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Abstract

This paper deals with solid topologies and convergence structures on the vector-lattice CX
(the set of all continuous real-valued functions on a space X): the closed ideals and locally
convex topologies associated with such structures are studied in particular. The work stems
from E. Hewitt’s paper on bounded linear functionals, touches on the classical theorems of
L. Nachbin, T. Shirota and others (determining when the topology of compact convergence
is barrelled or bornological), and extends some recent results on the duality between X and CX.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 54 C 35; secondary 54 A 20.

1. Introduction

It is well known that if X is a compact space, a linear functional on CX is bounded
exactly when it is continuous with respect to the topology ¢, of uniform convergence.
However, Hewitt (1950) showed that this is not necessarily true of more general
spaces: t,-continuous functionals or seminorms on CX need not be bounded.
Nevertheless, boundedness can be characterized analytically.

One way of doing this is to define a convergence structure ¢,, on CX (or, more
generally, on any vector space with modulus), such that a seminorm is bounded
if and only if it is g,,-continuous. Since g, lies between ¢,, and the topology ¢, of
compact convergence, q,, = ¢, if X is compact. Unlike some other generalizations
of ¢, such as ¢, or the structure g, of continuous convergence defined by Binz (1975),
g, is algebraic in nature and provides no more information about X than CX itself.

~an
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Because of this, in studying ¢, by itself one may suppose that X is a real-compact
topological space. For example, by making this assumption one can show that
t,, and g, admit the same closed ideals, and the locally convex topology associated
with g,, is #;. (Actually, this fact is in essence one of the characterizations of real-
compact spaces obtained in Gulick and Gulick (1976).)

More generally, for any space X the position of g,, between ¢, and ¢, can be
estimated by comparing it with other structures in this range, such as g, locally
uniform convergence gq;,, the Marinescu structure of continuous convergence g;
and their order-bounded modifications. It turns out that q,, is finer than the finest
of these, og;. A measure of the distance between ¢,, and ¢; or og; is the strength
of the condition needed for equality: for instance, if X is a c-embedded space
then g,, = ¢; if and only if X is compact and ¢,, = og; if and only if X is a Lindelsf
topological space.

Finally, as the order-bounded structures og;, 0g;,, and og, are less widely known
than their parents, their properties are briefly discussed. They all have the same
closed ideals, namely, the pointwise closed ideals. On the other hand, Kutzler
(1974) found a locally compact Hausdorff topological space such that (i) g, = #,
because of local compactness, but (ii) the locally convex topology ¢ associated
with ogq, is properly finer than ¢,. A few results are given, serving mainly to outline
the problems and show that in Kutzler’s example, # is not a topology of uniform
convergence at all.

1. Groundwork and notation

The language of convergence spaces is used throughout: readers unfamiliar with
it may consult the recent treatise of Binz (1975), the pioneering papers of Fischer
(1959) and Kowalsky (1954). In this paper though, it matters little whether their
definition of convergence space (Limesraum) is used or a less restrictive one; the
definition given below is suitable.

A pair (Q,q) is called a convergence space if Q is a set and ¢ a map (known as its
structure) associating with each x in Q a collection g(x) of filters on Q such that

(i) the ultrafilter X belongs to g(x), and

(ii) if # eq(x) and ¥ is finer than & n x then ¥ eq(x).

For typographical clarity, the adherence operator associated with a convergence
structure ¢ on Q is denoted by ¢ as well: that is, if A< Q then

g4l = {xeQ: AeF for some F eq(x)}.

Use of this non-standard convention is clearly signalled. Further, if & is a filter
on Q and & meets A (meaning that Fn 4 is non-void for all Fin %) then # n 4
and Z| 4 denote the filters on Q and A respectively generated by {FnA4: FEZ}.
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[3] Order-bounded convergence structures 41

Though the set CX of all continuous functions from a convergence space
X =(Q,q) to the scalar field F is a lattice algebra when F is real, its order structure
is not so simple in the complex case. What is common to both is a modulus: this
suggests studying ‘mod-spaces’ in general.

Take F to be the real or complex field, and let E be a vector space over F. A
map m: E—E is called a modulus if for all ¢,b in E and r in F,

@ m(a) = m(m(a)),

(i) m(ra) =|r|m(a),

(so the relation < on E defined by ‘a<bd if b—a = m(b—a) is reflexive and
translation-invariant)

(iii) m(a+b) < m(c)+m(b), and

(iv) m(a)<a implies m(a) = a.

In this case, (E,m) is said to be a mod-space, and < is a pre-order compatible
with the vector structure. Further, m(a— 8) > m(m(a) — m(b)).

From now on, let (E, m) be a mod-space and for each a in E, define B, to be the
set {e: m(e)<m(a)}. A subset A of E is said to be mod-closed if m(A)< A, or
mod-convex if B,< A for all a in A. (Mod-convex subspaces are an exception:
they are usually called bands. For example, the kernel M of m is a band making
m constant on the translates of M—that is, m(b) = m(a) if m(b—a) = 0.)

Next, a structure g on E is called homogeneous (or translation-invariant) if the
translations are all homeomorphisms. Further, ¢ is said to be a vector structure if
the operations (addition and scalar multiplication) are continuous. Clearly vector
structures are homogeneous; their well-known internal characterization can be
found in Fischer (1959), Satz IIL9.

Let .# be the family of all mod-convex subsets of E. For each filter & on E,
M N F is a base for a coarser filter #(F) on E, known as the .#-closure of F.
Clearly # is #~closed (namely, # = .#(%)) if and only if it has a base of mod-
convex sets. Similarly, for any translation-invariant structure (briefly, ti-structure)
g, one gets a coarser ti-structure mq by defining

mq(0) = {¥: ¥ is finer than A (%) for some F €4(0)}.

This leads one to call g mod-convex if g =mgq, or equivalently if #(F)eq(0)
whenever & €¢(0). The reader will easily verify the following facts.

1.1. Let q be a homogeneous structure on E. Then mq is the finest mod-convex
ti-structure coarser than q, and the modulus is mq-continuous. Further, if q is a
vector structure then so is mq.

