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A Spectral Identity on Jacobi Polynomials
and its Analytic Implications

Richard Awonusika and Ali Taheri

Abstract. The Jacobi coefficients cf(rx, B) (1< j< ¢ a, B> -1) are linked to the Maclaurin spectral
expansion of the Schwartz kernel of functions of the Laplacian on a compact rank one symmetric
space. It is proved that these coefficients can be computed by transforming the even derivatives
of the Jacobi polynomials P,E“’ﬁ ) (k > 0,a, > 1) into a spectral sum associated with the Jacobi
operator. The first few coefficients are explicitly computed, and a direct trace interpretation of the
Maclaurin coefficients is presented.

1 Introduction

The Jacobi polynomials have a close connection with the Laplace operator on compact
rank one symmetric spaces. They represent the spherical functions on these spaces
and serve as the key ingredient in describing the spectral projections and the spec-
tral measure associated with the Laplacian. In this note we bring this connection to
the fore by showing that a set of spectral and geometric quantities associated with
the so-called Jacobi operator fully describe the Maclaurin coefficients relating to the
Schwartz kernel of operators in the functional calculus of the Laplacian.

The Jacobi polynomials P,E“”B ) (integer k > 0, real «, 5 > —1) constitute an orthog-
onal family of polynomials with the generating function relation *

1 (oo}
_ —(a+pB) Z (a,B) k
(1-z+R)*(1+z+R)F k2 k=0pk (1) ol <1,

where R = /1 -2tz + z2. It is seen that P,E“’ﬁ )isa degree k polynomial admitting the
truncated series representation

PP (1) =

Fla+k+1) & (k)l"(a+ﬁ+k+l+l)(t_l),)

F(oc+/3+k+1),§) 1) 2T (a+1+1)k!

and satisfying the classical Rodrigues’ representation formula

P]Eoc,ﬁ)(t) _ %(1_ t)ﬂx(l_F t)*ﬁ%[(l_ t)k+a(1+ t)k+ﬁ] .
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IFor more information and further reading on this scale of orthogonal polynomials, the interested
reader is referred to [4,7,8] and [15,16].
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The Jacobi polynomial y = P,E“’ﬁ ) satisfies a second-order homogenous linear differ-
ential equation: the Jacobi equation

2

(L1) (1-t*)—= dy

d2 (“ B+ (0‘+ﬁ+2)t) +k(k+a+p+1)y=0,

which in turn constitutes a regular Sturm-Liouville system, where the associated Ja-
cobi operator is a positive, selfadjoint, second order, linear, differential operator in the
weighted space L2[~1,1; (1—t)*(1+t)Pdt]. The spectrum here is discrete and is given
by the sequence of eigenvalues and eigenfunctions

(1.2) Mo —k(krasrpr1),  y=PP1), k>0
In particular, and as a result, the Jacobi polynomials satisfy the orthogonality relations
C(“’ﬂ)ak,m = <P]§a’ﬁ),P&a’ls))LZ[—I,I;(I—t)“(Ht)‘;dt] k,m20

1
= / PR (PSP (6)(1- 1) (1+ 1)P dt.
-1

Here, 6k, is the usual Kronecker delta and the constants c(®P) on the left (that are
of relevance only when k = m) are given by

c(@p) _ parprr (@ Di(B+Di(a+f+k+1) [(a+ DI(B+1)
kKl (a+B+2)k(B+a+2k+1) T(a+p+2)

Here and below, (x); = I'(x + k)/T'(x) denotes the rising factorial. Now for m > 1,
the Jacobi polynomials satisfy the differential recursion formula

F(k+m+oc+,8+1) (ot+m/3+m)
2"T(k+a+f+1)

(13) A pleh) (1) -

T (1),

along with the reflection symmetry and pointwise identities

(0( + 1) k

ki
The Jacobi, Gegenbauer, and Legendre polynomials are related to one another for a
suitable choice of («, ) parameters, as given by (with k > 0, v > —1/2)

