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Abstract In the last six lines of Turnbull's 1948 paper, he left an enigmatic statement on a Capelli-type
identity for skew-symmetric matrix spaces. In the present paper, on Turnbull's suggestion, we show that
certain Capelli-type identities hold for this case. Our formulae connect explicitly the central elements
in !/(gln) to the invariant differential operators, both of which are expressed with permanent. This also
clarifies the meaning of Turnbull's statement from the Lie-theoretic point of view.
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1. Introduction

About a half century ago, in the last few lines of [17] treating a Capelli-type identity for
symmetric matrices, Turnbull commented very briefly also on a Capelli-type identity for
skew-symmetric matrices. Instead of showing its explicit formula, he just suggested that
an adaptation could be made to cover the skew-symmetric case by using the permanent
with the negative sign diagonal shift. Since then, [3] seems to be the only literature that
deals with this identity. In [3], a certain formula is given on the suggestion above, but
its proof is left as an exercise of their similar combinatorial proof of the other Turnbull
identity for symmetric matrices. Actually, the formula presented in [3] is not the identity
for central elements in the universal enveloping algebra U(Qln) of the Lie algebra gln,
so that it does not give an answer to the Capelli problem in the sense of [5]. Partly
for this reason, the authors claimed that Turnbull's identity is less interesting than the
skew-symmetric analogue treated by [5] and [7].

In this paper, we will give another candidate to which Turnbull's idea extends. Our
formula is for central elements in U(gln) and the proof will clarify the reason why the
permanent fits with this Capelli identity for the skew-symmetric case rather than the
determinant. Furthermore, through this investigation, we naturally come up with a family
of (non-central) Capelli-type identities which contains the identity given in [3].

We use a method of generating functions. As the determinants appear as the matrix
coefficients in exterior algebra, the permanents appear as the matrix coefficients in sym-
metric algebra. Our computations are. thus, quite parallel to those done in [20],
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380 T. Umeda

2. Central elements of permanent type

First we make some convention on notation. For a multi-index a = (a\,a2,- • • ,an)
consisting of non-negative integers, we put, as usual,

! = ai!a'2! • • • an\,a! = ai!a'2! • • • a a\ = ot\ + a.2 + • • • + an.

Also, for a fixed set of variables x = (xi,X2, • • • ,xn), we write xa — x^x^2 • • •£""•
A multi-index a = (ai, c*2,.. - ,an) can be naturally identified with a non-decreasing
sequence Ia of \a\ integers:

a <—> Ia =

We denote by ia the zth component of Ia, i.e. ia = k if
fc-l k

r=l r=l

With this notation, we indicate how to pick up the rows or the columns from a fixed
matrix according to the multi-index. More specifically, for an n x n matrix A and for
multi-indices a, /?, we denote by Aaf3 the \a\ x \/3\ matrix whose (i,j) component is given
by Afj = Aiaj0. Note that if all the components of a, j3 consist of either 0 or 1, this Aa@
is nothing but the submatrix whose rows and columns are, respectively, determined by
Ia and Iff.

In this paper, we understand the permanent Per(A) of an N x N matrix A = (Aij)fj=1

with (possibly) non-commutative entries to be defined as

Per(A) = 2 ^ Aa{inAa{2)2---Aa{N)N.
crG6N

A basic observation is that the permanents appear to describe the matrix coefficients of
the linear transformation in the space of homogeneous polynomials induced from a linear
transformation of the base space. In fact, we have, for N = |/3|,

\a\=N

with yj = Y^H=I
 xiAij, because

p ^ - v A A A

p̂ ^ 1

= E xi
\a\=N
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Turnbull identity 381

Note that as far as Xi and Apq commute, this computation is valid even when Apq are
not necessarily commutative.

Remark 2.1. The symmetric group 6AT acts on the set of the TV-tuples of non-
negative integers / = (ii,i2, •••.AN) with 1 < ik ^ n by a • I = (iff(i), V(2), • • •, V(jv))-
Then each 6/v orbit contains a unique element of the form Ia for some multi-index a.
Note that the order of the stabilizer at Ia is a!, so that we have a more reduced expression
of the matrix element

± AillgAl22,---AiNNp. (2.2)

Remark 2.2. The following formula is deduced from (2.1) for the identity matrix
A = l.

Per(lQ*) = a\5a0. (2.3)

Also from the property that the permanents appear as the matrix coefficients, we see the
chain rule:

Per(Ca 7)= ^ ^yPer(AQ/3)Per(JB
/37). (2.4)

Here, A, B and C are n x n matrices with commutative entries related as C = AB, i.e.
Cik = S?=i AijBjk, and we assume N = \a\ = \j\ for the multi-indices a and 7.