Similarly, with each ti-structure g is associated its order-bounded modification
og: that is, the ti-structure such that & €0g(0) if and only if # €4(0) and B, €%,
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for some a in E. Naturally if g is a vector structure or a mod-convex structure,
then so is og.

Amongst all vector structures on E is a finest one, g;, in which & is g-convergent
to 0 if and only if for some finite-dimensional subspace H of E, He%# and & |H
converges to 0 in the usual Euclidean topology on H. (In the language of Binz
(1975), (E,qy) is a Marinescu space, being the convergence space inductive limit of
a family of locally convex topological vector spaces—in this case, all its finite
dimensional subspaces.) Every linear functional or seminorm on F is g-continuous:
in short, ¢; might as well be known as the fine vector structure on E.

Analogously, the mod-space (E, m) admits a finest mod-convex vector structure
4., known as the mod-fine vector structure, namely, q,, = mq, However, a more
explicit description of g, is needed. For any a in E, set B, = {e€ E: m(e) <m(a)}
as before, and E, = {JPnB,. Then E, is a band and B, is a mod-convex unit ball
for a norm topology t, on E,. Clearly if 0<a<b then E,< E,, the inclusion map
being ¢, = t,-continuous.

Now one can define a homogeneous structure ¢ on E as follows: # €q(0) if
for some a in E, the set E, belongs to &, and & | E, converges to 0 in (E,,1,).

1.2. The structure q defined above coincides with q,,, so that q,, is an order-
bounded Marinescu structure.

Just as with vector lattices, one says that a linear functional or seminorm p on
E is bounded if p(B,) is bounded in F for all a in E. Similarly, it is said to be full
if p(a) = p(m(a)) for all a in E and p(a) <p(d) if 0<a<b in E. Clearly, full semi-
norms are bounded. Conversely, the best one can hope for is for each bounded
seminorm to be majorized by a full one, a property symbolized by (B< F).

Though ¢,, has wider applications than this, I was first led to study it when I
wished to restate the geometric property of boundedness in analytic terms. The
restatement is obvious,

1.3. A seminorm or linear functional is bounded if and only if it is q,,-continuous.

Moreover, as the kernel of a seminorm is a vector subspace, one has an obvious
corollary.

1.4. The kernel of a bounded seminorm is q,,-closed: if the seminorm is full, it is
actually a q,,-closed band.

Full seminorms are often easier to deal with than others: the purpose of (B< F)
is to guarantee ‘enough’ full seminorms. Another useful property (enjoyed by all
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vector lattices but not all mod-spaces) is the decomposition property: namely,
Ba+b=Ba,+Bb ifa?OSb.

Let p be a bounded seminorm on E, and define p*(a) = sup{p(d): b€ B,} for
all @ in E. By construction, p* is full and p*(ra) = |r|p*(a) for all r in F and all
ain E.

Now suppose that (E,m) has the decomposition property, and let a,b belong
to E. If m(e) <m(a+ b)<m(a)+m(b), this property provides ¢ in B, and d in B,
such that e = c+d, Thus p(e) <p(c)+p(d) < p*(a)+p*(b) for all e€ B, ,;, so that
p*(a+b)<p*(a)+p*(b). In short, p* is a full seminorm majorizing p.

This fact, that the decomposition property implies (B < F), was noted by Kutzler
(1974), Peressini (1967), p. 105, and doubtless others too.

Locally convex vector topologies arise now: with any convergence structure ¢ on
E is associated the locally convex vector topology lg generated by all the g-
continuous seminorms. In general, it is not mod-convex, but . . .

1.5. THEOREM. Let (E, m) have the decomposition property, and suppose that q is
a mod-convex vector structure. Then lq is mod-convex as well, being generated by all
the g-continuous full seminorms.

PROOF. Let p be a g-continuous seminorm. By 1.2, p is ¢,,-continuous and hence
bounded : thus the functional p* constructed above is a well-defined full seminorm.
To show that p* is g-continuous, it is as usual sufficient to prove its continuity at 0.

By definition, for all a in E, p*(a) e p(B,), the closure of p(B,) in R. Thus for
any mod-convex set 4 in E, p*(4)< p(A). Now as R is a regular topological space,
one can see that p*(#)—0 in R whenever & is an .#-closed filter such that
p(F)—0in R. In particular, p* is g-continuous at 0 as desired.

Consequently lg coincides with the apparently weaker vector topology generated
by all the full g-continuous seminorms, a topology which is clearly mod-convex.

Finally, suppose E to be an algebra. Then (E, m) is said to be a mod-algebra if
there is a positive real number r such that m(ab)<rm(a)m(b) for all a,b in E.
In this case, the multiplication is g,,-continuous, so that ¢,, is an algebra structure.
However, a vector convergence structure ¢ may have the property that a# €g(0)
when & €4(0), without the multiplication’s having to be jointly continuous. Such
a structure is known as a semi-algebra structure.

2. Function algebras
Let X be a convergence space. With the usual operations defined pointwise, the

set E = CX is a mod-algebra. Most of the apparatus needed in the study of g-closed
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ideals and bands and the topology /g is described here, for any mod-convex vector
structure ¢ on E. It is then used on g,, in particular.
To start with, define a commutative binary operation %, on F by

r%s = sgn(rs)min{|r|, |s|}

for all r, s in F (where sgn(#) = #/|#] if #£0 and sgn(0) = 0).

21. Forallr,sandtinF,
@) |r%s| = min{|r|,|s|}, and
@) |rot—s%t|<|r—s|.

PROOF. Trivially, (i) holds true. Now let u = |#|, ' = r%u and s’ = s%u. Since
r%t—s%t =sgn(t)(r'—s"), it remains only to show that |r'—s'|<|r—s|. An

easy proof can be obtained using the diagrams given below, in which the circles
are centred on the origin and have radius u (Fig. 1).

FIGURE 1.

2.2. The operation %, is continuous, regarded as a function from F? to F.

ProoF. For any r,s,t,u in F, one has by (ii) above
|r9%s—t%u|<|r%s—t%s|+|t s~ %ul
<|r—t|+|s—ul.

