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1. Introduction. L e t / be a function mapping the open unit disk D into 
the extended complex plane. A point f on the unit circle C is called an ambi­
guous point of / if there exist two Jordan arcs J i and J2, each having an end-
point at f and lying, except for f, in D, such that 

lim f(z) and lim f(z) 
ZtJl zeJ2 

both exist and are unequal. Bagemihl (1) proved that the set of ambiguous 
points off is at most countable, even if / is not required to be continuous in D. 

Since bounded holomorphic functions in D have no ambiguous points (6, 
p. 303; 9, p. 5), several subsequent investigations have centred about the 
question of the existence of ambiguous points for functions which are ' 'almost" 
bounded in some sense. Bagemihl and Seidel (2) proved that if E is a denumer-
able subset of C, then there exists a function f, regular and of bounded charac­
teristic in D, for which every element of E is an ambiguous point. 

A function / , regular in D, is of bounded characteristic if it satisfies the 
growth condition 

S U p { è fjlo&+\f(rete)\dO: 0 < r < 1J < «>. 
In this paper, we consider classes of functions which are subject to more 
stringent (Orlicz-type) growth conditions. 

If h is a non-negative, non-decreasing function defined on the non-negative 
real axis, then let H(h) denote the collection of holomorphic functions / in 
D for which 

>{/:' s u p l l h[\f(rel,i)\]dG:0<r < l | <<*>. 

We observe that H(xv) is the Hardy class W (p > 0) and that 

H(e*)C H H*. 
0<p<oo 

Theorem 2 of this paper asserts that if E is a denumerable subset of C and 
if h is a non-negative, non-decreasing function defined on the non-negative real 
axis, then there exists a function f in H(h) for which every point of E is an 
ambiguous point. (For finite sets E, this result was anticipated by Gehring (5).) 
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In order to establish Theorem 2, we first prove (Theorem 1) that if h is a 
non-negative, non-decreasing function defined on the non-negative real axis and 
if E is a subset of C whose {linear) measure is zero, then there exists a function 
Q in H(h) such that 

lim Q{z) = oo 
zeD 

for each f in E. Some interest may attach to this result inasmuch as no regular 
function in D can have infinite angular limits on a set of positive measure 
(6, p. 378; 10, p. 212). Theorem 1 (without proof) has been used in another 
connection (4). 

Let f be a point on C. Then the familiar function 

,/ N 1 / f + « 
7 W f - z F ( f - z 

is in i7(log+ x) since it is the quotient of two bounded functions (6, p. 345 ; 
10, p. 56), and it has f as an ambiguous point. Indeed, if z is in D, 

and 

^i-irbr1 

if z is on the circle which has for its diameter the radius of D terminating 
at f. This function serves as a prototype in our proof of Theorem 2. A general­
ization of the factor 1/Q" — z) is embodied in the functions described in 
Theorem 1 ; and the remaining factor motivates our study of the tangential 
limits of functions of the form 

exp) — Zu an~ : 
V 1 Çn — Z 

2. Some l e m m a s . The primary purpose of this section is to establish 
Lemma 3. 

LEMMA 1. Let E = {fi, f2, • . . , f«, • . •} be a denumerable subset of C, and 
let {an} be a sequence of positive numbers such that 

oo 

22 Oin < °° • 
1 

Then 

(1) P(S)=exp^- g ajf^ 
\ 1 Sn z 

is a holomorphic function mapping D into D which has zero as a radial limit at 
each point of E. On the radii in question, the inequalities 
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(2) \P(rU)\ < e x p j - « « Y - r f } (m = 1,2, . . . ; 0 < r < 1) 

hold. 

Proof. The regularity of P is an immediate consequence of the inequality 

fn + S 
a, bn 

< i + M 

in conjunction with the Weierstrass M-test. The remaining assertions of the 
lemma follow from the relations 

l - W 2 l . i i-W2 

(3 G £>;m = 1 ,2 , . . . ) 

Convention. Throughout this paper, if 9i and B2 are angles, the shortest 
distance on C between ei&l and eie* is denoted by |6i — 02|. The expression 
|0 — 0| is abbreviated to |0|. 

Let / b e a complex-valued function defined on D, and let 7 be a fixed num­
ber (7 > 1). Then / is said to have a Ty-limit at a point eiQ on C provided 
there exists a complex number L such that, for each positive real number m, 
f(z) —> L as z —> eiQ

y z being confined to the set 

R(m, 0, 7) = {z : 1 - \z\ > m |arg z - 0|?; 0 < \z\ < 1}. 

