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Restricted Khinchine Inequality

Susanna Spektor

Abstract. Weprove a Khintchine type inequality under the assumption that the sum of Rademacher
randomvariables equals zero. We also show a new tail-bound for a hypergeometric randomvariable.

1 Introduction

_e Khinchine inequality plays a crucial role in many deep results of probability and
analysis (see [6, 9, 10, 12, 15, 19] among others). It says that Lp and L2 norms of sums
of weighted independent Rademacher random variables are comparable. More pre-
cisely, we say that ε0 is a Rademacher random variable if P(ε0 = 1) = P(ε0 = −1) = 1

2 .
Let ε i , i ≤ N , be independent copies of ε0 and a ∈ RN . _e Khinchine inequality (see
e.g., [10, _eorem 2.b.3] or [6, _eorem 12.3.1]) states that for any p ≥ 2 one has

(E∣
N

∑
i=1
a i ε i ∣

p
)

1
p
≤
√

p ∥a∥2 =
√

p(E∣
N

∑
i=1
a i ε i ∣

2
)

1
2
.(1.1)

Note that the (Rademacher) random vector ε = (ε1 , . . . , εN) in the Khinchine in-
equality has independent coordinates. However, in many problems of analysis and
probability it is important to consider random vectors with dependent coordinates,
e.g., so-called log-concave random vectors, which in general have dependent coor-
dinates, but whose behaviour is similar to that of the Rademacher random vector or
some Gaussian random vector (see e.g., [7] and references therein). In [13] the author
considered random matrices, whose rows are independent random vectors satisfying
certain conditions (so the vectors may have dependent coordinates). He studied lim-
iting empirical distribution of eigenvalues of such matrices. As an example of such a
vector, showing that the conditions cover large class of natural distributions, not cov-
ered by previously known results, O’Rourke considered the vector ε = (ε1 , . . . , εN),
whose coordinates are Rademacher random variables under the additional condition

S =
N

∑
i=1
ε i = 0, where N is even,(1.2)

(see [13, Examples 1.4 and 1.10]). For such vectors he proved a Khinchine type in-
equality with the factor C

√
Np/ logN in front of ∥a∥2, which was enough for his
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Restricted Khinchine Inequality 205

purposes. _e goal of this paper is to show that such random variables satisfy a Khin-
chine type inequality with the same factor

√
p as in the standard Khinchine inequal-

ity. To shorten notation, we denote by ES the conditional expectation given the event
(1.2). Note that the corresponding probability space is

Ω = { ε ∈ {−1, 1}N
∣

N

∑
i=1
ε i = 0} = { ε ∈ {−1, 1}N

∣ card{i ∶ ε i = 1} = n} .(1.3)

Our main result is the following theorem.

_eorem 1.1 Let ε = (ε1 , . . . , εN), be a vector whose coordinates are Rademacher ran-
dom variables under the condition (1.2). Let a = (a1 , . . . , aN) ∈ RN and b = 1

N ∑
N
i=1 a i .

_en

(1.4) (ES ∣
N

∑
i=1
a i ε i ∣

p
)

1/p
≤
√

2p (∥a∥2
2 − N b2)

1/2
≤
√

2p (ES ∣
N

∑
i=1
a i ε i ∣

2
)

1/2
.

_e ûrst step in the proof is a reformulation in terms of random variables on the
permutation group as follows. Let N = 2n. For the set Ω deûned in (1.3), we put into
correspondence the group ΠN of all permutations of the set {1, . . . ,N} as

σ ∈ ΠN ←→ Aσ = { ε ∈ Ω ∣ ε i = 1 if σ(i) ≤ n; ε i = −1 if σ(i) > n} .

Given a ∈ RN , deûne fa ∶ΠN → R by

fa(σ) ∶=
n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i) .(1.5)

By EΠ we denote the average over ΠN , i.e., the expectation with respect to the nor-
malized counting measure on ΠN . Note that ES ∣∑

N
i=1 a i ε i ∣p = EΠ ∣ fa ∣p . _erefore,

_eorem 1.1 is equivalent to the following theorem.