PR (—t) = (-1)kPP (1), PP (1) =

POV =GP0 PO, Gl = o ),

Having all this in place we note that in the sequel it is often more advantageous to use
the normalised form of the Jacobi polynomials, written ylgu’ﬁ ) and defined by

PP (1)
ph 1) (a D)y K

@(“ ﬁ)( t) = (06 ﬁ)(t)

Note that as a result of this normalisation, ﬁlga’ﬁ ) 1) =1
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2 Jacobi Coefficients and a Spectral Identity

We start by proving a differential-spectral identity relating the derivatives of the Jacobi
polynomial to a suitable weighted sum of the integer powers of the eigenvalues of the
Jacobi operator. Applications and implications of this identity to rank one symmetric
spaces will be discussed later on.

Theorem 2.1 (Jacobi coefficients) The normalised Jacobi polynomial 9,5“’5 ) with
k>0, a, B > —1 satisfies the differential-spectral identity

d o, ¢ [ i o,
ey 2P (cos) 9 :Zlcf(a,ﬁ)[k,i DY = 2(A"P).
=0 J=

Here, (cf((x,ﬁ) :1< j <€) are suitable constants, A,((“’ﬁ) =k(k+a+B+1)withk>0
are the eigenvalues of the Jacobi operator from (1.1)-(1.2) and %y = Z¢(X) is the degree
¢ polynomial defined via (2.1) (see also (2.6)).

Proof Basic considerations shows that for suitable scalars A, (1 < m < £) and upon
invoking the differential-recursion formula (1.3), we can write

(2.2)
d2
d02€

4
P(a ﬁ)(cose) Z mdtmp(oc ﬁ)(t)

g=0 m=1 t=1
i EALT(k+m+a+B+1) plasmpem) gy
e 2mT(k+a+B+1) P
CEACT(k+a+1) 27T (k+a+p+m+1)
A T(a+m+1) T(k+a+p+1)(k-m)!
Ze:A€F(0c+1)2_’”1“(k+(x+ﬂ+m+1)k
" T(k+a+B+D)T(a+m+1)(k-m) K

m=1

N

N

P(“ 13)(1)

Now, focusing on the last line above, using the basic properties of the Gamma func-
tion and a subsequent expansion, it follows that for suitable choice of constants BY' =
B (a, B), we can write

T(k+a+pf+m+1)k! _'”‘1 m-1
T(k+a+B+1)(k—m) [[(k+a+psp+1)=<[T(k-p)

§"t:
L oo

(k(k+(x+ﬁ+1) p(p+oc+ﬂ+1))

T
(=1

b”4§

B [k(k+a+p+1)]" iB (A=A,
j=1

-
Il
—

where the penultimate identity follows from a straightforward induction on m. Sub-
stituting back into (2.2) gives the required conclusion. ]
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Table 1: The Parameters a, b, N, «, 5 and p associated with 2~

Z N a b o B P
Sr n|n-1 0 (n=2)/2| (n-2)2| (n-1)/2
P'"(R) | n |n-1 0 (n=2)/2| (n-2)/2|(n-1)/2

P"(C) |2n| 1 |2(n-1) n-1 0 n/2
P"(H) |4n| 3 |4(n-1)| 2n-1 1 n+1/2
P?(Cay) | 16 | 7 8 7 3 11/2

Now let —A 4~ denote the (positive) Laplace operator on a compact rank one sym-
metric space 2. Then by basic spectral theory upon taking ® in the functional cal-
culus of —A o the Schwartz kernel of ®(—A o) can be expressed by the spectral sum

= M® (AP

(23) K(])(x, )’) = I;} Vol(gby-)

Here, 0 is the geodesic distance between x, y, Vol(.Z") is the volume of 2", and
M(Z) =AM —k(k+a+p+1)

are the numerically distinct eigenvalues of —A 5 with multiplicities My = My (.2")
where k > 0. (See below for more.)