We note that the JVlimit is equivalent to the classical angular limit. 7"7-limits 
have been studied in connection with Blaschke products (3); for purposes of 
analogy, it is sometimes convenient to think of (1 — aw)fn as a pseudo-zero 
of the function P given by (1). If eiQ is an accumulation point of the set E 
in Lemma 1, then one can easily verify that 0 is in the cluster set of P at 
eiQ. Nevertheless, we now prove the following lemma. 

LEMMA 2. Let E = {fi, f2, • • • , f«, • • •} oe a denumerable subset of C, let 7 
be a fixed number satisfying 7 > 1, and let {an} be a sequence of positive num­
bers such that 

00 

2 «./le-argf,!* < 00 
1 

for some real number 0. Then 

P(2)=exp{- Ë " . ^ } 
v 1 in ZJ 

has a Ty-limit of modulus 1 at eiQ. 

Proof. From the hypothesis, we see that ^an < œ ; hence P is defined. 
Clearly, it will suffice to consider the case when 0 = 0. 
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Using Dini's theorem (8, p. 293), select a null sequence {wn} of positive 
numbers such that 

CO 

(3) YJ <*n/Wn\ a r g f n | 7 < oo ; 
1 

and then set 

Sn = {z : |fw - z\ < wn |arg f„|?} (« = 1 ,2 . . . .)• 

Given m > 0, we want to prove that P(z) approaches a limit of modulus 1 
as z —> 1, 2 being confined to the set R(m, 0, 7). 

Assume for a moment that R(m, 0, 7) and 
CO 

U Sn 
K—nm 

are disjoint for some positive integer nm. Then 

converges uniformly on R(m, 0, 7); for, if 
en 

a 6 2? - U 5„, 

then 
{•« + « 

< ^|a5f„r in > Hm)' 
and the conclusion follows from (3) and the Weierstrass M-test. 

In virtue of the uniform convergence, 

as 2 —» 1, 2 being confined to R{rn, 0, 7). Since 

W m - 1 5- _L_ » 

re=l i n * 

is continuous at the point 1, the conclusion of the lemma follows at once. 
We still have to prove that nm exists. To this end, take nm to be an integer 

such that 

(4) wn <m(l - \irwn |arg W'1)7 

and 
wn |arg f„|* < 1 

both hold for all n > nm. Then let n be any integer such that n > nm, and 
suppose that zo 6 Snr\D. We want to prove that zoiR(m, 0, 7), that is, 
that 

(5) 1 - |zo| < m |arg z0\
y. 
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Clearly, 

(6) 1 - |z0| < |fn - Zo\ < wn |arg fn|?. 

An obvious geometric argument yields 

|arg z0 - arg fn| < arc sin{wn |arg fw|*} < \irwn |arg fn|?, 

and a simple analogue of the triangle inequality for real numbers gives 

|argfn| - |argz0 - arg fn| < |arg z0\. 

From these last two inequalities, we conclude that 

w(|arg fn| - %wwn |arg fw|?)? < m | a r g s0|*. 

This, combined with (4) and (6), yields (5), as desired. 

LEMMA 3. Let E = {fi, f2, • • • , fm • • •} ^ # denumerable subset of C. Then 
there exists a sequence {an} of positive numbers such that, for each rn, 

P(Z)=exp{- Ë « . £ ^ 1 
is bounded away from zero on the intersection of D and the circle whose diameter 
is the radius of D terminating at fm. {The bound depends on m.) 

Proof. Let ax = 2_1, a2 = 2~2 |arg fx — arg f2|
2, and, for n > 2, let 

aw = 2~n min{ |arg f* - arg fn|
2: 1 < k < n}. 

We note that ^an < <». For a fixed point fm, it is clear that 

< W | a r g U - arg fm+*|2 < 2-<«+*> ( £ = 1 , 2 , . . .)• 

Then, according to Lemma 2, 

POT(z) = exp 

has a TYlimit of modulus 1 at fm. Let s (2 F^ 0, 2 ^ fTO) be a point on the 
circle whose diameter is the radius of D terminating at fm. Since, obviously, 
\z\ = cos(|argz — argfm | ) , it follows that 

1 - \z\ = 2 sin2 (||arg z - arg fro|) > 2x~2|arg z - arg fm|2. 

Accordingly, z is in R(2ir~2, arg fm, 2), and |Pm(s)|—»1 as z —> f w along 
the circle in question. Thus, \P(z)\ —>exp{ — am} as z —> fm along the circle; 
and, since P(s) never vanishes in D, the conclusion of the lemma follows at 
once. 