_eorem 1.2 Let N = 2n, a ∈ RN . Let fa be the function deûned in (1.5). Let
b = 1

N ∑
N
i=1 a i . _en for p ≥ 2,

(EΠ ∣ fa ∣p)
1/p

≤
√

2p(
N

∑
i=1
a2
i − N b2

)
1/2

≤
√

2p(EΠ ∣ fa ∣2)
1/2

.

In Section 2 we prove _eorem 1.2. _en, in Section 3, we consider a special case
of our problem, when the coordinates of the vector a are either ones or zeros. _is
particular case leads to the hypergeometric distribution. We obtain new bounds for
the p-th central moments of such variables.

In the last section we discuss the behaviour of moments of the following function
deûned on the group of permutations endowed with normalized counting measure

f (σ) = ∣
N

∑
i=1
aσ(i)b i ∣ .

Note that the case b i = ±1, together with ∑N
i=1 b i = 0, corresponds to the settings of

_eorem 1.2.
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2 Proof of Theorem 1.2

We now compute

EΠ ∣ fa ∣2 = E∣
n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i)∣
2
.

Expanding the square and noticing that for every i, and every k ≠ i, expectations over
all permutations respectively are

E(a2
σ(i)) =

∥a∥2
2

2n
and E(aσ(i)aσ(k)) =

(∑
2n
i=1 a i)

2 − ∥a∥2
2

2n(2n − 1)
,

we get that

EΠ ∣ fa ∣2 =
N∥a∥2

2 − (∑
N
i=1 a i)

2

(N − 1)
.

_us, without loss of generality we may assume that∑N
i=1 a i = 0.

For k ≤ n, let

bk ,σ ∶= aσ(k) − aσ(n+k) and Hk ,σ ∶=
n

∑
i=k+1

aσ(i) −
2n

∑
i=n+k+1

aσ(i)

(with Hn ,σ = 0). Clearly,

n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i) = b1,σ +H1,σ = b1,σ + b2,σ +H2,σ = ⋅ ⋅ ⋅ =
n

∑
i=1
b i ,σ .

Note that EΠ ∣b1,σ +H1,σ ∣
p = EΠ ∣ − b1,σ +H1,σ ∣

p . Hence,

EΠ ∣ fa(σ)∣p = EΠ ∣
n

∑
i=1
aσ(i) −

2n

∑
i=n+1

aσ(i)∣
p
=
EΠ ∣b1,σ +H1,σ ∣

p +EΠ ∣ − b1,σ +H1,σ ∣
p

2
.

Denoting by δ i , i ≤ n, i.i.d. Rademacher random variables independent of ε1 , . . . , εN ,
and using the Khinchine inequality (1.1), we obtain

EΠ ∣ fa(σ)∣p = EΠEδ1 ∣δ1 b1,σ +H1,σ ∣
p

= EΠEδ1Eδ2 ∣δ1 b1,σ + δ2 b2,σ +H2,σ ∣
p
= ⋅ ⋅ ⋅

= EΠEδ1Eδ2 ⋅ ⋅ ⋅Eδn ∣
n

∑
i=1
δ i b i ,σ ∣

p

≤ EΠ[
√

p(
n

∑
i=1
b2
i ,σ)

1/2
]

p
= pp/2 EΠ(

n

∑
i=1

∣aσ(i) − aσ(i+n)∣
2
)

p/2

≤ pp/2 EΠ(2
n

∑
i=1

(a2
σ(i) + a

2
σ(i+n)))

p/2
= (2p)p/2

∥a∥p
2 ,

which completes the proof.
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3 Hypergeometric Distribution

In this section we discuss a speciûc case of hypergeometric distribution and show
how it is related to our problem. Recall that a hypergeometric random variable with
parameters (N , n, ℓ) is a random variable ξ that takes values k = 0, . . . , ℓ with prob-
ability

pk =
(
ℓ
k)(

N−ℓ
n−k)

(
N
n)

.

