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1. Introduction and summary. Let {Xn} (n = 1, 2 , . . .) be a stochastic 
process. The random variables comprising it or the process itself will be said 
to be interchangeable if, for any choice of distinct positive integers ii, i2, Hy 
. . . , ik, the joint distribution of 

Xtu XÎ2, . . . , Xik 

depends merely on k and is independent of the integers ih i2, . . . , ik. It was 
shown by De Finetti (3) that the probability measure for any interchangeable 
process is a mixture of probability measures of processes each consisting of 
independent and identically distributed random variables. More precisely, 
let % be the class of one-dimensional distribution functions and for each 
pair of real numbers x and y let 

S(*,y) = {F e %\F(x) <y}. 

Let SI be the Borel field of subsets of fÇ generated by the class of sets 5 (#> y) • 
Then De Finetti's theorem asserts that for any interchangeable process {Xn} 
there exists a probability measure fx defined on 31 such that 

(1.1) P{B\ = J%PF{B\d»(F) 

for any Borel measurable set B defined on the sample space of the sequence 
\Xn). Here P{B) is the probability of the event B and PF{B] is the probability 
of the event B computed under the assumption that the random variables 
Xn are independently distributed with common distribution function F. 

Note that for Borel measurable point functions / for which the functional 

rf(x)dF(x) 
«J-co 

is well-defined, 

rf(x)dF(x) 
J— co 
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is measurable in F. This follows from the fact that it is true for fs that are 
indicators of half-lines. We then have for any integrable function g on the 
sample space of the sequence {Xn} 

E{g} = [ Er[gM(F) 

where EF{g) is the expectation of g computed under the assumption that the 
random variables \Xn) are independently distributed with common distri­
bution function F. 

In this paper we shall deal only with interchangeable processes having 
finite first and second moments and consequently shall assume without loss 
of generality that all such processes have mean zero and variance one. Let 
\Xn) be such a process and for each positive integer n define 

n 

Sn = 21/ Xi. 
i=l 

We shall say that the Central Limit Theorem holds for the process {Xn} if 
for every real number a we have 

limp{-4^<4 = *(«). 
where 

^ net 
—*«2 «•> - vklf-j-'-' V[2. ' • " * • 

In section two, necessary and sufficient conditions for the Central Limit Theo­
rem to hold for an interchangeable process are derived. In section three, we 
discuss briefly the case of a doubly infinite sequence {Xni\ where for each n 
the random variables Xni are an interchangeable process. A number of con­
ditions sufficient for the asymptotic normality of Sn/y/n, where 

n 

i = l 

are obtained. 
2. The Single Process. Let Xn be an interchangeable process. According 

to (1.1) we have for every positive integer n 

(2.1) p{^n<a\ = ^PF{^n<a}MF). 

For each F Ç g define m (F) and a (F) by 

m(F) = (œxdF(x) and <T\F) = f°° [x - m(F)?dF(x) 

provided these integrals converge. For every real number m and non-negative 
number a let %mur be the set of F for which m(F) = m and <r(F) = <r. It can 
easily be shown that each such $muT is 3l-measurable. Now suppose F £ $0,i> 
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Then it follows from the Central Limit Theorem for a sequence of independent 
and identically distributed random variable that 

limPr\-^r<a\ = 0(a). Wn ) 

Consequently, we see from (2.1) and the Lebesgue bounded convergence 
theorem that the process {Xn} will satisfy the Central Limit Theorem if 
M(5O»I) = 1- We shall show that this condition is also necessary. To do this, 
let § ' be the subset of % for which m(F) and a(F) exist and are finite. Again, 
it is easily seen that g ' is 2I-measurable and from the existence of the first 
and second moments of the process \Xn) it follows that /x(g') = 1. An easy 
computation shows that 

l i m P ^ - ^ <<*( 

exists for each F G $' and depends only on m(F), a(F), and a. If we denote 
the limiting function by f[m(F), <r{F), a] we find 

[Oif m(F) > 0, 

l i f ra (F) < 0, 

(2.2) f[m(F)y a(F), a] = { ° if m ^ = °> "W = 0, a < 0, 
l'rfm(F) = 0,a(F) = 0, a > 0, 

n-rk)if m^ = °> *(p) > °-
Also, let g0 be the set of F Ç % for which m(F) = 0 and g0, + (g0,0) be the 
set of F 6 go for which <r(F) > 0, (cr(F) = 0). Now, if we again employ 
(2.1) and the Lebesgue bounded convergence theorem we find that if the 
Central Limit Theorem is to hold we must have 

(2.3) 0(a) == j^f[m(F)f a(F), a] dp(F). 