3. Infinite l imits. We now turn our attention to the problem of con­
structing almost-bounded functions having infinite limits on prescribed subsets 
of C. To effect the construction, we use a familiar technique (10). 
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Throughout this paper, we let 

P{r, G) = • 
1 2 

1 — r 
2r cos 0 + r ' ' 

Given a measurable subset M of the interval [0, 2w], we denote its characteristic 
function by XM\ and we denote the Poisson integral of XM by uM, that is, 

uM(reiQ) = ^ - f P ( M - e)XM(t)dL 
Zir Jo 

Clearly, 0 < ^ M O ^ 9 ) < 1 if 0 < r < 1 and 0 < 0 < 2TT. If ,4 is a measurable 
subset of the real line, we denote its measure by m A or m (A). 

LEMMA 4. Let N be a subset of (0, 2T) whose measure is zero. Then, given 
e > 0, there exist an open set G and a measurable set B such that N C G C (0,27r), 
B C [0, 2ir],mG < e,mB < e, anduG(reiQ) < eifO < r < 1 and 0 6 [0,2TT] - B. 

Proof. Select an open set 5 such that mS < e/2 and A7 C 5 C (0, 2w). For 
almost all 9 in [0, 2ir], 

lim us(rel ) 

exists and is equal to Xs(6)> according to Eatou's theorem (6, p. 337). Using 
an extension of Egoroff's theorem (7, p. 124), we conclude that the con­
vergence is uniform off some set T where mT < e/2. Hence, there exists a 
number rc(0 < r€ < 1) such that us(reiQ) < e if re < r < 1 and 

0 6 [0, 2TT] - B, 

where B = S W T. Finally select an open set G such that N C G C S and 

1 l + r€ 
2TT 1 - rt 

-mG < e. 

Then, clearly, uG(reie) < e if 0 < r < r€ and 0 < 0 < 27r; and, since 
uG(reie) < us(reie) < e if re < r < 1 and 0 G [0, 2w] — .5, the lemma is 
proved. 

LEMMA 5. Let h be a positive, increasing, continuous function defined on the 
non-negative real axis; and let N be a subset of (0, 2TT) whose measure is zero. 
Then there exist open sets Gk (k = 1, 2, . . .) such that 

NCGkC (0,2*), £ mGk < «, 
i 

and 

(7) / ^ [ e x p j i : ^(r^e)} dQ < 2wh(e) + 1 

if 0 < r < 1 awd w = 1, 2, . . . . 

Prtfqf. For k = 1, 2, . . . , let efc = 2-*min{l, 1A0*+1)1- Using Lemma 4, 

https://doi.org/10.4153/CJM-1964-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-022-4


HOLOMORPHIC FUNCTIONS 237 

select an open set Gk and a set Bk such that N C Gk C (0, 2w), Bk C [0, 2ir], 
mGk < ek, mBk < ekl and 

UGk(re ) < ek 

if 0 < r < 1 and G Ç [0, 2TT] - Bk. 
Letting Bk* = [0, 2ir] — Bk, we see that, for each positive integer n, [0, 2ir] 

is the union of the disjoint sets 

^2 n 53* n . . . n Bn*, 
(8) 

z?w_i p 5n*, 
Bre. 

For 9 € ^ i * H . . . Pi 5n*, we have 

0 < uGk(reiQ) < ek (k = 1, 2, . . . , n; 0 < r < 1); 

consequently, 

£ «0t(re<e) < £ et < 1, 

* [ e x p | Ç ««(re19)}"] <*(«) , 

and 

(9) f A exp< è «o*(^*e) 1 de < 2irh(e). 

Likewise, if 9 G B3 P Bj+1* P . . . Pi Bn* (J = 1, 2, . . . , n - 1), then 

2 ] u0k(re%e) <j + ej+1 + . . . + en < j + 1, 
l 

and 

/• r f » Ï 1 
dG < miBuhie*1) < 2~j. 

'Bj()Bj+rr)...r)Bn" L. \ i / J 

Finally, 

(10) f AfexpJÊ u0h(ret6)\ 

« G * ( ^ * ) d6 < m(Bn)h(en+i) < 2~\ 

The integral appearing in (7) can be decomposed into a sum of integrals 
over the disjoint sets in (8). The desired inequality then follows from (9), 
(10), and (11). 
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LEMMA 6. Let g be an extended real-valued function which is defined and 
summable in [0, 2w]. If 

lim g(t) = + œ 

for some to in (0, 2TT), then 

^- rp(r,t-e)g(t)dt^ + co 
Z7T «/ o 

as 
reiQ —» el'o 

//^m within D. 

