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Electromagnetic interactions of charged
particles with matter

2.1 Generalities on the energy loss process

The processes of transfer of part or all of its energy to a suitable medium, in which
direct or indirect effects of the interaction can be recognized, mediate the detection
of nuclear radiation. A variety of macroscopic mechanisms can be exploited for the
conversion of the energy spent in the medium into a detectable signal: scintillation
in fluorescent materials, chemical transformations intervening in photographic
emulsions, condensation of droplets in saturated vapours or acoustic shock waves
are just a few examples.

For charged particles, the largest fraction of energy dissipated in matter is due to
electromagnetic interactions between the Coulomb fields of the projectile and of
the molecules in the medium. Except for particles approaching the end of their
range, where mechanical elastic collisions become relevant, the slowing down in
matter is mainly due to multiple inelastic processes of excitation and ionization,
whose probability is a function of the energy transfer involved. For fast electrons in
condensed matter, Figure 2.1 gives an example of the dependence of the collision
probability from the energy transfer. In the region between a few and a few tens of
eV, the presence of atomic and molecular excitation levels with energy-dependent
cross sections results in a rather complex structure: this is the region of distant
collisions, since they involve a large impact parameter. Molecules can undergo
radiationless rearrangements, dissociate or get excited or ionized, with the emis-
sion of photons or the appearance of free electron–ion pairs.

At increasing values of the energy transfer, the collision probability decreases
exponentially with energy without particular structure up to the maximum cine-
matically allowed transfers, which depends on the projectile mass and energy.
The outcome of these close collisions, involving increasingly small impact
parameters, is the creation of excited species or the appearance of positive ions
with the ejection of free electrons in the medium. Despite their low probability,
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large energy transfer yields (often named delta electrons) can further interact with
the medium, and play a dominant role in determining the statistics of the energy
loss process.

The number of electromagnetic collisions per unit length of material traversed,
and therefore the resulting energy loss or stopping power, are a fast decreasing
function of the particle velocity; on approaching the speed of light, the energy loss
reaches a minimum and then slightly increases to a constant value, the so-named
relativistic rise and Fermi plateau (Figure 2.2). For gases at moderate pressures,
the increase can reach 40–50% above minimum, while it is reduced in condensed
media.

Most of the considerations in the following sections refer to the ionization
component of the energy loss; in gases, the yields of excitation processes,
luminescence or scintillation photons, are usually too small in intensity to be
exploitable for detection. This is not the case for heavily ionizing particles in high
pressure and liquid rare gases, in which the primary scintillation is sufficiently
intense to provide useful signals. Photon emission can also be enhanced by the
presence of strong electric fields; the processes of primary and secondary photon
emission are discussed in Chapter 5.

At very high particle energy, other mechanisms of electromagnetic interaction
can occur: bremsstrahlung, coherent Cherenkov photon emission, and transition
radiation. Except for electrons, for which bremsstrahlung is considerable even at
low energy, these processes contribute little to the overall energy expenditure of

Figure 2.1 Collision probability of fast electrons in water as a function of energy
transfer (Platzman, 1967). By kind permission of Elsevier.
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heavy charged particles; they can, however, be exploited for particle identification,
through the detection and analysis of the angular distribution and energy spectra of
emitted photons.

Electrons and photons created by the primary encounters can interact with the
medium, releasing further excitations and ionizations; secondary mechanisms,
particularly in composite materials, contribute to the overall photon or electron
yield transferring part of the excitation energy into ionization or vice-versa. Of all
outcomes of the energy loss processes, most gaseous detectors exploit the electrons
created by the ionizing radiation; the presence of residual excited states, ions or
photons is relevant only in that they may induce secondary phenomena, such as
recombination, charge transfers and photoelectric effects. At low energies, the total
specific ionization exceeds three or four times the primary, but this ratio decreases
towards higher energies (Price, 1958).