In this section we consider only the case N = 2n, ℓ ≤ n. It is well known thatEξ = ℓ/2.
In the next proposition we estimate the central moment of ξ.

Proposition 3.1 Let 1 ≤ ℓ ≤ n. Let ξ be (2n, n, ℓ) hypergeometric random variable.
_en for p ≥ 2 one has

E ∣ξ −E ξ∣p ≤
√

2(
p ℓ
4

)

p
2
= C p

1 (
p ℓ
4

)

p
2
.

Remark 3.2 It is well known that the conclusion of Proposition 3.1 is equivalent to
the following, so-called ψ2 deviation inequality: there are C2 ,C′2 > 0, such that for all
t ≥ C′2,

P(∣ξ −E ξ∣ > t) ≤ exp(
−t2

C2
2ℓ

) .

Relationships betweenC1 ,C2, andC′2 can be found, for example, in [5,_eorem 1.1.5].
_is estimate, for hypergeometric ξ, is of independent interest; in particular, it is better
than the previously observed bound exp(−2t2/n) when ℓ ≪ n (see [8, Section 6.5]
and [17, formulas (10), (14)]).

Remark 3.3 One can use_eorem 1.2 to estimate ES ∣∑
2n
i=1 a i ε i ∣p in the case where

the vector a has 0/1 coordinates with ℓ ones. Indeed, without loss of generality assume
that a1 = a2 = ⋅ ⋅ ⋅ = aℓ = 1 and aℓ+1 = aℓ+2 = ⋅ ⋅ ⋅ = a2n = 0. _en ∑2n

i=1 a i ε i = ∑ℓ
i=1 ε i .

_eorem 1.2 implies the following estimate.

Corollary 3.4 Let a ∈ RN , N = 2n, be a vector with ℓ coordinates equal to one and
N − ℓ zero coordinates. _en, for p ≥ 2,

ES ∣
N

∑
i=1
a i ε i ∣

p
≤ (2 p ℓ)p/2 .

Proof of Proposition 3.1 Denote X ∶= ∑2n
i=1 a i ε i = ∑ℓ

i=1 a i ε i . Since the vector a has
0/1 coordinates with ℓ ones, ∥a∥2 =

√
ℓ. For every 0 ≤ k ≤ ℓ we compute the prob-

ability qk that exactly k of ε1 , ε2 , . . . , εℓ equals one (in that case X = 2k − ℓ). Since
S = ∑

2n
i=1 ε i = 0, in order to get k ones, we have to choose k ones out of ε1 , ε2 , . . . , εℓ

and n − k ones out of εℓ+1 , εℓ+2 , . . . , ε2n . _is gives us (ℓk)(
2n−ℓ
n−k ) choices. Since

∣Ω∣ = ∣{ε ∈ {−1, 1}2n
∣

2n

∑
i=1
ε i = 0}∣ = (

2n
n
),
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we obtain that qk = pk , i.e., X = 2(ξ −E ξ), where ξ has hypergeometric distribution
with parameters (2n, n, ℓ). _erefore, Corollary 3.4 implies

(E∣ξ −Eξ∣p) 1/p
≤
√

2 p ℓ.

We would also like to note that Proposition 3.1 can be proved directly. Below we
provide such a direct proof, which gives 2 in place of

√
2 in front of ( pℓ

4 )p/2. _is proof
is of interest as it can be extended to a slightly more general situation (see Remark 3.5)
and can be used in another approach to the main problem (see Remark 4.3).

Direct proof of Proposition 3.1 From Stirling’s formula together with the observa-
tion that

√
πn (

2n
n )/4

n increases, we observe that

22n
√

2πn
≤ (

2n
n
) ≤

22n
√

πn
.

Using this, we obtain

(
2n−ℓ
n−k )

(
2n
n )

≤
(

2n−ℓ
n−⌊ ℓ

2 ⌋
)

(
2n
n )

≤
22n−ℓ

√

π(n − ⌊ ℓ2 ⌋)

√
2πn
22n ≤

2
2ℓ

≤ 1.