We now construct certain central elements of the universal enveloping algebra U(gln)
of the Lie algebra gln relating to permanent. Let Eij be the standard basis of the Lie
algebra gln. We put Eij(u) = E^ +u5ij € U(gln) with a scalar parameter shift and form
the matrices

E = (Eij )tJ=l, E(u) = (Eij + u«Jy ) i W •

Furthermore, for multi-indices a,/? with N = \a\ = |/?|, we define

Ea0-,(u) = Ea0 + la/} • (u - diag(7V - 1, N - 2 , . . . , 1,0)), (2.5)

and put Ea®z = Sa^q(0). Here 1 stands for the identity matrix of size nxn. By definition,
the (i,j) component of E^^u) is given by Eiajg + (u-N+j)Siojg. Using these matrices,
we define the elements DN,D^(U) £ U(gln), for TV = 1,2,..., by

D N = E ^Per(^aQ=)> D»M= E ^Per(£Q a:H). (2.6)
\a\=N ' \a\ = N

The following theorem is our first goal, which is due to Nazarov [12] (see also [13]
and [10]).

Theorem 2.3. The element DN(U) e U(g[n) defined above is central in U(gln).
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Remark 2.4. We have another explicit expression of the element DN as

s-(N-s)-S^e)ia), (2.7)

where the factors corresponding to the index s = 1,...,N are arranged from left to
right. The equality (2.7) is a consequence of the relation (2.12) below. Note also that the
element DN is the same as that given in [10] by the formula

where the factors are also arranged from left to right. The difference between (2.7) and
(2.8) is in the arrangements and the shift. As in the case of Capelli elements, when the
arrangement of the factors for the E^ is changed by the transposition, we need to make
a correction by reversing the order in the shift (for the proof of Capelli determinant case,
see [6]). We will give the proofs of the equalities (2.7) and (2.8) in Appendix A.

Remark 2.5. The element DN{U) can be expanded in u as

, (2.9)
T=0

where u^ = u(u — 1) • • • (u — r + 1). The proof of this fact is as follows. Introduce a
difference operator A by A(p(u) = <p(u + 1) — <p(u). Then we have a Leibniz-like formula

A((p(u)ip(u)) = A<p(u) • ip(u) + <p(u + 1) • Atp(u).

Note that this is valid even when tp(u) and ip(u) are non-commutative. It is easy to see
that the Leibniz-like formula applied repeatedly to DN(U), as the permanent is multilin-
ear in the columns, yields the result ADN(U) = (N + n— 1)DN-I{U). Then (2.9) follows
immediately from this and the formula Au^ = ru(-r~1\

Theorem 2.3 can be looked at in a wider context, especially from the view point of
Yangians and i?-matrices (see, for example, [10,12,13,15]). However, we will give here a
proof of a more elementary nature. For the proof of this theorem, we work in the algebra
C[xi, X2, • • •, Xn]®U(gln), where the multiplication is defined so that the two subalgebras
C[a;i,X2, • • • ,xn] and U(gln) are to commute. Let us consider the elements

The basic commutation relations of these are given in the following.

Lemma 2.6. For any 1 ̂  i, j ^ n, we have
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Proof. It is sufficient to prove that r)i(u)rij(u) - rij(u)rji(u) = XiTjj(u) - XjT]i(u), and
this can be shown by a simple calculation:

l(u),Eqj(u)} =

= 2_^XPXq(.Epj&iq — Eqi5jp)
P,Q

P Q

I \ ( \
—'—• T * * nr\ * ^— T * * *n » —~*— ^f* * nr\ • i 11 l ^̂ — o^ • *n * i i / i— ^I'/j t*JJ'lt — •*J1'IJ\ "•/ thy fftyU'J •

Thus the assertion is proved. D

For a multi-index a = {a\,a2,... ,an) with N = |a|, we now define

Jv

The notation r?^Q' (u) here is parallel to u^ = u(u — 1) • • • (it — a + 1). The arrow over the
symbol indicates the order of the product, as the factors may not commute. However, in
this case, Lemma 2.6 guarantees that

r?(a)(u) = ? ? i l ( u - N + l)r)i2{u - N + 2) • • • r]iN{u), (2.12)

for any permutation (ii,i2,..., IN) £ &N • Ia of Ia = (1Q, 2 a , . . . , 7Va).
By a computation essentially the same as for the formula (2.1), we see

V«))- (2-13)

This suggests that DN(U) is defined as the trace of non-commutative linear transform
(xa)a H4 (r](a)(u))a. Indeed, the fact that D^/(u) is central reflects the invariance of the
trace under conjugation (cf. Proposition 3.5 in [15]).