Table 2.1 summarizes physical parameters useful to estimate the energy loss and
ionization yields of fast charged particles in gases commonly used in proportional
counters (Beringer, 2012). Data are provided at normal temperature and pressure
(NTP, 20 �C and 1 atmosphere); appropriate scaling laws can be used for different
conditions. The energy per ion pair WI and the differential energy loss dE/dx refer
to unit charge particles at the ionization minimum; they correspond to reasonable
averages over existing data and should be considered approximate. The same
comment applies to the number of primary and total ion pairs per unit length, NP

and NT.
The number of primary ionizations, being an outcome of independent Coulomb

interactions, follows a Poisson statistics:
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Figure 2.2 Ionization energy loss of charged particles as a function of velocity.
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Pn
k ¼

nk

k!
e�n, ð2:1Þ

where n and k are the average and actual numbers of pairs, respectively.
The theoretical detector efficiency, defined as the probability of having at least

one interaction, is then:

ε ¼ 1� Pn
0 ¼ 1� e�n: ð2:2Þ

No simple expression exists for the number of primary ionizing encounters, and
one has to resort to experimentally determined data or dedicated simulation
programs. For fast singly charged particles, the specific primary ionization
increases almost linearly with the average charge number of the medium, as shown
in the compilation of Figure 2.3 (Smirnov, 2005).

Table 2.1 Physical constants for various gases at NTP and approximate values of energy
loss and ion-pair production (unit charge minimum ionizing particles).

Gas
Density
mg cm�3 Ex eV EI eV WI eV

dE/dxjmin

keV cm�1 NP cm
�1 NT cm�1

Ne 0.839 16.7 21.6 30 1.45 13 50
Ar 1.66 11.6 15.7 25 2.53 25 106
Xe 5.495 8.4 12.1 22 6.87 41 312
CH4 0.667 8.8 12.6 30 1.61 37 54
C2H6 1.26 8.2 11.5 26 2.92 48 112
iC4H10 2.49 6.5 10.6 26 5.67 90 220
CO2 1.84 7.0 13.8 34 3.35 35 100
CF4 3.78 10.0 16.0 54 6.38 63 120

Figure 2.3 Primary ionizing collisions per cm as a function of atomic number of
gases at NTP (Smirnov, 2005). By kind permission of Elsevier.
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The total number of ion pairs released in a medium in the absence of recombin-
ation or other secondary processes can be estimated from the expression:

NT ¼ ΔE
W I

, ð2:3Þ

where ΔE is the total energy loss in the material; the average energy per ion pairWI

varies between 20 and 40 eV for most gases (see Table 2.1) and depends little on
the mass and energy of the ionizing particle.

In composite materials and for the gas mixtures used in proportional counters, a
composition law based on the relative concentrations can be used with good
approximation, neglecting interactions between excited species; the differential
energy loss in a mixture of materials A, B, . . . with relative mass concentrations
pA, pB, . . . is then given by:

ΔE
Δx

¼ pA
ΔE
Δx

� �
A

þ pB
ΔE
Δx

� �
B

þ . . . : ð2:4Þ

As an example, the average energy loss and ionization density for a relativistic
charged particle in a gaseous counter filled with a mixture of argon–isobutane in
the mass proportions 70–30, at normal conditions, from the table and using the
appropriate composition laws, are ΔE ¼ 3.5 keV/cm, NP ¼ 45 ion pairs/cm, NT ¼
136 ion pairs/cm; the average distance between primary ionizing collisions is about
220 µm, and each primary interaction cluster contains three ion pairs. These are of
course average numbers; the actual statistical distribution of the yields will be
discussed later.

2.2 The Bethe–Bloch energy loss expression

The energy loss processes due to multiple Coulomb interactions of charged
particles have been subject of research since the original works of Rutherford on
heavy particle scattering. In a semi-classical formulation, usually referred to as the
Rutherford expression, the probability of a unit charge particle of velocity β to
release an energy between ε and εþdε in a layer of a material of thickness dx and
density ρ can be written as:

d2N
dx dε

¼ K
Z

A

ρ

β2
1
ε2

K ¼ 4πNe2

mc2
: ð2:5Þ

e and m are the charge and mass of the electron, Z, A and ρ the medium atomic
number, mass and density, and N Avogadro’s number; in the CGS system of units
the rest mass of the electron mc2 ¼ 0.511 MeV and K ¼ 0.308 MeV g�1 cm2.
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Expression (2.5) describes well the energy loss process of ions for intermediate
velocities. Several corrections are, however, necessary both at low and very
high velocities to obtain agreement with the experimental results (Fano, 1963;
Northcliffe, 1963). In a general formulation the differential energy loss, or stopping
power (Bethe–Bloch expression) is written as:

ΔE
Δx

¼ �ρ
2KZ

Aβ2
ln

2mc2β2

Ið1� β2Þ � β2 � C

Z
� δ
2

� �
: ð2:6Þ

The expression shows that the differential energy loss depends only on the
particle’s velocity β and not on its mass; the additional term C/Z represents the
so-called inner shell corrections, that take into account a reduced ionization
efficiency on the deepest electronic layers due to screening effects, and δ/2 is a
density effect correction arising from a collective interaction between the medium
and the Coulomb field of the particle at highly relativistic velocities; its contribu-
tion is small for non-condensed media. It should be noted, however, that in thin
absorbers electrons produced with high momentum transfer might escape from the
layer, thus reducing the effective yield.

No simple analytical expression for the correction factors in expression (2.6) has
been given; tables and compilations allow their estimate (Gray, 1963; Fano, 1963;
Northcliffe, 1963). Alternatively, one can find tables and plots of energy loss for
ions in both the low and intermediate (Williamson and Boujot, 1962; Ziegler,
1977) and the high energy regions (Trower, 1966). Web-based platforms permit
one to compute stopping powers and ranges of charged particles in a wide range of
materials and energies (Berger et al., 2011). Expressing the material thickness in
reduced units (length times density), the stopping power is around 2 MeV cm2g�1

almost independently from the material, with the exception of very light materials,
as shown in Figure 2.4 (Beringer, 2012).

Expressed as a function of momentum, the average energy loss depends on the
mass of the particle; this can be exploited for particle identification, as discussed in
the next section. An example is shown in Figure 2.5 for an argon–CO2 mixture at
atmospheric pressure (Allison et al., 1974).

2.3 Energy loss statistics

The differential energy loss computed with the Bethe–Bloch expression or
obtained from the described compilations represents only the average; event per
event values fluctuate around the average, with a distribution that depends on
the particle energy and the absorbing medium nature, thickness and conditions.
The process is dominated by the statistics of emission of energetic delta electrons;
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the simulation programs mentioned in the previous section can describe it in detail.
However, it is instructive to use a simple formulation derived from Rutherford’s
approximation. Assuming that all energy in an interaction is imparted to a quasi-
free electron, integration of expression (2.5) between ε0 and εM (the maximum
energy transfer) gives the probability of creating in a layer dx an electron of energy
equal or larger than ε0:

dNðε > ε0Þ
dx

¼ W
1
ε0

� 1
εM

� �
ffi W

ε0
, W ¼ K

Z

A

1

β2
, ð2:7Þ

an approximation valid for εM � ε0.
A comparison between the probability deduced from this expression and the

result of a more sophisticated quantum-mechanical Monte Carlo calculation is
shown in Figure 2.6 (Lapique and Piuz, 1980); the second shows clearly the
contribution of the various electronic shells levels. For many practical purposes,
however, the simpler formulation is often good enough.

Figure 2.4 Differential energy loss as a function of velocity and momentum
for singly charged particles in different materials (Beringer, 2012). By kind
permission of the American Physical Society.
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As an example, in one cm of argon at STP there is a ~5% probability of
emission of an electron of energy equal to or larger than 2 keV; this has to be
compared with the average energy loss of 2.4 keV/cm in the same conditions (see
Table 2.1), meaning that in 5% of the events the observed energy loss is almost
twice the average.

The production of energetic secondary (delta) electrons, with low probability
but large ionization yields, determines the peculiar shape of the energy loss
distribution; named the Landau expression, from the Russian physicist who studied
the process in the forties, it can be written as:

f ðλÞ ¼ 1ffiffiffiffiffi
2π

p e�
1
2ðλþe�λÞ, ð2:8Þ

where the energy variable λ represents the normalized deviation from the most
probable energy loss (ΔE)MP:

λ ¼ ΔE � ΔEMP

ξ
, ξ ¼ K

Z

A

ρ

β2
x:

For thin gas samples, the width of the energy loss distribution is close to the most
probable value, with a characteristic asymmetric tail at large values. In Figure 2.7
(Igo et al., 1952), values measured with a proportional counter are compared with

Figure 2.5 Mass dependence of the average specific ionization as a function of
the particle momentum in the relativistic rise region (Allison et al., 1974). By kind
permission of Elsevier.
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Landau’s prediction, showing a good concordance; dedicated studies and refine-
ments of the theory have since improved the agreement. In the figure, the dashed
curve is the expected distribution for a Gaussian statistics, i.e. only determined by
the fluctuations in the number of primary ionization encounters.