Before proceeding further let us note that the compact rank one symmetric spaces
that are of particular interest are the sphere S” = SO(n+1)/SO(n), the real projective
space P*(R) = §"/{+} = SO(n +1)/O(n), the complex projective space P"(C) =
SU(n+1)/S(U(n) x U(1)) (of real dimension 2n), the quaternionic projective space
P"(H) = Sp(n +1)/Sp(n) x Sp(1) (of real dimension 4n), and the Cayley projective
plane P?(Cay) = F,/Spin(9) (of real dimension 16).>

For the sake of future reference we now present some of the main spectral geo-
metric quantities associated with the above spaces. The formulation of these, in the
simply-connected case are given, in turn, by the eigenvalues (with k > 0 and p =
(a+b/2)/2; see Table 1)

(2.4) M(Z)=(p+k)?-p*=k(k+a+b/2);
the radial part of the Laplacian 9§ + (a cot 0 + (1/2)b cot(6/2))dp; the multiplicity of
the eigenvalue A, (2") (with k > 0 and N = a + b + 1) given by
_2(k+p)T(k+2p)T((a+1)/2)T(k+N/2)

KIT(2p + )I(N/2)T(k + (a +1)/2)

@éu’ﬁ)(cos 0).

M (&

and the volume
y 2MT((a+1)/2)

(2.5) Vol(2) = a1l

2With the exception of the sphere S! and the real projective space P" (R) (with n > 1) all these spaces
are simply-connected. Indeed 7 (S!) = 71; (P}(R)) = Z, whilst 7 (P"(R)) = Z, for n > 2.
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In the non simply-connected case P”(IR) the counterparts of these quantities are ob-
tained upon using standard arguments from those of its double cover S”. In Table 1
we gather together the values of the parameters a, b, N, «, 8 and p for the symmet-
ric space £ . Note that here N is the real dimension of 2", « = (N - 2)/2 and

B=(a-1)2

Table 2: Data for the symmetric spaces S”, P"(R) and P"(C)

2 s P"(R) P"(C)
AM(Z) k(k+n-1) 2k(2k +n 1) k(k+n)

! — ! 2
M (2) | 2k+n-1 (1523:12)){ (4k +n-1) <(zzkk)+!gn—21)>i e [Fr((’::)k')]
vl(2) 16 162 5

Table 3: Data for the symmetric spaces P”(H) and P?(Cay)

Z P"(H) P?(Cay)
AM(Z) k(k+2n+1) k(k+11)
(2k+2n+1)(k+2n) [ T(k+2n) 1% T(k+8)T(k+11)
M(2) | Gty | wraw | | 6K+ 1) St
Vol(2) s 2 (47)?

Tables 2 and 3 illustrate some of the main spectral geometric quantities [cf. (2.4)-
(2.5)] associated with the symmetric spaces described above. For further reference
and discussion, see also [1, 3,5, 6,16,17].

Now as by (2.3), K¢ is an even function of the geodesic distance its Maclaurin
expansion about 0 = 0 takes the form

oo 92@ aZZ oo 92€
Ko=S — —_K =S,
® ;,(28)!86“ P ;, 26 (20)!

with b3, = b%,[®@] (£ > 0) the associated Maclaurin coefficients. A direct calculation
upon invoking (2.1) now shows that

92¢ o qu)()tia’ﬁ)) J2¢ (f)
o= —K = 2.~ 6
2" 502, ,;, Vol(27)  dg” k (cos )H
= Mo(LY) & (a.6)
= ci(a, B[]
2 Va(z) 40P
1
- tr[Z,D](-A o),
Voi(z) M #e®l(=82)
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where Z, = %¢(X) is the polynomial of degree £ built out of the Jacobi coeflicients
(cf(a,ﬁ) :1< j < £), specifically,
e

(2.6) Re(X) =Y c§(a, B)X.