Because of this, 9 can be extended pointwise to a binary operation on E: for

all f,g in E, f% g is defined by (f%g)(x) = f(x)%g(x) for all x in X. Naturally
the inequalities 2.1 remain true.
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2.3. The mod-algebra (E, m) has the decomposition property.

ProOF. Suppose a>0<b in E. Trivially, B, ,,2B,+B, Conversely, let
m(f)<a+b and define ¢ = f% a. Then m(c)<a by 2.1 (i), so that ce B,. Next,

m(f—c) =m(f7%(a+b)—f7;a)
<m(b), by 2.1¢i).
Thus f— c€ B, showing that fe B, + B,

Next come three more technical results, of use mainly for mod-convex vector
structures. Henceforth, let e stand for the unit function, constant 1.

2.4. Let q be a structure coarser than q,,, and f belong to E. Then f%re is q-
convergent to f as r—> in R,

PrROOF. It can be assumed that g =gq,,. Let & =m(f)+m(f?), and suppose
2>5>0. Now if r>1/(45)>0 and z€F then

() |z—z%r| = 0<s(Jz| +|z[» if | z| <r, and

Gi) |z=z%r| =|z|—r<s(|z|+|zP) if | 2| >r.
Thus m(f—f% re)<sh if r>1/(4s), showing that f9, re—fin (E,,t,) as desired.

2.5. LeMMA. If q is a mod-convex group structure on E then %, is g-continuous.

PROOF. A group structure is a (necessarily translation-invariant) structure such
that + and — are continuous. So, suppose that #, % €¢(0) and f, g belong to E.
To show the continuity of %, it is enough to prove that (F +f)%(Z+g) is
g-convergent to f% g. By mod-convexity, it can be assumed that &# and & are
M -closed.

So, let F and G be mod-convex members of & and ¥, with aeF and beG.
Then by 2.1(ii),

m((a+f) % (b+8)~(a+f)%g)<m®) and ml(a+f)%8—~f7g)<mla).

Thus the former belongs to G, the latter to F and (a+f)%(b+g) to f% g+ F+G.
In short, (#F +f)% (% +g) is finer than F +%+f%g, a filter g-converging to

frs.

2.6. If q is a mod-convex ti-structure and A is mod-convex, then q{A] is also
mod-convex, and furthermore, qg[A] = oq[A].

PRrOOF. (Recall the notation for an adherence operator.) First, take acg[4] and
suppose that m(b) <m(a). Then there is an #-closed filter &# in ¢(0) such that
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a+% meets A. Choose FEZ andif€F such that a+fecA. Then —b¥,m(f)eF
if F is mod-convex, while

m(b—>b 7, m(f)) = m(b Y, m(a)— by m(f))
< m(a+f).

Thus b—b¥% m(f)e(b+F)n A, showing that b+F meets A. In short, g[4] is
mod-convex.

Since oq is finer than ¢, ogl4]1=q[A]. Conversely, suppose acg[A4]: that is, for
some #-closed filter & in ¢(0), a + % meets A. It will now be shown that a+% n B,
also meets 4, and hence that acog[A4].

Take Fe % . By assumption, a+f€ A for some fe F. By 2.1(i), —a¥, m(f)e Fn B,
if F is mod-convex, while

m(a—ayym(f)) = m(ay,m(a)—ay,m(f))
< m(m(@)—m(f)), by 2.1(ii)
<m(a+f).

(The last inequality holds in any mod-space at all, not just the ‘nice’ one considered
here.) Thus a—a¥,m(f)e An(a+Fn B,).

2.7. THEOREM. Let q be a mod-convex algebra structure. Then the q-adherence of a
band is both a band and an ideal.

PrROOF. Let 4 be a band in E and B =g[A4]. The vector operations being g¢-
continuous, B is a vector sub-space of E, while by 2.6 it is mod-convex. Finally, let
g€ B and feE. By 2.4, there is a filter & converging to f, such that the set E, of
all bounded functions belongs to 4. Similarly there is a filter % converging to g,
to which 4 belongs. As multiplication is by assumption continuous, % —fg.
Now suppose that Fe # and Ge . Then functions ae FnE, and b€ Gn A can be
found, with abe FGn A since A4 is a band. Thus & % meets A, showing that fg € B.

2.8. If q is a mod-convex semi-algebra structure then a similar proof shows that a
g-closed band is an ideal.

Now let I be an ideal and ¢ be a mod-convex semi-algebra structure on E. By
1.2, q,, is finer than ¢. In turn, the topology ¢, of uniform convergence is finer
than ¢,,: this is because ¢, is a (mod-convex) group topology whose filter % of
t,-neighbourhoods of 0 converges to 0 in (E,q,,), since E,e% and %|E,~0 in
(Ee’ te)'
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Next, for any f, g in E, if g is invertible then /%, g = fg/max{|f|,| g|}. In particular
Sbelongs to Iif and only if f = £ e does. Take fin I, and suppose that m(g) < m(f).
Then m(g") <m(f’)<e. Since m(f”)? is the product of f’ with its complex conjugate,
m(f')?eInB,. Let (r,) be a sequence of polynomials on [0, 1] with no constant
term, converging uniformly to the cube-root function r. Then the sequence
r, om(f’)? converges uniformly on X to the function f* = r o m(f’)2. By assumption,
each r, om(f’)? belongs to I, so that f”e¢,[I]. Thus f” belongs to the set g[/],
which is an ideal since ¢ is by assumption a semi-algebra structure. By defining

0 if g'(x) =0,
h(x) =
g'X)[f"(x) otherwise,
one obtains a well-defined function /# whose continuity is easily verified. But as
g’ = hf”, g’ and hence g both belong to ¢g[I]. This argument, due to Kutzler (1974),
proves the next result.

2.9. THEOREM. If q is a mod-convex semi-algebra structure, then any g-closed
ideal is a band.

One can do a little more than this in some cases, for example, if the operation
Srrm(f)t is g-continuous on E, then g[/] itself is always a band. Without some
such assumption ?