Figure 2.8 (Lehraus et al., 1981) gives an example of energy loss distribution
measured with a thin gaseous counter for particles of different mass (protons and
electrons) and equal momentum. As expected, the most probable values differ by
about 30%, but the distributions largely overlap due to the Landau energy loss
statistics. To achieve particle identification, multi-sampling devices are used to
measure many independent segments of the same tracks and combine them with
appropriate statistical analysis; a truncated mean algorithm on 64 measured
samples results in the distributions shown in Figure 2.9, with a good separation
between protons and pions and, to a lesser extent, electrons (Lehraus et al., 1981).

Motivated by the development of multi-wire chamber arrays for relativistic
particle identification, systematic measurements have been made to find gas

Figure 2.6 Number of electrons produced by ionization at an energy equal to or
larger than ε0; the full curve is a Monte Carlo calculation, the dashed line the
prediction of Rutherford theory (Lapique and Piuz, 1980). By kind permission of
Elsevier.
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mixtures with the best resolution. A compilation of results is given in Figure 2.10,
providing the relative resolution (FWHM/most probable energy loss) in a wide
range of gases and as a function of sample thickness (Lehraus et al., 1982). As
shown also in Figure 2.11, from the same reference, the best resolution is obtained
with hydrocarbons; unfortunately, in light molecular gases the relativistic rise is
smaller than for the noble gases, balancing the improvements due to resolution. In
consideration also of their flammability and tendency to create deposits under
irradiation (see Chapter 16), the use of hydrocarbons gas fillings has been basically
abandoned, except in small percentages.

A model for the calculation of ionization losses of relativistic particles in thin
absorbers, with comparison to experimental results, is given in Grishin et al.
(1991).

Using an improved photo-absorption ionization model, Smirnov (2005) has
computed the distribution of the energy loss of fast particles in a range of condi-
tions and compared the results with experimental measurements; the program

Figure 2.7 Comparison of experimental data (points with error bars) and Landau
theory calculations of the energy loss in a thin sample of gas. The dashed curve
represents the Gaussian expectation for the same average energy loss (Igo et al.,
1952). By kind permission of the American Physical Society.
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HEED, available on-line, allows one to compute the energy loss processes in a
wide range of conditions (Smirnov, 2012). The agreement is excellent, as shown in
Figure 2.12 and Figure 2.13, providing the energy loss for pions and electrons, in
the region of the relativistic rise, as a function of the particle velocity and for
several model calculations.

The probability of a primary ionization center consisting of several secondary
ion–electron pairs, or cluster size, can be computed with the programs mentioned
above, or directly measured; it is a fast decreasing function of the number of
charges in the cluster, and depends little on the medium. Figure 2.14 shows
measured values for argon and methane (Fischle et al., 1991).

Attempts have been devised to exploit the primary ionization information, a
method named cluster counting, that would allow one to improve considerably
the particle identification resolution (Walenta, 1981). The experimental problem
is to preserve the structure of the primary clusters during their drift to a collect-
ing electrode, since the cloud is quickly smeared by diffusion. In the time
expansion chamber (TEC), described in Section 9.5, this is partly achieved with
a suitable optimization of the gas mixture having low drift velocities at moderate
electric fields. The primary clusters distribution for relativistic particles,

Figure 2.8 Experimental energy loss spectra in a thin sample of gas for protons
and pions of equal momentum (15 GeV/c) (Lehraus et al., 1981). © The Royal
Swedish Academy of Sciences. By kind permission of IOP Publishing.
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measured with a TEC prototype, exhibits a Poisson-like shape, as against a
Landau distribution that would result when recording the total ionization loss
(Walenta, 1979).

By operating a drift chamber with helium-containing gas fillings to increase
the distance between clusters, some efforts to improve on particle identifica-
tion resolution at high energies have met a moderate success (Cerrito et al.,
1999).