Proof of Theorem 2.3. The adjoint action of GLn on gln extends to an automor-
phism group action on the enveloping algebra U(gln). We show that the element DN{U)
is invariant under this action. The statement of Theorem 2.3 is then paraphrased as
follows. Take any A = (Aij) e GLn, and write its inverse as A~l = B = (Bij). From
E = (Eij), we form AEA'1 = E* = (££), so that

Under the algebra automorphism of U(gln) extending this E >-> E*, the polynomial

DN(u) =

\a\=N
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is transformed to
D*N{u) =

\a\=N

The invariance of DN(U) then amounts to the equality DN(U) = D*N{u).
We write the quantities transformed by this automorphism as

and

N
rj* (u — N + i) = r/l (u — N

Then, as (2.13) above, Per(E*a/3[,(«)) appears as the coefficient of xa /a! in
First, we compute the relation between these Per(£TQ/3[,(«)) and

Lemma 2.7. We have the following relation

| a | = |/3|=iV

Proof. Introduce the following auxiliary elements:

and

<(" - N + *) = */!> ~N + V^Ju -N

Note that the relation (2.12) is valid also for rjfj{u), because yj are commutative. We see
the relation of TJ'J (u) and rj* (u) as

Vj(u) = Y xi(E*j + u5ij) = Y xi(AikEkeBej + uAik6keBej)
i i.k,e

i,k,e

= Y Vk{Eki + u6ke)Bej = Y Ve(u)Bej.
k,e e
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Combining this relation, (2.12), the chain rule (2.4), and (2.1), we see the following
computation. We write Ui = u — N + i for short below:

ui)r]2 (^2) • • 'V*N (w/v)

Y2i Ve^iWeA^) • • •/n'eN(uN)Be1ilBe22^

1 ,

1 ,

= V — T/(|8)(U)

")Per(£a/3
l,(«))Per(B/37).

By comparing the coefficient of xv in both sides, we obtain Lemma 2.7. •

With Lemma 2.7 in hand, we now see by noting the relation (2.3):

= iaY__Jt

= ]aY_Nh
= > — Per

We have thus proved the assertion of Theorem 2.3. •

Remark 2.8. Taking our Borel subalgebra as the standard upper triangular matrices,
we denote by V\ the irreducible g[n-module with the highest weight A = (Ai, A 2 , . . . . An),
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where Ai ^ A2 ^ • • • Ŝ An. The eigenvalue of DN on V\ is easy to compute from the
expression (2.6):

Ai + 01 - W)(Ql)(A2 + ai + a2 -
\a\ = N

Prom this expression, for the polynomial representation with integral highest weight
A = (Ai, A2,..., An) with Ai ^ A2 ^ • • • ^ An ^ 0, we have the vanishing property that
DNIVX = 0 if and only if Ai < N.

The proof of the 'if part follows from the observation, by the pigeon-hole principle,
that each term above

- A0(ai)(A2 a2 -

vanishes under the condition N > \\ ^ A2 ^ • • • ^ An ^ 0. Also, the same reasoning
implies that for any integral n-tuple A = (Ax, A2,..., An) with Ai > A2 > • • • ̂  An ^ 0,
each term above is non-negative. Then the 'only if part can be seen from the term X\ '
specialized as a = (N, 0 , . . . , 0).

The computation of the eigenvalues of D^ also leads to their relation to the Capelli
elements:

min(n,iV)

Y, (-)TDN_rCr(N-l)=0 (TV = 1,2,...).
r=0

Here, the rth Capelli polynomial Cr(/j.) is denned through the expansion of the (nth)
Capelli polynomial C(A),

r=0

and C(X) = det(E — A + diag(n — 1, n — 2 , . . . , 0)) is defined by the non-commutative
determinant. The above relation between the two series of central elements in U(gln)
is analogous to the fact that the generating functions of elementary symmetric poly-
nomials and complete symmetric polynomials are reciprocal. This suggests that there
exists a corresponding cohomology vanishing theorem of non-commutative Koszul com-
plex behind it.

