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ON THE ALGEBRAIC CONVERGENCE OF FINITELY
GENERATED KLEINIAN GROUPS IN ALL DIMENSIONS
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Abstract

Let {G,;} be a sequence of r-generator Kleinian groups acting on R". In this paper, we prove that if {G,;}
satisfies the F-condition, then its algebraic limit group G, is also a Kleinian group. The existence of
a homomorphism from G, to G, is also proved. These are generalisations of all known corresponding
results.
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1. Introduction

In this paper, we will adopt the same definitions and notation as in [5, 7, 8], such as
discrete groups G of M (R), limit sets L(G) of G, nonelementariness and so on. For
example, G is a Kleinian group if G is discrete and nonelementary.

Let {G,;} be a sequence of subgroups in M(ﬁn) and each G,; be generated by
81> 82is----8ri (0<r<oo). If foreachte{1,2,...,r},

gi— g eMR) as i— oo,

then we say that {G,;} converges algebraically to G, ={g1, g2, - - . , &) and G, is called
the algebraic limit group of {G,;}. If, for each i, G,; is a Kleinian group, then the
question when G, is still a Kleinian group has attracted much attention. For example,
in [3], Jgrgensen and Klein established the following classical algebraic convergence
theorem.

—
TueoreM A [3]. Let {G,;} be a sequence of r-generator Kleinian groups of M(R")
converging algebraically to the group G,. Then G, is a Kleinian group.

In higher dimensions, Martin observed that if the sequence {G,;} contains elliptic
elements g,; such that g,; — g, with ord(g;;) — co as i — oo, then the algebraic limit
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group is not a Kleinian group, where ‘ord(g)’ denotes the order of g. This shows that
to study when the algebraic limit group of a sequence of r-generator Kleinian groups is
Kleinian some restriction is needed. In [5], Martin introduced the following restriction.

A set X of M(RH) is said to have uniformly bounded torsion if there is an integer
N > 0 such that for each g € X,

ord(g) <N or ord(g) = co.

By using this restriction, Martin generalised Theorem A to the higher dimensional
case.

Tueorem B[S, Proposition 5.8]. Let G, be the algebraic limit group of a sequence
{G..i;} of r-generator Kleinian groups of M(R ") with uniformly bounded torsion. Then
G, is a Kleinian group.

Recently, Wang [7] and Yang [10] introduced the restrictions ‘EP-condition’ and
‘Condition A’, respectively, to weaken ‘uniformly bounded torsion’. Their results are
as follows.

TueoreM C [7, Theorem 1.1]. Let G, be the algebraic limit group of a sequence {G,.;}
of r-generator Kleinian groups of M (Rn). If (G, ;} satisfies the EP-condition, then G,
is a Kleinian group.

Here a sequence {G;} is said to satisfy the EP-condition if the following two
conditions are satisfied.

(1) For any sequence {fix}, fix € Gic (€{G;}), if card(fix(fix)) =0 and f — f as
k — oo, where f is the identity map [/ or a parabolic element, then {f;} has
uniformly bounded torsion.

(2) {G;} satisfies Property A, that is, {G;} contains no sequences {fi}, {gix} which
satisfy that both fj, gix € Gy (€ {G;}) are elliptic and

fix(fie) N fix(ga) =0,  card(fix(fi)) = card(fix(gu)) = 2,
fe—1 and gy —1

as k — oo,

Tueorem D [10, Theorem 2.4]. Let G, be the algebraic limit group of a sequence {G,.;}
of r-generator Kleinian groups of M (Rn). If {G,} satisfies Condition A, then G, is a
Kleinian group.

Here we say that a sequence {G;} satisfies Condition A if there is no sequence
{fi}s fix € Gix (€ {G;}) with card(fix(fix)) = oo and f — I as k — oo (see [2]).

ExawmpLE 1.1. Suppose that G, =(fi, f») is a two-generator purely hyperbolic
nonelementary subgroup of PSL(2, R) and that, for each natural number i,

a; 0
=5 o)
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where a; = cos(6;7) + eze3 sin(6;7) and each 6; is a rational number. Let

Go;i =(Go, fi).

Then, for each i, G, is a Kleinian group in PSL(2, I'y). If the sequence {6;} converges
to a rational number 6, then the algebraic limit group G3 of {G,;} is also a Kleinian
group; but, if the sequence {6;} converges to an irrational number 6, then Gj is
nondiscrete. Moreover, in the former case, if §; = 1/3/, then we know that the sequence
{G,,;} does not satisfy the EP-condition nor Condition A, but G is still a Kleinian
group.

Motivated by Example 1.1, we introduce the following restriction.

DeriniTioN 1.2. We say that a sequence {G;} satisfies the F-condition if there is no
sequence { fir}, fir € WY(Gy) (€ {G;}) such that fiy — f as k — co, where f is an elliptic
element with ord(f) = co.

Let us recall the important notation WY (G) for a Kleinian group G, which was first
put forward by Wang and Yang in [8]:

WY(G)=1{f": fluc) =1, f €G},

where M(G) is the smallest G-invariant hyperbolic space whose boundary contains
the limit set L(G) of G (see [6]). It is obvious that WY(G) is {I} or a purely elliptic
subgroup of G.