Model calculations suggested, however, that the primary ionization increase in
the relativistic rise region is only a fraction of the total, as shown in Figure 2.15,
demonstrating that an important fraction of the relativistic rise is produced by the

Figure 2.9 Particle identification resolution obtained from statistical analysis of
energy loss measured on 64 track samples (Lehraus et al., 1981). © The Royal
Swedish Academy of Sciences. By kind permission of IOP Publishing.
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Figure 2.10 Resolution of the ionization energy loss of fast particles for several
gases, as a function of the sample thickness given in atm.cm (Lehraus et al.,
1982). By kind permission of Elsevier.

Figure 2.11 Relative ionization energy loss resolution in several gases in 4 cm
gas samples (Lehraus et al., 1982). By kind permission of Elsevier.
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Figure 2.12 Comparison between measured and computed energy loss distribu-
tions (Smirnov, 2005). By kind permission of Elsevier.

Figure 2.13 Relative most probable ionization loss measured and computed
with several models (Smirnov, 2005). By kind permission of Elsevier.
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Figure 2.14 Cluster size probability for fast particles in argon and methane
(Fischle et al., 1991). By kind permission of Elsevier.

Figure 2.15 Relative ionization computed for the total losses under slightly
different assumptions (c1 and c2), for the number of primary clusters (a)
and the mean number of released electrons (b). The dots represent an
experimental measurement. (Lapique and Piuz, 1980). By kind permission of
Elsevier.
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secondary delta electrons produced by primary encounters; this reduces the pos-
sible advantages of the improved statistics and brings the expected resolution of the
cluster counting technique close to the one of a simpler total ionization loss
measurement (Lapique and Piuz, 1980).

Figure 2.16 Definition of the practical electron range from attenuation curves.

Figure 2.17 Practical electron range as a function of energy in several materials
(Kanter, 1961). By kind permission of the American Physical Society.
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2.4 Delta electron range

A consequence of the delta electron statistics is the smearing of the ionization trails
outside the line of flight of the particle; this can be a limiting factor in the
localization capabilities of detectors, in general only recording the average position
of the ionization clouds (Sauli, 1978).

Due to multiple scattering with the gas molecules, slow electrons do not follow
straight trajectories; the average distance from the emission point, or practical
range, is shorter than the integrated path length. The practical range for a given
energy is defined from the extrapolation to the abscissa of the attenuation curve at
increasing absorber thickness, as shown schematically in Figure 2.16 for two
mono-energetic beams of electrons. Expressed in reduced units, the practical range
for slow electrons in light materials is almost independent of the element, as seen in
the compilation of Figure 2.17 (Kanter, 1961).

For slow electrons (between 1 and 40 keV), a good approximation of the
electrons’ practical range in light elements is given by:

R ¼ 10:0 E1:7, ð2:9Þ
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Figure 2.18 Approximate electron range in gases at NTP as a function of their
energy.
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with R in µg cm�2 and E in keV (Kobetich and Katz, 1968). Figure 2.18 gives the
electron range in several gases at NTP computed from the expression; in argon, a
2 keV electron has a practical range of 180 µm. As indicated in the previous
section, an electron of at least this energy is produced in 5% of the events; for
those tracks, a corresponding systematic shift of the measured position is
expected, contributing to the tails in the distributions, compared with typical
localization error of 50–100 µm achieved with high accuracy drift chambers
(Breskin et al., 1974b). An example is shown in Figure 2.19, providing the
measured drift time distribution in the detector for tracks perpendicular to the
drift direction; the asymmetric tail on the left side is due to the earlier arrival of
the charge released by long-range delta electrons, and corresponds to about 5%
of the events.

Figure 2.19 Localization accuracy in drift chambers, showing larger deviations
at short drift times due to ionization produced by long-range delta electrons
(Breskin et al., 1974b). By kind permission of Elsevier.
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A similar dispersive effect is observed in detectors exploiting the measurement
of the cathode-induced charge profile; asymmetries in the energy loss result in a
strong dependence of the localization accuracy on the incidence angle of tracks,
see Section 8.9; an example is shown in Figure 2.20 (Charpak et al., 1979b).
The two dispersive effects add up in devices exploiting both the drift time and
the induced charge measurements, as the time projection chambers (Chapter 10).

Use of heavier gases or higher pressures helps reduce the range of electrons of a
given energy, but may be compensated by the increase in their number.

Figure 2.20 Angular dependence of the localization accuracy measured with the
cathode induced charge method (Charpak et al., 1979b). By kind permission of
Elsevier.
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