3. The Capelli-type identities

Let Altn be the space of alternating matrices of size n x n. Then the general linear
group GLn acts on Altn by X(g) : a t-> galg(g G GLn,a 6 Altn). We denote by Uj
(i < j) the standard coordinate functions on Altn, and use the convention on notation
that tji = —tij for j < i. The differential operator d/dtij is abbreviated as d%j, and we
use the convention dji = —dij too. The infinitesimal action A of gln on the space 'P(Altn)
of polynomials is given by

n

= Y,taidaj. (3.1)
a-1

https://doi.org/10.1017/S0013091500020988 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020988
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Thus, forming the two alternating matrices T = ( i i j)"j= l ! d = (#tj)i!j=i> w e s e e

\(E) = tTd. (3.2)

Our Capelli identity may be regarded as a non-commutative version of the chain rule
(2.4) of permanents. We use the same notation A for the action extended to U($ln) on

Theorem 3.1. Under X, the central element DN e U(gln) is mapped to the invariant
differential operator on Altra as follows:

As in the previous section, we will use the method of generating functions. This time
we work in an extended algebra C[x\,X2,... ,xn] <g> VD{A\tn), where VT>(A\tn) is the
ring of polynomial coefficient differential operators on Altn.

Let us introduce the following two types of elements:

U = J2 XiUi (1 < a < n), 0 = ^Zadaj (Kj< n). (3.3)
i = l a= l

Then, from the relation (3.1), we see

n

5 > - (3-4)
a = l

Since the variables tij are commutative, the elements £a are commutative too. Introducing
the elements

tj(u) = Cj + uXj = ^ XiXiEijiu)), (3.5)
o=l

we state the fundamental commutation relations between £a and Cj(u) below.

Lemma 3.2. The following commutation relations hold:

(1) [<9pg,£a] = XqSpa ~ Xp8qa;

(2) C,q£a - taCq = ZaXql ^nd

(3) <,(«-l)£a=£a<,(u).

Proof. Assertion (1) is easy to see by a direct computation:

i[dVq,tai] = ^^Xii^pa^qi ~ &Pi&qa) = Xq8pa — Xp5qa.
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For (2), multiply £p from the left on both sides of (1) and sum up with respect to p. Then
we have

Cqsa CaCg — Sa^q dqa / ^pxp-
P

Here, the last summation vanishes, because

P^P = '^XiXptpi = 0, (3.6)

as the sum over all the entries of an alternating matrix. The final assertion (3) follows
immediately from (2). •

Proof of Theorem 3.1. Let us consider the element

~N

(iQ(u-N + i)=(la(u-N + l)C2o (u-N+ 2) •••(„„ («). (3.7)

Then, from (3.5) and (2.13), we see, on the one hand,

On the other hand, from the definition (3.3) and Lemma 3.2, we have

, (-W + l)C2/3 (-W + 2) • • • Ov, (0)

= E
\a\=N>

https://doi.org/10.1017/S0013091500020988 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020988


Turnbull identity 389

|a|=iV

-J-fX1/Per(ra")Per(aa^).
a\v\

\a\ = \u\=N

Comparing this with (3.8). we see

A(Per(^/3|,)) = J2 -^Per(Tai/)Per(0a/9). (3-9)

Then, putting v = (3 and summing up for all /? with |/3| = iV, we obtain the assertion of
Theorem 3.1. •

Remark 3.3. In the proof above, we used only the relations (3.1) and Lemma 3.2 (3),
so that the same proof can be applied for the action of GLn by the right multiplication
on the matrix space Mat(m, n). For this case, the Capelli identities are obtained by
Nazarov [12] (see also [10]). Furthermore, in the proof of Lemma 3.2 (2), we see why the
permanent, not the determinant, fits directly with the case of skew-symmetric matrices,
while for the action of GLn on the matrix space Mat(m, n) mentioned above, both types
of the Capelli identities using determinants and permanents appear.

Remark 3.4. The anti-symmetric analogue of the Capelli identity obtained in [3] is
the special case of our (3.9) with N = n and u,(5 = (1,2, . . . ,n). The formula in [3]
seems slightly different from ours: first, a redundant signature sneaked into the formula;
second, the authors express their formula in terms of a normal ordering for the differential
operators. We give an explanation for the latter point. Let us introduce the notation of
the normal ordering : : to indicate the operation to move the partial differential operators,
dij, to the right and the multiplication operator, t^, to the left. Then, in our notation,
the formula in [3] reads as follows:

A(Per(JEt)) = :Per(4Td):. (3.10)

This is the resulting formula when we take the permanent of both sides of (3.2). In
the symbol of the normal ordering, we may compute as if the operators d^ and Uj
commute, so that the chain rule (2.4) is formally applied to the expansion of the right-
hand side of (3.10). We see then that (3.10) is deduced from our (3.9) with N = n and

Appendix A.