3. The mod-fine vector structure

The topology ¢, of compact convergence generalizes ¢, in a natural way, avoiding
some drawbacks ¢, has when X is not compact. Various other structures (such as
continuous convergence ¢,, locally uniform convergence g, and the Marinescu
structure of continuous convergence g;, all described in Binz (1975)) generalize
t,, as well: these all carry detailed information about X even when X is not compact.
Yet another is g,,: it is the finest mod-convex vector structure coarser than z,.
Unlike the others, both ¢, and g,, are entirely algebraic in nature, depending
solely on the mod-space structure of E, and hence reflect a more blurred image of X.

This section is devoted almost entirely to g, itself, its closed ideals and to the
locally convex topology lg,,. Its relations with other structures and topologies on
E are dealt with later.

3.1. The structure q,, lies between t,, and t,. Moreover, it is complete.
ProoF. As noted earlier in the proof of 2.9, ¢, is finer than g¢,,. But as 7, is a

mod-convex vector structure, g, >, (1.2). Finally, because any inductive limit of
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complete convergence vector spaces is complete, by Wloka (1963), Satz I11.11, ¢,
is complete if (E,,¢,) is, for each fin E.

So, suppose that (g,) is a Cauchy sequence in (E,, ¢,), that is, that for each r>0
one can find 7 in N such that if n” > n’ > n then m(g,,.—g,) < rm(f). This inequality
holding pointwise, completeness of F yields a function g, the pointwise limit of
(g,)- The reader will easily verify that g is continuous, actually belonging to E,,
and that (g,,) is ¢~ convergent to g.

As mentioned before, g,, is an algebraic construct depending only on E. Thus
it can be and is assumed for the rest of the section that X is a real-compact
topological space, whose Stone-Cech compactification is X *. With each fin E is
associated its Stone extension f*, a continuous function from X * to the one point
compactification of F. As in Nanzetta and Plank (1972), a subset P of X* is
called a zero-set if P = Z(f) = {ye X *: f*(y) = 0} for some fin E. Similarly, it is
said to be far (from X) if there is a zero-set S such that P< S< X *\ X or, equiva-
lently, if there is some fin E with P U(f) = {ye X *: f*(y) = oo}

Now let I be an ideal in E, and let N stand for its null-set {ye X *: f*(y) = 0 for
all fin I}. Nanzetta and Plank (1972), Theorem 2.3, showed that

1111 ={feE: Z(y)2N}.

A similar formula holds for ¢,,[7] and, as will be seen, its proof owes a lot to
their work.

3.2. THEOREM. For any ideal I in E, q,,[11={f€ E: N\Z(f) is far from X}.

PROOF. Let J be the set defined above and suppose first that feg,,[7]. This means
that for some filter &, 1€ % eq,,(f). More precisely, there is a function g>0 and
a sequence (f,,) in In E, such that (f,,) > fin (E,, t,). Thus for each s>0 an integer
[ exists, such that if n>/ then the inequality m(f,—f)<sg holds on X. But as
continuity and density guarantee similar inequalities on X *, if xe N\ U(g) then
| f*(x)| < sg*(x) <o for all s>0. In short, f* vanishes on N\ U(g), showing that
fed.

Conversely, suppose that feJ, meaning that NS Z(f)u U(g) for some g in E.
Clearly g can be so chosen that g = m(g) > e+m(f*?), having thus a multiplicative
inverse h. Moreover 0<A<e and U(f)< U(g) = Z(h). Let a = fh. By the choice
of g, a* vanishes on Z(f)UVZ(h), and in fact Z(a) = Z(f) U Z(h)= N. Now by the
theorem quoted above, act,[I] and so a€q,[/] But as g,[/] is an ideal,
f=ageq,[I, as desired.

3.3. CorOLLARY. The q,,-adherence of any ideal is a band.

To continue, a closed subset P of X * is said to be an ideal set if { fe E: Z(f)=2 P}
is an ideal, while Nanzetta and Plank (1972), Theorem 3.1 and Corollary 2.4,
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showed that (a) P is an ideal set if and only if P\ F = P for all far sets F, and (b)
that conditions (iii) and (iv) below characterize ?,-closed ideals in terms of ideal
sets.

3.4. THEOREM. The following statements are equivalent :
(i) 1is a q,-closed band,

(ii) 1 is a q,,-closed ideal,

(iii) I is a t,-closed ideal, and

(iv) I={f€E: Z(f)2 N}, for some ideal set N.

ProOF. By 2.7, (i) implies (ii). Trivially, (ii) implies (iii), while (iii) and (iv) are
equivalent. Finally, suppose N is an ideal set and I = {f: Z(f)= N}. By definition,
I is an ideal whose null-set is clearly N. Furthermore, it is a band. Now by 3.3,
if g€q,,[1] then the set F = N\ Z(g) is far from X, and so Z(g)= N\ F. Consequently
Z(g)= N and hence g€l In short, I is a g,,~closed band.

Since g,, is finer than #;, the same can also be said of the locally convex vector
topology /g,,. In fact, lg,, = ¢, as will gradually be shown, the close connection
between this and one other characterization of real-compact spaces being explored
later.

First, the kernel of a full seminorm is a g,,-closed band (1.4) and, hence, an
ideal. It is reasonable to ask if all ¢,,-closed ideals can arise in this way, the following
lemma leading to the answer: no.

3.5. Let p be a full seminorm. Then for each fin E, p(f—f% re) = O for some r>0.

ProoF. Take fin E. Because p is full and m(f—f% re) = m(f)—m(f) Y reif r=0,
it can be assumed that 0<f. To save writing, let g(r) = f—f% re = max (f—re,0}
for all r, so that g(r)>g(s) if r<s. Then g(r)-0 in (E,q,,) as r>c (2.4), and
consequently p(g(r)) >0 in R.

Suppose the lemma false: then there is a sequence O<r,<ry... <r,<...->00
such that p(g(r))> p(g(ry)) > ...—~0. Now let 4, = g(r,)—g(r,.,1)#0 and note that

0 if f(x)<r,,
(T)hn(x)= f(x)—rn ifr'n<f(x)<rn+1’
Fnya—rn i Py <f(X).

Further, p(h,) > p(g(r,.))—p(g(r,.) >0. As one can see from (1), for any sequence
(s,) of positive scalars whatsoever, the function # = X s, h, is well-defined, finite
and continuous. In particular, if s, = n/p(h,) then 0<s, h,<h and p(h)=n, a
clear impossibility.
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3.6. The kernel of a full seminorm is a t,-closed ideal, whose null-set is a compact
subset of X.