Proof. A proof of this classical result may be obtained by (correcting and) 
slightly modifying the proof of a somewhat weaker result given in (10, pp. 
20-21). 

THEOREM 1. Let h be a non-negative, non-decreasing function defined on the 
non-negative real axis, and let E be a subset of C whose (linear) measure is zero. 
Then there exists a holomorphic function Q in D such that 

lim Q(z) = oo 
ZtD 

for each f in E and 

s u p j j h[\Q(reiQ)\]dQ:0<r <U < oo. 

Proof. Since we can always find a positive, increasing, continuous function 
h* such that h(x) < h*(x) for all x in [0, oo), there is no loss in generality 
in assuming that h itself has these properties. Moreover, we may assume 
that 1 i E and work with the set N = {t : eix <E £ , 0 < t < 2w}. 

Let Gk (k = 1, 2, . . .) be the sets constructed in Lemma 5. Since YLmGk<co , 
the function 

is summable in [0, 2ir] by Beppo Levi's theorem. A straightforward argument 
shows that 

QW = exP{i £Ç±Ï t XOhm} 
is holomorphic in D and that 

|<2 ( r e
< e ) |=exp{f ; u0k(re16)}. 

If to 6 N, then, clearly, 

Hm X) Xok(f) = +oo. 
t^to l 
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We conclude from Lemma 6 that, for f0 = e*'°, 

lim Q(z) = oo. 

Next, we observe that 

2->ro 
zeD 

* e xP) S uGk(relQ) ( \dQ = h\ exp\ ^ uGk(relQ) 
,^^ o L v i ; J */ o L v i 

de 

J»2TT 

< ». 

A[|Q(re ,u)|]de, 

which, in conjunction with (7), completes the proof of the theorem. 

4. Functions with prescribed ambiguous points. We are now ready 
to prove the main theorem of the paper. 

THEOREM 2. Let E = {fi, f2, . • . , fw, . . .} be a denumerable subset of C, and 
let h be a non-negative, non-decreasing function defined on the non-negative real 
axis. Then there exists a holomorphic function f in D which has each point of E 
as an ambiguous point, and which satisfies the condition 

(12) s u p { X *[ | / (^ < e ) | ]de:0<r<l | 

Proof. We may assume that h(x) > x for all x in [0, oo); for, otherwise, 
we could prove the theorem for the function h*(x) = h(x) + x. 

Let f{z) = P(z)Q(z), where P is the function described in Lemma 3 and 
Q is the function described in Theorem 1. Then, by Lemma 1, \f(z)\ < |Q(z)\ 
if z is in D, and (12) obviously holds. 

We see at once that, for each m, f{z) —» oo as z —> fm, z being confined to 
the circle whose diameter is the radius of D terminating at fOT. 

Finally, we note that 

11Q\| = s u p j ^ £ \Q(reie)\de :0 < r < l j 

is finite since x < h(x). This, in turn, implies that 

(13) !<2(S)|< ( i - IsD-MIGII 

for all z in D. Indeed, if Q(z) = 5^Çw2n, then 

tn = 7T-n \ Q(reiQ)e-inQde (0 < r < 1), 

and 
1 T 2 7 r 

Thus, |{„| < Hen (n = 0, 1, 2, . . .); and, since \Q(z)\ < £|£„| |2|», the result 
follows at once (see 11, p. 103; 10, p. 58). 
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Inequality (13) and inequality (2) of Lemma 1 yield 

)f(rU\ < f ^ e x p j - a r o ^ - y (m = 1, 2, . . . ; 0 < r < 1), 

so that/Os) —» 0 as z —» fm radially. This completes the proof of the theorem. 

5. Conclusion. Theorem 1 of this paper was called to the author's 
attention by Professor Piranian, who has devised an elegant proof of Lemma 4 
which is entirely elementary, the elaborate machinery of Fatou's theorem 
being avoided altogether. We take the liberty of sketching his proof. 

Let B be an open set for which mB < e and N C B C (0, 2TT). Divide 
each component of B into a set of intervals whose end-points lie in the com­
plement of N and whose ordering by position is isomorphic to the usual 
ordering of the integers. Order into a single sequence {Ik\ the set of all inter­
vals thus constructed in B, and let dk denote the distance between Ik and the 
complement of B. For each k, cover the set N P\ Ik with an open covering 
that lies in Ik and has measure less than 2~~kdke. Let G denote the union of 
these coverings. If / 6 Ik and 0 G [0, 2ir] — B, then 

it , iQ 

e + re 
it iO dk 

this, in turn, implies that 

f P(r,t- e)XG{t)dt <2TT2-\ 
J ih 

from which the desired result follows at once. 
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