Here we give the proofs of the equalities (2.7) and (2.8). We introduce some notation to
make a new matrix from a n n x n matrix A. For two A^-tuples of non-negative integers
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I = (ii, i2, . . ., IN), J = (ji, J2, • • • ,JN) with 1 ̂  ik, jk < n, we denote by A13 the N x N
matrix whose (p, q) component is given by Al

v
3

q = Aivjq. We denote by | / | the size TV of
/ . When I and J consist of non-decreasing sequences of the form I = Ia, J = Ip, the
matrix AIJ coincides with Aa@ introduced in §2. Similarly as (2.5), we define

E'\{u) = EIJ + 1IJ • (u - diag(Af - 1, N - 2,..., 1,0)), (A 1)

and put EIJ\i = -E/Ji,(0). Then the right-hand side of (2.7) can be written as

E
To verify (2.7), it thus suffices to show Per(£//

t ]) = Per(£/a/°i,) for / in the orbit 6N-Ia,
as the cardinality of the orbit is N\/a\. This is seen from a more general invariance

for a, T E &N- For the change of rows, it is obvious from the definition of the permanent
that Per(JB<T/Jt](w)) = Per(EIJ\i(u)) for a e SAT. The invariance under the change
of columns follows from (2.12). To see this, we define a quantity similar to (2.11) for
I = ( i i , i 2 , . . - , i j v ) by

iv
V(

I
N)(u) = l[Vis(u-N + s)=rlH(u-N + l)Tli2(u-N + 2)---rllN(u). (A2)

s=l

Then, parallel to (2.13), we have the expansion

'ViO) . (A3)
\c\=N

The equality (2.12) is now rewritten as

rif){u)=rim{u), (A 4)

which holds for any / £ Sjv • Ip- Using (A3) and (2.13) to compare the coefficients in
this equality, we obtain Per(EIa\(u)) = Pev{EIaIl)\i{u)). This assures the invariance for
columns and, hence, completes the proof of (2.7).

The crucial point for the equality (2.8) lies in finding the necessary change in the
permanent expression when the matrix E is transposed. Let us put

lE'\. (u) = lEu + 1IJ • (u - diag(0,1,..., N - 2, N - 1)), (A 5)

and write for simplicity iEa^\i»(u) = tElal0\i*{u). (Note here that what we mean is
t-E13 = ^E)u but not tEIJ = ^E13).) Instead of showing (2.8) itself, we will prove the
following:

^ a \ ( u ) ) . (A6)
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In the course of the proof, this is seen to be equivalent to (2.8). To prove (A 6). we make
use of the algebra C[xi, x2, • • •, xn, y\, y2, • • •, yn] ® U(QIU) with doubled formal variables.
We put

n n

z{u)= ^2 xiyjEij(u) = '52yjr)j(u) = ̂ 2xifii(u), (A7)

where

Then, by Lemma 2.6, we have the following commutation relations:

77i(u-l)77j-(ti) = rij(u - l)-m(u), fjj(u)fii{u - 1) = fji(u)fjj(u - 1). (A8)

The former is nothing but Lemma 2.6 itself, and the latter is deduced from the former
by the application of the anti-automorphism Etj H-> Eji of f/(gtn). Let us introduce the
counterpart of (A 2) for fjj(u) by

N

V^iu) = J J fU.(u - s + 1) = fh1(u)fji2(u -l)---fjiN(u-N + l) (A9)

with / = (ii,i2:. • • ,IN)- We will write 77^(it) for 77} (u). Then, by virtue of the sym-
metry in the commutation relations (A 8), we can translate the identities for the r\ to
those for the 77. The identity (A 3) is transferred to

J2 ^ H ) - ( A 1 0 )

Also from (A 4), we have

fj\N)(u)=fj^(u), (All)

for any / € &N • Ia-
Now consider Z^N\u) = Z(u - N + \)Z{u - N + 2) • • • Z(u). We expand this in two

ways. On the one hand, using the penultimate expression for Z(u) in (A 7), we see from
(A 4) and (2.13) that

\J\ =

\0\=N P' |a| = |3i=

Here, we have used the notation yj = yjxyj2 • • -yjN for J = (ji,J2, • • • ,JN)- On the other
hand, use the last expression for Z(u) in (A 7) and reverse the order of multiplication for
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u) as Z{u)Z{u - 1) • • • Z[u - N + 1). Then we see from (A 11) and (A 10) that

= E
\I\ = N

= E^T^(a)(u)= E ^
| a | = W ' |a | = |/3| = W 'P'

The comparison of the coefficient of xayP in these two expressions of Z^N^ tells us the
general form of the relation between the permanents of transposed matrices:

Per(Ea0
rj{u)) = PeT{tE0a

b.(u)). (A 12)

Our assertion (A 6) is immediate from this. From the symmetry between rj and 77 that
we have used, the equality (2.8) is also clear.

Remark A 1. The technique of doubling the formal variables is also useful in many
aspects (see [6]).
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