=1
Note in particular that in the case of the heat semigroup with ®,(X) = e™*¥, the
Maclaurin coefficients of the heat kernel K¢(x, y) := Ko, (x, y) can be expressed as
(t>0):

(a:B)
Mke—t/\k

2e(t) = ,;) Vol(Z)

e
Zcf )L(“ ﬂ)]

j=1

Vo l(%)tr{‘%( Ar)et

and so in this case one can alternatively express

Vol(2)b3(1) = sz{z< e Sy e = (-4} e

The above analysis nicely underlines the role of the polynomials %, and the Jacobi co-
efficients cf in expressing the Maclaurin coefficients b}, associated with the Schwartz
kernel Ko of ®(-A g ). (For related but different results and discussions, see also
[1-3] as well as [9-14].)

3 Explicit Calculations of the First Few Coefficients (cJ‘f 11<j<e)
and the Polynomials %,

The proof of Theorem 2.1 does not reveal the Jacobi coeflicients in explicit form. The
aim here is to compute the first few in the sequence explicitly. For the sake of brevity,
hereafter we set y = P,E“’ﬁ ). Notice that the scalars A, below refer to those in the
proof of Theorem 2.1.

e (£=1)Indeed,

d? (k+a+B+D)I(k+a+1)
— 6 =AY (1) = Al
d@Zy(COS )9:0 (1) =A 2T (a0 +2)(k -1)!
k(k+a+p+1)
1
= (1),
Vo2(a+1) ()
hence
1
1 = —
a(ep) = 2(a+1)°
¢ (£ =2) Here we have
d4 2.7 2.1
Sgar(cost)| =AY (1) + Ay (1)
6=0
_Az(k+a+ﬁ+1)r(k+a+l)

2l (a +2)(k-1)!
Az(k+oc+/5+2)l“(k+oc+1)
4T (o +3) (k- 2)!

(k+a+p+1).
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Simplifying further, we see that

(1) _(k ;(li(flg(““ié)* 2 k(k + 1B +1)y()
~ [k(k+a+p+1)]* (a+B+2)k(k+a+p+1) )
‘{ sar)(a+2)  aa+D)(at2) }y( )

Hence, we obtain

4

~ Al(2a +4) - Ai(a+ B +2)
Wy(cos@)‘ 0=0 _{ 4(a+1)(a+2)

A[k(k+a+B+1)]
T aar D)(at2) }y(l)‘

k(k+a+p+1)

Clearly, basic differentiation gives A? = 1, A2 = 3, and so we obtain

2 ___a+3p+2 2 3
AP ey P ey
e (£ =3) Here we have
d6
(D sey(cost)] = ALY (1) + ALY (1) + ALY (1)

6=0
=AY (D) + ALY )+ Ad(k+a+p+1)
(k+a+B+2)(k+a+B+3)I(k+a+1)
* 8T (o + 4)(k - 3)! '

Further simplification gives

Y1) (k-1)(k-2)(k+a+B+2)(k+a+p+3)

»(1) 8(a+1)(a+2)(at3) k(k+axpel)
~ [k(k+a+p+1)]? Ba+38+8)[k(k+a+p+1)]?
- { 8(a+)(a+2)(a+3)  S(a+1)(a+2)(a+3)
2@+ B+3)(a+f+2)k(k+a+p+1)
" 8(a+1)(a+2)(at3) }
So it follows that

(3.0 = { e (@ p)k(k+a+B+1)
+c§(o¢,/3)[k(k+oc+ﬂ+1)]2+c§((x,[$)[k(k+oc+ﬂ+1)]3}y(1),
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where we have
A3 (a+2)(a+3) = 2A3(a+3)(a + B +2)
8(a+1)(a+2)(a+3)
2A3(a+ B +3)(a+ B +2)
8(a+1)(a+2)(a+3) ’
2A3(a +3) = A3(Ba + 38+ 8)
8(a+1)(a+2)(a+3)
A3
8(a+1)(a+2)(a+3)

a (o p) =

(o p) =

() =

Clearly, by a basic differentiation, we see that A; = -1, A3 = A = -15, and thus

4a® +30aB +30B% +20a + 60 + 24

¢ (ap) =~ 8(a+1)(a+2)(a+3)
. o 15(a+3B+2)

c3(a, B) = 8(a+1)(a+2)(« +3)’
2(ap) - .