Let a > 0. If we use (2.2), (2.3) and the fact that 0 ( - a) = 1 - 0(a) 
we find that 

(2.4) 20(a) - 1 = „($,,.) + J X*[~(£) J ~ V^CO-

On letting a approach infinity in (2.4) we have M (So) = 1. 
Now let G (a) be the distribution function on the real line defined by 

(0 forcr < 0 
Lr{a) \p(F\m(F) = 0, a(F) < a) for a > 0. 

Then we may write (2.3) in the form 

(2.5) 4>(a) = J f[o,a,a]dG(a). 
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If we put a = 0 in (2.5) and use (2.2) we see that G(0) = 0. Thus we have 

(2.6) •<«) = £ ^ W = -±_ j ; £ ' ,-*> dudG(,). 
Differentiating both sides of (2.6) with respect to a and setting a = 1, we 
have 

(2.7) *-* = (œ-e~ia2dG(a). 
Jo & 

But the integrand of the right hand side of (2.7) achieves a unique maximum 
at a — 1 where its value is e~*. Thus, we see that (2.7) holds if and only if 
G (a) has all of its mass concentrated at the point a = 1. 

We summarize in 

LEMMA 1. If {Xn} is an interchangeable process with mean zero and variance 
one the Central Limit Theorem holds if and only if M(SO,I) = 1. 

The condition of the lemma is not very practical since in general it is rather 
difficult to compute the measure JJL associated with a given interchangeable 
process {Xn}. However, we shall show that the condition of Lemma 1 is 
equivalent to a simple condition on the moments of the process. Suppose then 
that the condition of Lemma 1 holds. Then we have for i ^ j 

(2.8) 

EIX.XA = f m\F)dlx{F) = 0, 

EiX^Xj2} = f [EAXWd^F) = 1. 

Conversely, suppose (2.8) holds for i 9* j . Then E{[X? - l][Xj2 - 1]} = 0 
and we obtain 

x m\F)dy.{F) = 0 , 

(2.9) r 

)%[EAX2 - l}fdn(F) = 0. 

But clearly (2.9) implies that M(5O»I)
 = 1- Thus, we have 

THEOREM 1. Let \Xn) be an interchangeable process with mean zero and 
variance one. Then the Central Limit Theorem holds for the process if and only 
if for i-tj 

£ { M , } = 0 and E{[X\- l][X) - 1]} = 0. 

We can rephrase the conditions of the theorem by saying that Xt and Xj 
as well as Xt

2 and Xj2 must have covariance zero (be uncorrelated) for i 9^j. 
Several remarks of interest can be made concerning such processes. In the 

first place, let \Xn) be a sequence of independent and identically distributed 
random variables with mean m, variance a2, and finite third moment. Then, 
it was shown by Berry (1) and Esseen (4) that 
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(2.10) ^ j ^ T <•*-*<«> 
. c E{\X - m 

^ , ~ ~ 3 

|3) 

\/n a 
where c is a universal constant. It is simple to verify that if the Central Limit 
Theorem holds for an interchangeable process {Xn) with finite third moment, 
then the Berry-Esseen bound still applies. 

Secondly, consider an interchangeable process which is generated by a 
mixture over a family of one-dimensional distributions with the property 
that each distribution in the family is completely determined by specifying 
its mean and variance. The Normal distributions, the Poisson distributions 
and the Binomial distributions furnish examples of such families. But in such 
a case it follows easily from Lemma 1 that if the Central Limit Theorem 
holds, the mixture must be concentrated at a single distribution of the family. 
Consequently, we find that if the Central Limit Theorem holds for such a 
process, the random variables must be independent and identically distributed. 

We observe that if {Xn\ (n = 1, 2, . . . ) is an interchangeable process with 
EXi = 0, EXi2 = 1, EXiX2 = p (necessarily non-negative) and such that 
every finite subset has a joint normal distribution, 

n 

i=l 

will be normal with mean 0 and variance n + n{n — l)p. From Theorem 1 
the normalization l/\/n will suffice only if p = 0 (the Xn are independent). 
However, if p > 0, 

1 n 

zT, i=i xt 
has a limiting normal distribution with mean 0 and variance p. 