PrOOF. Let p be a full seminorm on E. By 3.4, the null-set N of its kernel is an
ideal set. Also, for each f in E there is r>0 such that p(f—f%re) =0, that is,
(f—f%re)* vanishes on N. In other words, |f*(x)|<r if x€N. This means that
each member of E is bounded on N, forcing N to lie inside X.

It is now easy to see for which r the conclusion of 3.5 holds: namely,
r2py{(f) = max{|f(x)|: x€ N}. To prove this, note that if r > py(f) then f—f%re
vanishes on ¥, so that p(f—f% re) = 0.

The next result can obviously be applied to more than just ¢q,,. For example,
Corollary 3.8 extends Feldman (1974), Proposition 1, which he proved using
support sets under slightly more restrictive conditions (but much more quickly).

3.7. THEOREM. Let q be a mod-convex structure on E. Then lq is coarser than a
topology of compact convergence.

ProoF. Since ¢ is mod-convex and (E, m) has the decomposition property (2.3),
lq is the topology generated by all the g-continuous full seminorms (1.5).

So let p be such a seminorm and N the null-set of its kernel. As noted above, if
SfeE and r = py(f) then

p(f) =p(fre)<plre) = rp(e).

In short, p is majorized by a multiple of p,.. Taking % to be the set of all such
N, one can see that the topology (%) of €-convergence (which is a topology of
compact convergence) is finer than /g.

3.8. The topology of compact convergence is the finest mod-convex vector topology
on CX, for real-compact X.

3.9. The locally convex vector topology associated with q,, is the topology of
compact convergence.

ProoF. By 3.7, 1, 21q,,. Conversely, as g,,>1; and 7, is a locally convex vector
topology, lg,, > 1,..

Recently, Gulick and Gulick (1976), p. 262, summarized various characterizations
of real-compact spaces starting with Hewitt (1950), Theorem 22. In pariicular,
they observed that X is real-compact if and only if (E, t;) is the inductive limit (in
the category of locally convex topological vector spaces) of the spaces (Ey, t)szo-
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In order to relate this with 3.9, note that the ‘locally convex’ inductive limit
carries the locally convex topology associated with the ‘convergence’ inductive
limit. Thus 3.9 says that (E, t;) is the locally convex limit of the family (E,,¢)).

The other half is easier: if X is a completely regular space which is not real-
compact, then any point in its real-outgrowth yields a bounded semi-norm on E
which is not #,-continuous, but is lg,,-continuous.

4. Comparisons

The structure g, lies somewhere between ¢, and 7, (3.1): one can narrow its
position down a little by comparing it with other structures between 7, and ¢, such
as q,, g;,, and g, the structure g5, of Dini convergence due to Kutzler (1974), and
their order-bounded modifications (§ 1). Moreover by doing so, one characterizes
Lindel6f spaces (and others too).

There are two ways of describing g;, the original one given in Binz (1975), and
a more geometrical one in Schroder (1976) which is easier to work with here.
Denoted by g,, the latter is defined briefly below, along with g, and g,.

As before, let X be a convergence space and E = CX. With the weak topology
induced by E, X becomes a completely regular space X’ (possibly not Hausdorff),
such that £ = CX',

Let &7 be a collection of subsets of X and & its closure under finite unions.
The topology #(«/) of uniform .&/-convergence is translation-invariant, being a
mod-convex group topology whose filter of neighbourhoods of 0 is denoted by
(). Also, let B(s¥) be the set of all &7/-bounded members of E, where fin E is
said to be &/-bounded if f(A) is bounded in F for all 4 in &/.

Turning back to X, one says that & is w-closed if all its members are closed in X',
and that &7 covers X if o/ meets every X-convergent filter (&7 meets a filter & if
& nF is non-void). For brevity, w-closed covers are called w-covers.

Now one obtains the homogeneous structures g;,, and g; as follows: 0 €4, (0) if
and only if 2 (=) and ¢ €¢,(0) if and only if ¢ 2 (%) 0 B(%), for some w-covers
&/ and #. Next, peq f) if and only if for each x in X, if & —x in X then the
filter p(#) based on sets of the form

R(F)={g(»): geR and yeF},

where Re p and Fe &, converges to f(x) in F. So defined, these are all complete
vector structures, ¢; being a Marinescu structure besides.

Also, let g;, g1, and g, be the corresponding structures obtained from X’ instead
of X. Then g;>g,, and so on. Finally, ¢;, can be defined using the characterization
gp = oq,, given by Kutzler (1974).
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4.1. For any space X, t,24,,2 ;2 q1,24.2 .

The only new link in this chain is the second, which follows from 1.2 and the
mod-convexity of ¢;. Equality can occur at each link: the last three cases were fully
dealt with by Binz (1975), Kutzler (1974) and Schroder (1976), and the first two are
discussed below.

4.2, The space X is pseudo-compact if and only if t, = q,,. In particular, if X is
real-compact then it is compact if and only if t,, = q,,.

4.3. The following statements are equivalent, for each c-embedded space X:
(i) X is compact,

(i) Xet, for each w-cover  of X,

(iii) ¢, = t,, and

(lV) Im =9

PRrOOF. A space Y is known to be compact if its underlying set belongs to &%,
for each cover #Z of Y. Thus (ii) implies (i), for in a c-embedded space every cover
is refined by a w-cover (this may easily be deduced from Schroder (1973), Propo-
sition 3.4, for example). Trivially, (i) implies (iii), and (iii) implies (iv) by 4.1.

Finally, suppose (iv) holds but not (ii). Then there is a w-cover & of X such that
X\ A is non-void for all 4 in &. The filter p = (&) N E, is g;-convergent to 0 by
definition, and g,,-convergent to 0 by assumption. Consequently B,€p for some
f>e. Nowif Re p then R contains some set P of the form E,n{he E: m(h)<son A},
for some s>0 and 4 in &. Since A# X, a non-zero bounded function / can be
found, vanishing on A. Clearly, all multiples of / belong to P, but not to B,. This
contradiction shows that (iv) implies (ii).