8(a+)(a+2)(a+3)
* (£ = 4) Indeed, from (2.2) we have
d8 ! 4 "
(32 gylcosO)|  =ALY(1) + A3y (1) + A5y (1) + Ay (1),
0=0

where y'(1), ¥”(1) and y"’(1) are as above, while

(33) y(;()l()l) k(k+a+B1)(k=1)(k-2)(k—3)
(k+ta+B+2)(k+a+B+3)(k+a+p+4)
* 16(a+1)(a+2)(a+3)(a+4)

Therefore, we have

[k(k+a+p+1)]*-2Ba+3B+10)[k(k+a+p+1)]?
(3‘3):{ 16(a+1)(a+2)(a+3)(a+4)
[11(a® + B2) + 70(a + B) + 22aB + 108][k(k + & + B +1)]?
16(a+1)(a+2)(a+3)(a+4)
6(a+B+2)(a+B+3)(a+f+)k(k+a+p+1)
- 16(a + 1) (ot +2) (ot + 3) (a + 4) }

+

It now follows that
(3.2) = {cf (@ B)k(k+ a+ B+1) + 5 (e B)[K(k + @+ B+ 1)]%+

(@ Bk + o+ B+ D]+ ch(o B)[k(k +a+ B+1)]*} y(1),
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where

8AT (a+2)(a+3)(a+4) —4A3(a+3)(a+4)(a+p+2)
6(a+1)(a+2)(a+3)(a+4)
Aj(a+4)(a+B+2)(a+p+3)
16(a+1)(a+2)(a+3)(a+4)
6As(a+B+2)(a+pf+3)(a+p+4)
 16(a+D)(a+2)(a+3)(a+4)
4A5(a+3)(a +4) - 2A%(a +4)(3a + 38 +8)
16(a+1)(a+2)(a+3)(a+4)
A[11(a® + B*) + 70(a + B) + 22 + 108]
16(a+1)(a+2)(a+3)(a+4) ’
2A% (o +4) — 2A5(3a + 38+ 10)
16(a+1)(a+2)(a+3)(a+4)’
Al
16(a+1)(a+2)(a+3)(a+4)

ci (o p) =

& (o, p) =

¢3(a, B) =
ci(a, p) =

Further differentiation gives A} =1, A = 63, A3 = 210, A} = 105, and we get

340° + 462a% B +1050a 8% + 6308° + 306>

aleh) = - )@ (a3 (@ d)
2184 + 231082 + 884« + 2604 + 816
 16(a+)(a+2)(a+3)(a+d)
4  147a* +1050af + 11552 + 714a + 23103 + 924
(e f) = 16(c+1)(a +2)(a+3)(a+4) ’
4 ~ 210« + 630/ + 420
G = D@ D@3 (ard)’
cA(ap) - o

16(a+1)(a+2)(a+3)(a+4)

Acknowledgments The work of ROA was supported by a PhD scholarship from the
Nigerian Ministry of Higher Education and Research and is gratefully acknowledged.

References

[1] R. O. Awonusika and A. Taheri, On Jacobi polynomials ({/7,5“’!;) : &, B > -1) and Maclaurin
spectral functions on rank one symmetric spaces, J. Analysis 25(2017), no. 1, 139-166.
http://dx.doi.org/10.1007/s41478-017-0038-5

[2] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators.
Grundlehren der Mathematischen Wissenschaften, 348, Springer, Cham, 2014.
http://dx.doi.org/10.1007/978-3-319-00227-9

[3] M. Berger, P. Gauduchon, E. Mazet, Le spectre diine variété Riemannienne, Springer, 1971.

