to find the inequalities that connect UT with U,.
Let E be the plane set of all points with coordinates (f, f) for / between

A and B. It is an arc of a curve, including the two end-points, (Ar, A') and
(Br, B'). The theorems above show that the set C of all (Ur, U,) is a closed
convex set and is the intersection of all the closed half-spaces that contain E,
that is to say C is the convex hull of E (the convex hull of E is closed because
E is compact).

o <r < s r < 0 < s r < s < 0

The three illustrations are typical of the three possible combinations
of sign of r and s. They show the arc E and the chord joining its end-points,
which together enclose the set C. The dotted curves will be explained below.
In each case the arc is entirely on one side of the chord, and the curvature of
the arc does not change sign.

Therefore the relevant set of linear inequalities will consist of a single
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one corresponding to the chord, and a one-parameter family corresponding
to the tangents to the curve.

An analytic, rather than geometrical, treatment of the problem is as
follows. It covers each of the three possible combinations of sign of r and s.

/ ' /• ArB'-A'Br

Br-Ar B'—A' (BT-Ar){B>-A>)

as a function of the strictly positive real variable /, has just one stationary
value, is zero at A and B, and is positive between A and B. By regarding /
as a function of x and integrating, we obtain the inequality:

Ur U, > ArB'-A'Br

Br-A' ~ B'-A' = (Br-Ar)(B'-A>)

which gives the chord bounding the set C.
Secondly we see that if t > 0 then

as a function of / on (0, oo) is strictly negative except for a zero at t. There-
fore by integration we have the inequalities

t-'UJr-l-'UJs ^ 1/r-l/s

which correspond to the tangents to the curve E. To find the intersection
of these half-planes we take advantage of the fact that for each one we know
the point of contact of the tangent with the curve, in fact it is the case
of equality, given by f(x) = t, so that we may put t — U]!T, which gives
U\h ^ U\'r.

The two inequalities that determine C are therefore:

Ur Us ArB'-A'Br

B'-Ar B'-A' - (Br-Ar){B°-A»)

and Ul
T

lr g U\':
The generalisation of Kantorovich's inequality by G. T. Cargo and

O. Shisha is that the lower bound for U\lr IT1'" is

Their result may be deduced from the first of the two inequalities above,
for we have UlJr 2; a certain function of U,, and the minimum may be
found by differentiation. The result of Cargo and Shisha may be illustrated
in the diagrams above as being that the set C is on the convex side of the
dotted curve, which touches the chord of the arc E.

Of the two inqualities above that determine the set C, the first can be
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strengthened to a strict inequality unless / takes p.p. only the values A and
B, the second can be so strengthened unless / is constant p.p.

Example 2. For functions on (—00, 00) let Un = J \f\ndx. To find the
possible values of (Ult Uz, U4), we may take / ^ 0. From the inequality:

f(f+2t)[f-t)*>0 (all <>0)

we obtain Ut 2? 3t2U2—2t3U1 in which there is equality if / takes only the
values 0 and t, in which case t = U2/U1. Therefore:

UtUl ^ U\

and it is clear that the set C is the set that is specified by this inequality.
(Theorem 17 of reference [4]).

Example 3. Modifying the previous example by taking the interval of
integration E to be (0, 1), the inequalities specifying C are found to be:

U4Ul>U3
2 and U2^Ul

The point U1 = U2= 1, C74 = 2 is in C but not in C. To show this, take
a sequence of functions of which the nth has the value n on an interval of
length 1/M4 and the value 1 elsewhere, which gives a sequence of points of C
converging to (1, 1, 2); but any function for which C/t == t/2 = 1 must be
equal to 1 p.p., so that Ut = 1, and (1, 1, 2) therefore is not in C.

Example 4. Modify the previous example by taking S = [0, B].
A further inequality is obtained by integrating

(f-i)*(f-B)(f+2t+B)<0 (tinS).

The set C is found to be given by:

U\ g UAUl

UJB <Ut^B

In fact the boundary of C consists of portions of the cubic surfaces
given by the first and second inequalities above, each portion being bounded
on one side by the line BU1 = U2 = UJB2 and on the other by the curve

The third inequality above serves the purpose of excluding another
region where the first and second inequalities are satisfied; for the two cubic
surfaces also intersect in another curve, and if B = 3 the point (4, 8, 42)
satisfies the first two inequalities but is not in C.

Example 5. For functions / > 0 on (0, 1) put <px(f) = / and <p2(/) = log /.
Using log / g logt—l+fjt, which holds for all t > 0 with equality

when / = /, we obtain the inequality of the arithmetic and geometric
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means:

exp I log / da; ^ f / dx.
Jo Jo

This example is like Theorem 204 of [4] in deriving the inequality from
the convexity of minus the logarithm function.

My thanks are due to the referee for suggested improvements in this
paper.

References

[1] Henrici, Peter, Two remarks on the Kantorovich inequality, Amer. Math. Monthly,
68 (1961), 904-906.

[2] Bonnesen, T. and Fenchel, W., Theorie der Konvexen Korper, Ergebnisse der Mathematik
und ihrer Grenzgebiete, III, 1, Berlin (1934).

[3] Cargo, G. T. and Shisha, O., Bounds on Ratios of Means, J. of Research, National
Bureau of Standards, 66B (1962), 169—170.

[4] Hardy, G. H., Uttlewood, J. E. and Polya, G., Inequalities, Cambridge Univ. Press (1952).

R.A.A.F. Academy
Point Cook, Victoria.

https://doi.org/10.1017/S1446788700039057 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039057