Even though g, lies next to g; in 4.1, they are still quite a long way apart: one
sign of this is the previous result, that to bring them together one must demand
compactness, no less, and another sign is the ‘ideal theory’ (g,,-closed ideals are
not always g;~closed, see Binz (1975), Theorem 35).

Yet another indication lies in vector duality: for any c-embedded space X, a
linear functional on E is g,,-continuous if and only if its support set is compact in
the real-compactification X" of X’ (3.9), while Binz (1975), Theorem 37, shows
that it is g;~continuous if and only if its support set is actually compact in X.
That theorem states more, namely, that lg; = ¢,. This allows one to determine
when lg,, = lg;.
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44. For any c-embedded space X, lq,, = t,, if and only if each compact subset of
X" is compact in X.

Two examples illustrate the difficulties: both are based on the full Tychonov
plank. In the notation of Gilman and Jerison (1960), §8.20, they are modifications
of T*, a compact topological space. In the first, X;, nothing is changed except
that a filter may converge to ¢ only if it is based on the right hand (short) edge,
while in the second X,, one allows convergence to ¢ only along the top (long)
edge. Both X; and X, are locally compact c-embedded spaces such that
X] = X, =T*, Schroder (1974).

In particular, E= CT* = CX,; = CX, and, further, each bounded linear
functional is continuous on C; X;, while some (those whose support is the right
edge of T'*, for example) are not continuous on C; X,.

In particular, X; and X, show that the conditions (i) X and X “ have the same
underlying set, (ii) C; X and C,, X have the same dual, and (iii) /g; = g, are not
equivalent.

Having seen the size of the gap between g,, and ¢;, to shrink it one is led to the
order-bounded structures og;, oq;, and og,. Again as these are mod-convex vector
structures, 4,, 2 0q; 2 oqy,, = 0q,.

4.5. For any space X, oq; = oqy,,.

Proor. Kutzler (1974), Satz 2.3, proved this for completely regular spaces. As
noted above, og; > og;,,. Conversely, let 6 € 0g;,(0). Then by definition, 62 (/)N B,
for some w-cover & and some g>0. Take [g] to be the countable w-cover
{(g<n): neN}, where (g<n)={xeX:|g(x)[<n}. Now let # be any w-cover
refining both &/ and [g], noting that Y(&)2y(#) and B,< B(%). Thus
02 (%) n B(PH), as desired.

The next two lemmas allow one to attack the equality of og; and g,,, geometrically.
Given a collection &7 of subsets of X and function g in E, one says that g fits &/
if the open cover (g) consisting of the sets (g<n) = {xe X: |g(x)| <n} refines &.

4.6. If y(X)n B,eq,,(0) and o is w-closed, then g fits & for some g>e.

Proor. The restriction to E, of the filter (/) n B, is t,~convergent to O for some
g in E: it is assumed without loss of generality that inf{g(x): x€ X} = 1. Thus if
neN then (1/n) B, belongs to (/)N B,, meaning that for some s>0 and 4 in &7,

* ...(1/n) B,2 B,n{h: m(h)<s on A}.
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The assumption guarantees that s< 1/n. Also (g<n)< A4: for otherwise g(x)<n
for some x outside A, yielding & in E vanishing on A4, such that 0<A<e and
h(x) = 1: thus h< g/n, contradicting (*).

4.7. Let g fit /. Then for all f in E, y() 0 B;€4,,(0).

ProOOF. Take n in N, and choose A4 in & so that (g<n)< 4. Let
k=(e+m(f)(e+m(g)) and P ={h: m(h)<1/non A4}
Now take 4 in B;nP. If x is in A then
| ACx)| < 1/n<k(x)/n,
while otherwise x ¢ 4, so that |g(x)|>n and
|G| < fG) <1+
<+ A+[g)])/n = k(x)/n.

In short, m(h) < k/n, showing that Pn B,= (1/n) B;.

4.8. THEOREM. For any c-embedded space X, q,,=o0q; if and only if X is a
Lindeldf topological space.

PRrOOF. Suppose first that X is a Lindelof topological space and that & covers X.
By complete regularity, there is a refinement % of & consisting of sets of the form
U, = (h,<1), where h,(x) = 0 and h_ e E for all x in X. Now put V,, = (h,<}) for
all x. The cover ¥~ so obtained refines Z as well: moreover, there is a countable
subset of ¥~ which covers X (Lindeldf), yielding an increasing (possibly finite)
sequence of zero-sets (V,) which covers X. Let (U,) be the corresponding sequence
obtained from %. The disjoint zero-sets V,, and X\U, can be separated by a
function g, = m(g,)<e, vanishing on V,, and constant 1 on X\U,. The function
g =Y g, is well-defined, finite and continuous. Moreover, as (g<n)<U,, g fits Z.
This being true for every w-cover & in particular, (&) n B, belongs to ¢,,(0) for
all fin E (4.7). That is, og;, >q,,.

Conversely, suppose that og; =gq,. Then for each w-cover & of X,
W) B,eq,(0). So by 4.6, g fits & for some g>e. In other words, & has a
countable refinement consisting of sets open in X’. This means (i) that X is a
Lindelsf convergence space, see Binz (1975), § 5.3, and (ii) that every neighbourhood
filter in X' converges in X, see Schroder (1973), Theorem 3.6. In short, X = X' is
a Lindeldf topological space.
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Lindelof spaces have been characterized through E in several other ways:
Kutzler showed that a completely regular space X is Lindelof if and only if ¢,
coincides with another Marinescu structure ¢;, and Feldman showed that a
c-embedded space X is Lindeldf if and only if C, X is first countable. For details,
see Binz (1975), Theorems 84 and 82, and also 5.6.

The next task is to find out when g,, = og,. The answer to this problem is given
by an ‘order-bounded’ extension of theorems in Binz (1975), Kutzler (1974) and
Schroder (1976) dealing with the equality of ¢, and g,.

4.9. THEOREM. For any space X, the following are equivalent:
() og,>q,,

(ll) o4, >qlu’

(iii) og, = oqy, = og;,

(V) g = gy, and

(V) the set of all w-covers of X is weakly countably directed.