[4] I.S. Gradshtejn, I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 2007.
http://dx.doi.org/10.1090/50025-5718-1982-0669666-2

https://doi.org/10.4153/CMB-2017-056-8 Published online by Cambridge University Press


http://dx.doi.org/10.1007/s41478-017-0038-5
http://dx.doi.org/10.1007/978-3-319-00227-9
http://dx.doi.org/10.1090/S0025-5718-1982-0669666-2
https://doi.org/10.4153/CMB-2017-056-8

482 R. Awonusika and A. Taheri

[5] S.Helgason, Eigenspaces of the Laplacian; integral representations and irreducibility. J. Funct.
Anal. 17(1974), 328-353.  http:/dx.doi.org/10.1016/0022-1236(74)90045-7
, Topics in harmonic analysis on homogeneous spaces. Progress in Mathematics, 13,
Birkhiuser, Boston, MA, 1981.
[7] T. H. Koornwinder, The addition formula for Jacobi polynomials: I Summary of results. Indag.
Math. 34(1972), 188-191.  http://dx.doi.org/10.1016/1385-7258(72)90011-X
, A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13(1975),
145-159.  http://dx.doi.org/10.1007/BF02386203
[9] H. McKean and I. M. Singer, Curvature and the eigenvalues of the Laplacian. J. Differential
Geometry 1(1967), no. 1, 43-69.  http:/dx.doi.org/10.4310/jdg/1214427880
[10] C. Morris and A. Taheri, On Weyl’s asymptotics and remainder term for the orthogonal and
unitary groups. J. Fourier Anal. Appl., to appear.
[11] B. Osgood, R. Phillips, and P. Sarnak, Extremals and determinants of Laplacians. J. Funct. Anal.
80(1988), 148-211.  http://dx.doi.org/10.1016/0022-1236(88)90070-5
[12] P. Sarnak, Determinants of Laplacians. Comm. Math. Phys. 110(1987), no. 1, 113-120.
http://dx.doi.org/10.1007/BF01209019
, Determinants of Laplacians: heights and finiteness. In: Analysis, et cetera, Academic
Press, Boston, MA, pp. 601-622.
[14] R.T. Seeley, Complex powers of an elliptic operator. In: Singular Integrals (Proc. Sympos. Pure
Math., Chicago, III, 1966), American Mathematical Society Providence, RI, 1966, pp. 288-307.
[15] A. Taheri, Function spaces and partial differential equations. I & II, Oxford Lecture Series in
Mathematics and Its Applications, 40 & 41, Oxford University Press, 2015.
http://dx.doi.org/10.1093/acprof:0s0/9780198733157.003.0013
[16] N.]J. Vilenkin, Special functions and the theory of group representations. Translations of
Mathematical Monographs, 22, American Mathematical Society, Providence, RI, 1968.
[17] G. Warner, Harmonic analysis on semisimple Lie groups. Die Grundlehren der mathematischen
Wissenschaften, Band 188. Springer-Verlag, New York-Heidelberg, 1972.

(6]

(8]

(13]

Department of Mathematics, University of Sussex, Brighton, UK
e-mail: rawonusika@sussex.ac.uk a.taheri@sussex.ac.uk

https://doi.org/10.4153/CMB-2017-056-8 Published online by Cambridge University Press


http://dx.doi.org/10.1016/0022-1236(74)90045-7
http://dx.doi.org/10.1016/1385-7258(72)90011-X
http://dx.doi.org/10.1007/BF02386203
http://dx.doi.org/10.4310/jdg/1214427880
http://dx.doi.org/10.1016/0022-1236(88)90070-5
http://dx.doi.org/10.1007/BF01209019
http://dx.doi.org/10.1093/acprof:oso/9780198733157.003.0013
mailto:r.awonusika@sussex.ac.uk
mailto:a.taheri@sussex.ac.uk
https://doi.org/10.4153/CMB-2017-056-8