Finally, we consider again a sequence {Xn) of independent and identically 
distributed random variables. Then, if f(x) is any bounded measurable function 
and the sequence { Yn] is defined by Yn = f(Xn) it follows that the process 
{ Yn) satisfies the Central Limit Theorem. However this is not, in general, 
true for interchangeable processes. For suppose f(X) and g(X) are bounded 
measurable functions and let h{X) = f(X) + g(X). Then, if the Central 
Limit Theorem is to hold for the process h(Xn) we find from Theorem 1 that 
we must have 
(2.11) E{h(Xt) h(Xj)} = [E{h(X)}]\ i*j. 

Now, from the interchangeability of the process {Xn} it follows that 

E{f(Xi)g&>)\ = £ { / ( X , ) g ( X i ) } 

for all i and j . Using this we can expand the left side of (2.11) to obtain that 

E{f(Xt) g(Xj)} = £1 / (1 , ) ] E{g(Xj)}. 

Since / and g are arbitrary, it follows that the random variables Xn are in­
dependently distributed. 
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3. Sequences of interchangeable processes. For each positive integer 
n, let {Xni, i = 1 , 2 , . . . , } be an interchangeable process with mean zero, 
variance one, and finite absolute third moment. If we let \xn denote the measure 
on H occurring in the representation (1.1), it is clear that we must have 
jxn (F\EF{\X\3} < oo) = 1 for every positive integer n. 

By techniques paralleling those employed in the previous section we obtain 

LEMMA 2. Suppose that for every e > 0, 

(i) l i m f t , ( / ! , | | « ( F ) | < - 7 r ) = l, 

(ii) l im*,(F| | < r ( F ) - l | < e ) = 1, 
W-»oo 

(m) lim »n\ F\ — y —3/px < «V» j = !• 

Zfte» for every real number a 

limp{4:<4= *(*)• 
For each integer n let En{ } stand for the expectation of the quantity 

between the brackets computed with respect to the distribution of the wth 
process. With this notation we have 

THEOREM 2. For each positive integer n let {Xni; i = 1, 2, . . .} be an inter­
changeable process with mean zero, variance one, and finite absolute third moment. 

v 
(i) En{XnlXn2} = * ( £ ) , 

(ii) \imEn{Xnl
2Xj\ = 1, 

tt-»oo 

(in) En{\Xnl\
3} = o(Vn), 

then for every real number a 

lim P\--f-< a\ = <t>(a). 

The theorem is obtained by showing that conditions (i), (ii), and (iii) of 
Lemma 2 are satisfied. 

The conditions of Theorem 2 are not necessary. However, it is of some 
interest to remark that in a certain sense these conditions are the best of their 
kind. Given any one of the three conditions, one can find an interchangeable 
process with mean zero, unit variance, and finite third moment which narrowly 
violates the condition, satisfies the remaining two conditions and for which 
the Central Limit Theorem is not valid. 

A somewhat different limit theorem can be obtained in the following way. 
For each positive integer n let {Xni) be an interchangeable process with 
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mean zero, unit variance, and mixing measure nn. Define the distribution 
function Fn(m) by 

Fn(m) = Mn{^| Vn m(F) < m] for n = 1, 2, 

Let F(w) be an arbitrary distribution. Then we have 

THEOREM 3. If 

(i) Km Fn(m) = F(m) 
n-}ao 

at every continuity point m of F, 

(ii) limEn{Xn,iXni2} = 1, 

and 

(in) En{\Xn,i\*} =o(Vn), 

then 

l i m P ^ - < a( = f <j>{a - m)dF(m), < a < oo. 

The result is obtained by making use of the Helly-Bray theorem. 
We note that the limiting distribution obtained in Theorem 3 is the con­

volution of <j> and F. Consequently, it may be regarded as the distribution of 
the sum of two independent random variables, one of which is normal with 
mean zero and variance one and the other with distribution 7̂ . It follows 
from a theorem of Cramer (2) that the limit distribution is normal if and 
only if F{m) is a normal distribution. Now, let Na>b(a) be the normal dis­
tribution with mean a and variance b, that is, 

N°Aa) = vhb}L e-^-a)Vndx_ 
V[2wb], 

Further, for k = 1, 2, . . . , let ak denote the kth moment of 

Then we can give a criterion for normality of the limiting distribution in 
terms of moment conditions on the process as follows: 

COROLLARY. If condition (i) in Theorem 3 is replaced by the condition 

Km En{nmXnlXni ...Xnk\=ak k = 1, 2, . . . 

then 

w-»co v v n 
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