_erefore

E ∣ξ −E ξ∣p =
1
2p

ℓ

∑
k=0

∣2k − ℓ∣p
(
ℓ
k)(

2n−ℓ
n−k )

(
2n
n )

≤
2

2ℓ+p

ℓ

∑
k=0

∣2k − ℓ∣p(
ℓ
k
) =

2
2pE∣Sℓ ∣p ,

where Sℓ is a sum of ℓ i.i.d. Rademacher random variables. By the Khinchine inequal-
ity (1.1), we have

(E∣Sℓ ∣p)
1/p

≤
√

p
√
ℓ.

_us,

E ∣ξ −E ξ∣p ≤ 2(
p ℓ
4

)
p/2

.

Remark 3.5 _e above proof can be extended to a slightly larger class of hyperge-
ometric random variables. Note that the proof works whenever (N−ℓ

n−k)/(
N
n) ≤ 1. _us,

if ℓ ≥ N − log2[
√

π(N
n)], then

E∣ξ −E ξ∣p ≤ 2(p ℓ/4)
p
2

for a (N , n, ℓ) hypergeometric random variable ξ.

4 Concluding Remarks

In this section we would like to prove_eorem 1.2 in a more general context; namely,
we study behaviour of moments of f (σ) = ∣∑

N
i=1 aσ(i)b i ∣, where σ is permutation

function. A possible approach to this problem is to use the concentration on the
group ΠN (endowed with the distance dN(σ , π) = ∣{i ∶ σ(i) ≠ π(i)}∣). _e follow-
ing theorem is proved by Maurey ([11], see also [16]).
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_eorem 4.1 Let f ∶ΠN → R be a 1-Lipschitz function. _en for all t > 0

µ({σ ∶ ∣ f (σ) −E f ∣ ≥ t}) ≤ 2e−t2/(32N) .

Let us mention here the following open question posed by G. Schechtman in [16]:

Is there an equivalent (with constants independent of N) metric on ΠN for
which the isoperimetric problem can be solved?

_eorem 4.1 implies the following estimate.

Corollary 4.2 Let a, b ∈ RN . Let f ∶ΠN → R be deûned by

f (σ) ∶= ∣
N

∑
i=1
aσ(i)b i ∣ .

_en

(E∣ f ∣p)
1/p

≤ E∣ f ∣ + 4
√

p
√

N∥a∥∞∥b∥∞ .

Proof It is easy to see that f is a Lipschitz function with Lipschitz constant
2∥a∥∞∥b∥∞, indeed,

∣ f (σ) − f (π)∣ ≤ ∣
N

∑
i=1
aσ(i)b i −

N

∑
i=1
aπ(i)b i ∣

≤
N

∑
i=1

∣b i ∣∣aσ(i) − aπ(i)∣ ≤ 2∥a∥∞∥b∥∞dN(σ , π).

Using _eorem 4.1 and the bound Γ(x) ≤ xx−1 for all x ≥ 1 (see, for example, [4]), we
obtain

E∣ f −E f ∣p = ∫
∞

0
µN(∣ f −E f ∣p ≥ tp)dtp ≤ 2p∫

∞

0
e−t2/(32N∥a∥2

∞
∥b∥2

∞
)tp−1dt

≤ 4p Γ(
p
2
)N p/2

∥a∥p
∞
∥b∥p

∞

≤ 4p N p/2pp/2
∥a∥p

∞
∥b∥p

∞
.

_us,

(E∣ f ∣p)
1/p

≤ E∣ f ∣ + 4
√

p
√

N∥a∥∞∥b∥∞ ≤
√
E∣ f ∣2 + 4

√
p
√

N∥a∥∞∥b∥∞ .

Remark 4.3 In the case where b i = ±1 with condition ∑N
i=1 b i = 0, Corollary 4.2

gives an additional factor
√

N in the upper estimate in (1.4). Using the chaining ar-
gument similar to the one used in [1–3] and Proposition 3.1, the factor

√
N can be

reduced to
√

lnN (the details are provided in [18]).
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