Proor. Condition (v) means by definition that for any sequence (&) of w-covers,
one can find a w-cover &/ refining each . The implications ‘(iv)=-(i)=(ii)=-(iii)’
are either trivial or depend on 4.5, while (iv) and (v) are equivalent by Schroder
(1976), Theorem 3.4. Finally, the proof given there or in Binz (1975), §5.4 can be
easily adapted to show that (iii) implies (iv).

This raises one obvious question, of the topological meaning of 4.9(v). Answers
to this and other questions arising from it are given in the next section.

5. Topology

Condition 4.9(v) is easy to define and easy to work with when one is interested
in E rather than X, but what it means for X in topological terms is not so clear.
Let X be a completely regular Hausdorff topological space. Binz (1975), Theorem
8.5 (ii), showed that g;, = ¢, if and only if the neighbourhood filter of X in the
Stone-Cech-compactification X * of X is closed under countable intersections, a
property denoted here by Count(X : X ¥). Someone somewhere (I can neither find
nor remember) observed that if X, is the set of points in X without a compact
neighbourhood, then Count(X : X *) follows from Count(X,,;: X). More than this
is true, as indicated below.

5.1. THEOREM. Let X be a completely regular Hausdorff topological space. Then
the statements below are all equivalent:
() X satisfies 4.9(v),
(i) X has Count(X : X' *),
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(iii) X has Count(X,;: X), and

(iv) in the Stone-outgrowth X *\ X, the union of any sequence of compact sets has

compact closure.

The reader should have no difficulty in finding a purely topological proof for
himself. More generally, for c-embedded convergence spaces the problem remains.
Let X be a c-embedded convergence space. A filter on X is said to be compact if
it meets the family ¢~ of compact subsets of X (and a point locally compact if
every filter converging to it is compact). Also, if E is a collection of filters on X
and .o a family of subsets of X, one says that &7 covers E if all its members meet 27.
Finally, let 2 be the set of all non-compact convergent ultra-filters and A the set
of all non-compact convergent filters.

5.2. THEOREM. For any c-embedded convergence space X, the following are
equivalent:
() the set of all w-covers of X is weakly countably directed,
(ii) the set of all w-covers of A is weakly countably directed, and
(iii) the set of all w-covers of E is weakly countably directed.

Here too the proof is left to the reader: it involves nothing more than set-theory
and Schroder (1976), Proposition 1.1. The connection between 5.1 and 5.2 is
revealed by noting that if X is completely regular then X, is the set of points to
which the members of A and E converge.

Returning now to order-bounded structures on E, one recalls that og; = oq;,,
and that og,,, = oq, if and only if the c-embedded space satisfies the conditions just
discussed. Remembering that a (completely) regular topological space X is Lindelof
if and only if each compact subset of X *\ X is far from X, one can combine
4.8, 4.9 and 5.1 to find out when og, = ¢,,.

5.3. THEOREM. For any c-embedded space X, the following are equivalent:
(@) gm =09,

(ii) X is a Lindelof topological space with Count(X,;: X), and

(iii) the union of any sequence of compact subsets of X *\ X is far from X.

5.4. THEOREM. For any c-embedded convergence space, the following are equivalent:
(i) X is locally compact,

(i) g, = 14, and

(iii) og, = oty.

ProoF. The equivalence of (i) and (ii) was proved in Binz (1975), Theorem 32.

In any case, ‘(i)=-(ii)=-(iii)’ is a triviality. Finally, to prove that (iii) implies (i), it
suffices to show that if X is not locally compact (that is, " does not cover X)
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then the filter o = }(#")n B, does not og,converge to 0. So, let & be a non-
compact filter converging to x in X. Take Sin o, thatis S22 B,n{h: m(h)<son K}
for some s>0 and some K in 2¢". As before, for each F in & a point y in F\K
can be found: choose 4 in E, vanishing on K and 1 at x, such that 0<Ah<1. Then
h belongs to S, so that 1 € S(F). As a result o(# 10 in F.

5.5. THEOREM. Let X be a c-embedded space. Then

() q,, = oty if X is a Lindeldf locally compact topological space (that is, a locally
compact hemi-compact topological space), and

(ii) q,, = ot, (where t, is the topology of pointwise convergence) if and only if X
is a countable discrete space.

ProoF. Claim (i) follows from 5.3 and 5.4, and claim (ii) from (i) and 4.6 (using
in 4.6 the set & of finite subsets of X).

Now one can quickly sketch the properties of another Marinescu structure g;
in which ¢ €¢,(0) if and only if o2 ([g]) n B([g]) for some g in E (recall that [g] is
the w-cover {(g<n): neN}). This structure is the convergence space analogue of
qr described in Binz (1975), p. 119: in fact, if X is completely regular then g; = g;..

Clearly gq,,>g;>q;, while one can use 4.7 to show that g, = og;: at last, a
structure ‘near’ ¢,,! As might be expected from its definition, g; can also be used to
characterize Lindelof spaces.

5.6. THEOREM. Let X be a c-embedded space. Then the following are equivalent:
(i) X is a Lindeldf topological space,

(i) ¢; = ¢, and

(iii) (g, =)o0g; = 0g(= oq,).

Proor. Clearly (iii) follows from (ii), and (i) from (iii) by 4.8. So suppose X is
Lindelof and that &/ w-covers X. The argument in the proof of 4.8 produces a
function g in E such that [g] refines &7. Consequently the topology of .-
convergence is finer: that is Y(2)2 {([g]) as desired.

This theory is here to be used, first on a rather trivial but necessary example
showing that g,, does in fact differ from og; sometimes. Let X be a discrete copy
of the real line. It is real-compact and locally compact: in fact g; = t,. But by
5.5(ii), g, # 0g; = ot,, nor are g,, and g; equal.

Before considering the ideal theory of these order-bounded structures, one
should find out when—if ever—they differ from their parents: the reader will
easily verify the following facts.
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5.7. The space X is pseudo-compact if and only if q,, = q;.