RemMark 1.3. Obviously, if a sequence of Kleinian groups satisfies the EP-condition
or Condition A, then it must satisfy the F-condition. From Example 1.1, we see that
there are sequences of Kleinian groups which satisfy the F-condition but do not satisfy
the EP-condition nor Condition A. Also, if a sequence {G,;} ((WY(G,,)}) of Kleinian
groups has uniformly bounded torsion, then {G, ;} satisfies the F-condition.

By using the F-condition, we get the following generalisation of Theorems B, C
and D.

TueoreMm 1.4. Let G, be the algebraic limit group of a sequence {G,;} of r-generator
Kleinian groups of M (@n). If {G,;} satisfies the F-condition, then G, is a Kleinian
group.

We have the following corollary, which is easily derived from Theorem 1.4 and
Remark 1.3.

CoroLLARY 1.5. Let G, be the algebraic limit group of a sequence {G,;} of r-generator
Kleinian groups of M (Rn). If {WY(G,)} has uniformly bounded torsion, then G, is a
Kleinian group.

Moreover, we prove the following result, which is a generalisation of [5,
Theorem 6.1].
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Tueorem 1.6. Let {G,;} be a sequence of r-generator Kleinian groups of M (@n)
converging algebraically to the group G,. Suppose that the corresponding sequence
{(WY(G,,)} of {G,;} has uniformly bounded torsion and that G, is finitely presented.
Then G, is also a Kleinian group and the correspondence from the generators of G, to
their approximants in G,; extends for all sufficiently large i to a homomorphism of G,
onto G,

2. Proofs of Theorems 1.4 and 1.6
2.1. Several lemmas. The following result due to Waterman is from [9].

Lemma E [9, Theorem 11]. If {f, g) is a Kleinian group ofM(ﬁn), then

If =11+ llg = 111> 55.
The following two lemmas are crucial for the proofs of Theorems 1.4 and 1.6.

Lemma 2.1. Let G, be the algebraic limit group of a sequence {G,;} of r-generator
Kleinian groups of M (@H). Then:
(1) G, is nonelementary, and

(2) G, is nondiscrete if and only if there exists an elliptic element f € WY(G,) with
ord(f) = oo.

Proor. The first part of this lemma follows from [4, Theorem 1.4]. Now we come to
prove the second part. It suffices to show that if G, is nondiscrete, then there is an
element f € WY(G,) with ord(f) = oo, since the converse is obvious. Now we assume
that G, is nondiscrete. Recall that G, is a finitely generated subgroup of M®"). By
applying the Selberg lemma, we know that G, contains a torsion free subgroup G, of
finite index which is nondiscrete as well. Then there exists a sequence {f;} in G, such
that f; — I as j — co. As G is nonelementary, there are finitely many loxodromic
elements gi, g2, . .., gs in G/ such that the set {fix(g), fix(g2), . . ., fix(g,)} spans the
boundary of M(G/). Then, for all sufficiently large j, we have

I =10 - llge = 11l < 55,

where k€ {1,2, ..., s}. Let f; ; and g;; be the corresponding elements of f; and g in
G,,, respectively. Then, for large enough i,

iy =T Ngix = 11l < 55

Lemma E implies that the subgroups (f;;, gix) are elementary. It follows that
fix(gix) C fix(f; ;), which shows that for k€ {1, 2, ..., s} and all sufficiently large j,
fix(gx) C fix(f;). Hence, f; € WY(G,), from which the conclusion follows. O

Lemma 2.2. Let {G;} be a sequence of finitely generated Kleinian groups of M(@n)
converging algebraically to a group G. If there exists a sequence {fi}, fi € Gik
(e {G}}), such that fix — I as k — oo, then, for sufficiently large k, fix € WY (Gy).
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Proor. By [4, Lemma 4.2], we know that for large enough k, fj =1 or there is a
Gir- 1nvar1ant hyperbolic space Il; which is fixed pointwise by fi. So, the closed
set H,k NR" is also G- 1nvar1ant Since the limit set L(G) of Gy is the smallest
Gjr-invariant subset in R similar reasoning as in [I, Theorem 5.3.7] shows that
L(Gy) C I N R , which implies that M(Gy) C I1j. It follows that fz € WY(Gy). O

2.2. Proof of Theorem 1.4. By Lemma 2.1, we only need to prove that there is no
elliptic element f € WY(G,) with ord(f) = co. Suppose on the contrary that there is
some elliptic element f € WY(G,) such that ord(f) = co. Then there exists an integer
sequence {n;} such that " — I as n; — co. For each n;, let £ be the corresponding
element in G,;. By Lemma 2.2 and the hypothesis that {G,} satisfies the F-condition,
we know that ff 7= [ for large enough i. It follows that f" = I, which contradicts the
assumption that f € WY(G,) with ord(f) =

2.3. Proof of Theorem 1.6. The proof easily follows from Lemma 2.2 and a similar
argument as in the proof of [5, Theorem 6.1].
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