Proor. If X is not pseudo-compact, take an unbounded function g in E and
verify that J([g]) 0 B([g]) contains no By, so it cannot g,,-converge to 0. Conversely,
if X is pseudo-compact and geE, then B([g]) = E and Xe[g]. Thus B,ey([g])
and J([g]) is 7,-convergent to 0. (Compare with 4.2.)

5.8. THEOREM. Let X be a c-embedded space. Then the following are equivalent:
(i) X is compact,

(i) the structures q;, qy,» 4. and t,, are all order-bounded, and

(iii) any one of them is order-bounded.

ProoF. Trivially (ii) implies (iii), while (i) implies (ii) because all four structures
coincide with the order-bounded topology ¢, if X is compact. Finally by 4.1, to
prove that (iii) implies (i) one need only show that X is compact if g; is order-
bounded. This may be done much as in 4.3.

6. More ideals and seminorms

Again let X be a convergence space and E = CX. For any ideal I in E, the
X-null-set of I is defined to be the set {xe X: f(x) =0 for all fin I}. It may of
course be empty, but whether it is or not, it is closed in X",

6.1. THEOREM. Let I be an ideal in E. For any convergence structure q between
oq; and t,, the following are equivalent:
(i) 1is a g-closed ideal,
(ii) 1 is a g-closed band, and
(iii) feI if and only if f vanishes on the X-null-set of I.

Proor. Assume (ii). Then I is an og;-closed band, and so g;-closed (2.6). Thus
(iii) holds, by Binz (1975), Theorem 15. Also, (iii)) implies (i), since any ideal
satisfying (iii) is 7,-closed. Finally, suppose (i). Then I is an og;-closed ideal and,
hence, a band (2.9). By ‘(i)=-(iii)’, I is ,~closed and so (ii) holds.

Feldman (1974), Theorem 1, proved that if X is real-compact and ¢ is an 4-convex
vector-lattice topology on E (with F = R), then every t-closed ideal is full (that is,
it satisfies 6.1(iii)). In fact, more is true as one can see from 3.8.
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6.2. If X is real-compact and t is a mod-convex vector topology on E, then every
t-closed ideal is full.

While 6.1 may hold for a still wider range of convergence structures, the range
does not include ¢;. (Note that like g,,, g; is an algebraic construct.)

6.3. The g;-closed ideals are exactly the t,-closed ones.

PRrOOF. One implication is trivial, so suppose 7 is #,-closed. By 3.4 it is a g,,-
closed band. Thus as g, = og;, it is also g;-closed (2.6).

6.4. The locally convex topologies associated with q,, and g; coincide.

For any c-embedded space X, if ¢;>¢>1, then lg = 1,, as shown in Binz (1975),
Theorem 37. However, Kutzler (1974) showed that this is no longer true for
order-bounded structures by proving that the completely regular pseudo-compact
space X = R*\(N*\N) admits a gp-continuous linear functional on E without
compact support in X (in fact, its support is X * = R¥),

Though the situation is untidy, there are some results and many problems. Let
X be a c-embedded space. A subset B of X is said to be bounded if f(B) is bounded
in F for all fin E. Clearly the closure in X’ of any bounded set is bounded: also
the set Z of all bounded subsets of X is closed under finite unions. (One can show
that a set is bounded if and only if its closure in the real-compactification X of
X' is compact.)

6.S. THEOREM. Let q be a mod-convex vector structure lying between oq; and t,.
Then

lg < (D) for some D<B.

PROOF. Let p be a g-continuous full seminorm. As in 3.7, the null-set N of its
kernel is compact in X”, while by 6.1 its X-null-set M is closed in X’. Since
p(f) = O<=f vanishes on N<>f vanishes on M, N is the closure of M in X ”. That is,
the X-null-set of every full g-continuous seminorm is bounded, and one can take
for 2 the collection of all these X-null-sets, by 3.7.

To continue, let € be the X "-nullsets of the g-continuous full semi-norms.
Since g>1t, X< X, = J¥. Now if lg = #(€) then each point x of X, yields a
t(%)-continuous homomorphism £ from E to F.

https://doi.org/10.1017/51446788700014919 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014919

60 M. Schroder [22
6.6. The only points of X" yielding oq;-continuous homomorphisms are those of X.

ProOF. Let xe X"\ X. For each y in X choose f, in E such that f,(y) =0,
f(x)=2 and 0<f,<2e. Then if V,={zeX": f(2)<1} and W, = XV, the
cover #~ of X' so constructed can be used (by the reader) to show that £ is not
og;-continuous, since X(H(¥") N By,)+->0.

What this means is quite simple: if X, contains X properly then g is not a
topology of uniform convergence. (One can easily prove that if lg is a topology of
uniform convergence, it has to be #(%) = 1(2).) Kutzler’s example cited earlier
shows that this can happen. Moreover, his example is locally compact, so that
0q; = 04, = qp = ot,. Consequently one cannot hope to prove even the first case:
lot, = t,..

The well-known characterization given by Nachbin (1954) of those completely
regular spaces X for which C, X is barrelled is just as true for c-embedded X. In
the language used here, it states that C,, X is barrelled if and only if every w-closed
bounded subset of X is compact. Kutzler (1974) proved that if this is so, then
lgp = 1.

6.7. THEOREM. Let X be a c-embedded space. Then the following are equivalent:
(i) C, X is barrelled,

(i) # = A, the family of compacta in X, and

(iil) (%) = log,, in which case all of t(#), log,, loq, and lot, coincide with t,.

ProoF. Nachbin’s theorem shows the equivalence of (i) and (ii). Suppose (i)
holds: then (%) > log; (6.5), while log; > t,, = t(%#). Next, assume (iii) and take H
in #. Then the seminorm py is og,-continuous, so that if &/ w-covers X, then
pa(W(Z)nB,)->0 in R. It is now easy to verify that H< A4, for some 4 in .
As X is c-embedded and each cover can thus be refined by a w-cover, this shows
that H is compact in X.

Finally, since (%)= log; = log,>log.>lot,>1t, = t(X'), all these topologies
coincide if # = .

To end with some of the problems: when are (i) log; and log,, (ii) log, and lot,,
and (iii) Jot, and ¢, equal? Under what conditions are they topologies of uniform
convergence, and when they are not, what are they?
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